不同尺度土壤质量空间变异机理、评价及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过采样分析、资料收集和室外调研,在对工业化和城市化快速发展地区的土壤肥力因子和土壤重金属含量进行空间变异研究的基础上,系统评价了研究区的土壤质量状况,并将其与空间稳定性因子结合应用到基本农田保护、标准农田建设、耕地占补平衡的实施评价和管理上;同时,针对山区特定景观区域,开展了影响山区茶园土壤肥力质量的敏感因子及其空间预测方法研究。研究目的在于通过综合多种信息源,系统性和整体性地评价县(市)级尺度区域的土壤质量,从而能为大尺度区域的土壤质量评价提供技术途径和方法;在此基础上分析和揭示快速城市化进程对土壤质量和耕地质量的影响机制,为县(市)级土地(土壤)可持续利用管理决策提供依据;针对山区复杂地形,能建立一套准确预测山区土壤肥力质量的方法,以期为农业精准管理提供基础。
     论文的主要研究工作、认识和结论如下:
     (1)基本构建了工业化和城市化快速过程中县(市)级尺度区域的土壤质量评价方法的框架。
     通过对1:25000县(市)级区域的系统采样,首先,利用地统计学的空间结构分析功能、插值技术及互信息理论,分析了研究区土壤肥力因子和土壤重金属元素空间变异规律、空间分布格局、土壤污染状况及来源。通过建立基于岩性类型、土壤类型和土地利用方式的土壤质量评价的最小数据集(MDS),研究了富阳市土壤质量现状,分析了工业化和城市化对土壤质量的影响机制。根据全国耕地类型区、耕地地力等级划分标准(NY/T 309-1996),将基于MDS指标体系得到的土壤质量划分为4个等级。若不考虑土壤环境污染因子,那么研究区中Ⅰ级土壤资源占用全市总面积的31.36%,主要集中在研究区的西北部和中部地区,Ⅲ和Ⅳ级土壤资源主要分布在西北部往中部的方向,分别占总面积的22.51%和11.7 9%,而Ⅱ级土壤质量分布于南部和东部地区,占总面积的34.34%。若考虑研究区土壤重金属污染,研究发现各乡镇的土壤质量的高低排序与前述结果基本上一致,只是面积和土壤质量指数大小的变化。土壤Cd污染区的土壤质量相对比较高,土壤质量指数大部分在0.50-0.90之间,复合污染区的土壤质量相对更高,土壤质量指数平均值都在0.78以上,即Ⅰ级土壤质量,除灵桥镇外,这说明土壤质量较高的区域,土壤重金属污染较严重,这部分区域土壤的农业利用应以花卉苗木等为主。
     (2)提出了互信息理论结合决策树See5.0算法来定量研究自然条件和人为活动对土壤质量的影响。
     土壤质量受到各种因素的影响,不仅包括成土母质、土壤类型、地形等自然条件的影响,还受到人为因素的影响,尤其是城镇化进程的影响。通过互信息理论发现,众多连续型因子中影响土壤质量的主要因素包括到城镇的距离、到水域的距离、相对高程、到道路的距离和到工业类型的距离。采用决策树方法分析了这些因子是如何影响土壤质量过程的,结果表明利用基于互信息理论选取的因子的决策树结果明显优于利用全部因子的决策树结果,且无论是决策树还是决策规则,分类精度均达到80%以上。
     (3)以土壤质量评价成果和空问稳定性因子为基础,提出将耕地质量评价成果应用到基本农田保护、标准农田建设及耕地占补平衡。
     研究区现有基本农田中受到土壤Cd污染的面积占基本农田总面积的6.22%,基本农田中一等和二等土壤质量占50%以上,但另外45%左右的基本农田还是处于中低产田,需要及时地改造。同时,空间分析结果表明研究区有80%以上的一等基本农田分布在工矿企业和区级公路的1km以内,即一等基本农田存在的空间稳定性风险很大,尤其是分布在工矿企业旁边的基本农田,存在因工业化和城镇化发展而被建设用地占用的风险。
     研究区标准农田受到Cd污染占标准农田总面积的3.69%;一等土壤资源占19.82%,二等土壤资源占29.95%,三等土壤资源占27.14%,四等土壤资源占19.26%,即富阳市标准农田的土壤质量整体较高,但也存在一定比例的较差的标准农田。统计表明,研究区的标准农田的空间稳定性风险指数大于0.80的有74.24%,其中,距离工矿企业和区级公路1km以内的标准农田面积均达70%,离城区2km以内的占30%左右,可见,位于这些区域的标准农田易受工业污染,且转化为建设用地的可能性也较大。因此,研究区的标准农田建设成绩显著,但规划选址等决策存在缺陷。
     分析了1996-2004年问被占用耕地的土壤质量,发现富阳市1996-2004年间被占用耕地中一等土壤资源占48.05%;而补充耕地中,一等土壤资源仅占1996-2004年间补充耕地总面积的23.89%,二等土壤资源占32.44%,三等和四等土壤资源分别占24.16%和16.52%。可见,补充耕地中一等土壤资源与被占用耕地的一等相比,明显较少,仅为占用耕地的54.89%,而补充耕地中增加的耕地面积的土壤质量主要是二等、三等和四等。补充耕地中空间稳定性风险指数超过0.80以上的占总补充面积的61.75%。其中,离城区2km以内的补充耕地面积有28.97%,但是距工矿企业和公路1km以内的补充耕地面积均较多,都在60%以上。这些补充耕地有可能又面临建设占用的风险,同时也易受工业废物和废水等污染。
     (4)以浙江省富阳市丘陵山地的特色经济作物茶叶产地为研究对象,分析了影响茶园土壤肥力质量的敏感环境因子,比较了土壤肥力的空间预测方法,最后,以插值后的土壤肥力质量为变量,对茶园进行了精确农业管理分区,从而为准确预测山区土壤肥力质量和精准管理提供了依据。
     以不同地形因子、归一化植被指数和经纬度为自变量,分析比较了不同变量选择方法(相关系数法、主成分法、逐步回归法和互信息理论)和不同空间预测方法(逐步回归、普通克里格、协克里格、回归克里格、广义神经网络和BP神经网络),结果显示基于BP神经网络结合互信息方法的预测精度高于其它方法的预测精度,同时也表明了影响茶园土壤肥力质量的主要因子包括经纬度、相对高程和切线曲率。
     科学合理的土壤养分管理分区技术是实施精准农业变量施肥的高效手段。本研究采用模糊c-均值聚类对茶园土壤肥力进行管理分区,通过模糊性能指数(FPI)、分类熵(MPE)和分类距离(S)的检验发现最优模糊度和分类数分别为2.0和4。分区间差异显著性检验表明,除分区3与分区4外,不同分区之间土壤pH、有机质、交换性铝和全氮的均值均达到了显著差异;有效磷和速效钾在分区之间差异不显著;环境因子中相对高程在不同分区之间都达到了显著差异,这与前述关于土壤肥力质量指数的空间分布格局的分析结果较一致。
Through sampling,materials collectiong and field investigation,based on the result of spatial variability of soil fertility factors and heavy metals in rapid industrialization and urbanization areas,this research systematically evaluated soil quality in the study area,and applied it and spatial stability fators to the implementation evaluation and management of basic farmland,high quality prime farmland and cropland requisition-compensation balance; Furthermore,in view of macroscopic soil quality evaluation result not suitable for mountain areas,this study undertook soil fertility quality and its prediction in mountain area.The main objectives were:(1) systematically and globally evaluating soil quality in county(municipal) area by integrating multi-source data for providing the framework of soil quality evaluation in large scale districts;(2) on the basis of the soil quality result,analyzing and revealing changes of soil quality and cropland quality in urbanization to establish the foundation for land planning;(3) aiming at complicated terrain areas,obtaining the spatial prediction method of soil fertility for precision management.
     The main results,understandings and conclusions of the dissertation were summarized as follows:
     (1) Basically constructing of the framework of soil quality evaluation of county (municipal) area in fast industrialization and urbanization
     Firstly,the research analyzed spatial variability of soil fertility factors and heavy metals, their spatial patterns,soil pollution and pollution sources by geostatistics and mutual information.Secondly,based on spatial distribution of soil quality indicators,the research evaluated soil qualtiy in study area and the mechanism of soil quality affected by industrialization and urbanization through the minimum data set related to geology,soil types and land use.Soil quality indices were divided into four grades according to the classification of region type and fertility of cultivated land in China.Without considering soil environmental factors,the first grade of soil resource accounted for 31.36%of the total area, and mainly located in the northwestern and central region of the study area;The second grade lied at the south and east of the area accounting for 34.34%;The third and fourth grade located in the region from northwest to middle,and accounted for 22.51%and 11.79%, respectively.If considering influence of soi heavy metals,the results showed that soil quality state in every town was the same as previous results and only changed in area.Soil quality index was high for 0.50-0.90 in polluted areas by soil Cd;Soil quality index was higher in combined pollution areas than that in single-factor pollution areas,and its average exceeded 0.78.
     (2) The method of mutual information combined of decision tree See 5.0 was found for quantitily studying the effect of natural and human factors on soil quality
     Soil quality was affected by not only natural factors including parent material,soil type, terrain and etc,but also human activities,especially urbanlization.It was showed that factors affecting soil quality were mainly distance to town,distance to water,altitude,distance to road and distance to industry.In addition,in determining the process of the influence of these factors on soil quality by decision tree,it was suggested that the accuracy based on factors chosen by mutual information was higher than thatbased on all factors.
     (3) It was suggested that cultivated land quality should be applied to basic farmland, high quality prime farmland and cropland requisition-compensation balance-based on soil quality evaluating result and spatial stability factors
     For basic farmland,the area polluted by soil Cd was 6.22%of total basic farmland area. In soil quality,the first and second soil resources all exceeded 50%of basic farmland,but soil quality of remaining 45%in basic farmland was medium or low,which should be reconstructed.Furthermore,it was showed that more than 80%of the first basic farmland located in the region less than 1km from industry and road.This result suggested that basic farmland near industry are probably replaced by construction land.
     For high quality prime farmland,the area polluted by soil Cd was 3.69%of the total area. Soil quality of high quality prime farmland dominated by the second and third grade.It was statistically showed that spatial stability risk index was more than 0.80 in 74.24%of high quality prime farmland,the distance of 70%of which to industry and road was less than 1km, and the distance of 30%of which to town less than 2km.The result indicated that high quality prime farmland lying in these regions are easily polluted by soil heavy metal and easily transformed to construction land.
     For requisited cropland from the year 1996 to 2004,the area polluted by soil Cd was 4.14%of the total area.From view of soil quality,most of requisited cropland from the year 1996 to 2004 belonged to the first grade accounting for 48.05%;But the first grade only had 23.89%in compensated cropland from the year 1996 to 2004.In compensated cropland,the area of spatial stability risk index more than 0.80 accounted for 61.75%,the distance of 28.97%of which to town was in less than 2km,and the distance of more than 60%of which to industry and road was all less than 1km.Compensated cropland in these regions not only were replaced by construction land,but also polluted by industrial waste.
     (4) Based on tea in Fuyang county,this research chose optimally environmental factors affecting soil fertility quality in tea and the optimal estimation method of soil fertility quality. At last,management zones of tea soil were determined with the map of soil fertility quality interpolated.
     With topographical factors,NDVI,latitude and longitude as independent variables,this study analyzed and compared different variable selection methods(correlation coefficient method,principal component method,stepwise regression method and mutual information theory) and spatial interpolating methods(stepwise regression,ordinary kriging,co-kriging, regression kriging,generalized neural network and BP neural network ).The result showed that the method of BP neural network combined of mutual information was the best in prediction accuracy,and the factors affecting soil fertility quality in tea plantation mainly included latitude,longitude,altitude and tangential curvature.
     Scientific and reasonable soil management zoning is the effective means of variable rate fertilization in precision agriculture.Fuzzy c-means clustering algorithm was used to delineate management zones.It was found that through testing of the fuzzy performance index (FPI),classification entropy(MPE) and separate distance(S),optimal clustering exponent and number of classes were 2.0 and 4.0,respctively.To estimate the validity of zoning result, the general statistics analysis on the data was carried out.The zoning statistics showed that soil properties differed sharply between management zones.
引文
[1].ACAR. Proceedings of the international workshop on evaluation for sustainable land management in the developing world [R]. 1BSRAM Vol. 2, Chiang Rai, Thailand: Technical Papers. 1991
    
    [2].Anderson D.W., Gregorrich E.G.. Effect of soil erosion on soil quality and productivity [M]. Soil erosion and degration. Pro. Annu. Western Provincial Conf. On Rationalization of Water and Soil Res. And Manage., 2nd, Saskatoon, SK, Canada.
    [3].Andrews S S, Karlen D L, Cambardella C A. The soil management assessment framework: A quantitative soil quality evaluation method [J]. Soil Science Society American Journal, 2004, 68: 1945-1962.
    [4].Andrews S S, Karlen D L, Mitchell J P. A comparison of soil quality indexing methods for vegetable production systems in Northern California [J]. Agriculture, Ecosystems and Environment. 2002a, 90: 25-45.
    [5].Andrews S S, Mitchell J P, Mancinelli Roberto, et al. On-farm assessment of soil quality in California's Central Valley [J]. Agronomy Journal, 2002b, 94: 12-23.
    [6].Baxter S J, Oliver M A. The spatial prediction of soil mineral N and potentially available N using elevation [J]. Gerderma, 2005,128:325-339.
    [7].Beven K J, Kirkby M J. A physically based, variable contributing area model of basin hydrology [J]. Hydrological Sciences Bulletin, 1979, 24: 43-69.
    
    [8].Bindraban P S, Stoorvogel J J, Jansen D M, et al. Land quality indicators for sustainable land management: proposed method for yield gap and soil nutrient balance [J]. Agriculture, Ecosystems and Environment, 2000, 81: 103-112.
    [9].Bishop T.F.A, Minasny B., McBratney A.B.. Uncertainty analysis for soil-terrain models [J]. International Journal of Geographical Information Science, 2006, 20(2): 117-134.
    [10].Bonino E E. Changes in carbon pools associated with a land-use gradient in the Dry Chaco, Argentina [J]. Forest Ecology and Management, 2006, 223 (1/3): 183-189.
    
    [11].Brown, L.R.. Who Will Feed China [M]. New York: W WNorton & Company, 1995.
    [12].Burrough P A. Soil variability: a late 20th Century view. Soils and Fertilisers. 1993, 56: 529-562.
    [13].Cambardella C A, Moorman T B, Andrews S S, et al. Watershed-scale assessment of soil quality in the loess hills of southwest Iowa [J]. Soil and Tillage Research. 2004, 78: 237-247.
    [14].Campbell J B. Spatial variation of sand content and pH within single contiguous delineation of two soil mapping units [J]. Soil Science Society of America Journal, 1978, 42: 460-464.
    [15].Cowell S. J., Gift R. A methodology for assessing soil quantity and quality in life cycle assessment[J]. Journal of Cleaner Production, 2000, 8(4): 321-331.
    [16].Cox M S, Gerard P D, Wardlaw M C, et al.. Variability of selected soil properties and their relationships with soybean yield [J]. Soil Science Society of America Journal, 2003, 67: 1296-1302.
    [17].Cox M S, Gerard P D. Soil management zone determination by yield stability analysis and classification [J]. Agronomy Journal, 2007, 99: 1357-1365.
    [18].Doelsch E, Macary H S, Van de Kerchove V. Sources of very high heavy metal content in soils of volcanic island (La Reunion)[J]. Journal of Geochemical Exploration, 2006. 88: 194-197.
    [19].Doran J W, Parkin T B. Defining soil quality for a sustainable environment [M]. Soil science society of America, Inc., Madison, Wisconsin USA, 1994, 3-21.
    [20].Doran J W, Sarrantonio M, Lieberg M A. Soil health and sustainability [J]. Advances in Agronomy, 1996, 56: 1-54.
    
    [21].Doran, J.W.. Soil health and Global Sustainability: Translating Science into Practice [J]. Agriculture, Ecosystem and Environment, 2002, 88: 119-127.
    [22].Florinsky I.V., Eilers R.G., Manning G.R., et al.. Prediction of soil properties by digital terrain modelling [J]. Environmental Modelling & Software, 2002, 17: 295-311.
    [23].Frogbrook Z L, Oliver M A. Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data [J]. Soil Use and Management, 2007, 23: 40-51.
    [24].George Z, Stamatis S, Vasilios T. Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology [J]. Agriculture, Ecosystems and Environment. 2002, 88: 137-146.
    
    [25].Glover J D, Reganold J P, Andrews P K. Systematic method for rating soil quality of conventional, organic and integrated apple orchards in Washington State [J]. Agriculture, Ecosystems and Environment, 2000, 80: 29-45.
    
    [26].Gregorio C, Dobermann S A, Goovaerts P, et al. Fine-resolution mapping of soil organic carbon based on multivariate secondary data [J]. Gerderma, 2006,132(3-4): 471-489.
    [27].Hengl T, Heuvelink G B M, Stein A. A generic framework for spatial prediction of soil variables based on regression - kriging [J]. Gerderma, 2004, 120: 75-93.
    
    [28].Herbst M, Diekkrüger B. Modeling the spatial variability of soil moisture in a micro-scale catchment and comparison with field data using geostatistics [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(6-7): 239-245.
    [29].Herrick J E. Soil quality: an indicator of sustainable land management?[J]Applied Soil Ecology. 2000, 15: 75-83.
    [30].Hiscock J G, Thourot C S, Zhang J. Phosphorus budget-land use relationships for the northern Lake Okeechobee watershed, Florida [J]. Ecological Engineering, 2003,21(1): 63-74.
    [3 l].Hu X F, Wu H X, Hu X, et al.. Impact of urbanization on Shanghai's soil environmental quality [J]. Pedosphere, 2004, 14(2): 151-158.
    [32].Huang Jikun, Scott Rozelle, Rosegrant. China's food economy to the 21st century: supply, demand and trade [J]. Economic Development and Cultural Change, 2000, 47: 737-766.
    
    [33].Huffman E, Eilers R G, Padbury G et al. Canadian agri-environmental indicators related to land quality: integrating census and biophysical data to estimate soil cover, wind erosion and soil salinity [J]. Agriculture, Ecosystems and Environment, 2000, 81: 113-123.
    [34].Intergovemental Panel on Climate Change (IPCC). Scientific Assessment of Climate Change. World Meteorological Organization/United Nation Environment Program [M]. Cambridge University Press,. New York. 1990:81.
    [35].Irha I, Slet J, Peterseu V. Effect of heavy metals and PAHs on soil assessed via dehydrogenase assay [J]. Environment International, 2003, 28: 779-782.
    [36].James R L, Gene E L, John W F, et al.. Cadmium toxicity among wildlife in the Colorado Rocky Mountains [J]. Nature, 2000, 406(13): 181-183.
    [37].Johnson D L, Ambrose S H, et al. Meanings of environmental terms [J]. J. Environ. Qual., 1997, 26: 581-589.
    
    [38].Jordan C., Zhang C. S., Higgins A.. Using GIS and statistics to study influences of geology on probability features of surface soil geochemistry in Northern Ireland [J]. Journal of Geochemical Exploration, 2007, 93: .. 135-152.
    
    [39].Karlen D L, Ditzler C A, Andrews S S. Soil quality: why and how? [J]. Geoderma, 2003, 114: 145-156.
    [40].Knight L, Hadlec R, Ohlendod H. The use of treatment wetlands for petroleum industry effluents [J]. Environmental Science and Technology, 1999, 33(7): 973-980.
    [41].Kong L, Bitton G, Koopman B, et al.. Heavy metal toxicity testing in environmental samples [J]. Reviews of Environmental Contamination and Toxicology, 1995, 142: 119-147.
    [42].Kravchenko A N, Bullock D G. Correlation of corn and soybean grain yield with topography and soil properties [J]. Agronomy Journal, 2000, 92(1): 75-83.
    [43].Kwansoo K.Bradford L B, Ian C. Measuring soil quality dynamics: A role for economists, and implications for economic analysis[J].Agricultural Economics,2001,25:13-26.
    [44].Larson W E, Pierce F J. Conservation and enhancement of soil quality [A]. Proc. of the Int. Workshop on Evaluation for Sustainable Land Management in the Developing World [C]. Bangkok, Thailand: Vol.2. IBSRAM Proc. 12(2). Int. Board for Soil Res. and Management. 1991: 175-203.
    [45].Lopez -Granados F, Jurado-Exposito M, Pena-Barragan J M, et al.. Using geostatistical and remote sensing approaches for mapping soil properties [J]. European Journal of Agronomy, 2005, 23(3): 279-289.
    [46].Machado S, Bynum E D, Archer T L, et al.. Spatial and temporal variability of corn grain yield: site-specific relationships of biotic and abiotic factors [J]. Precision Agriculture, 2000, 2: 343-360.
    [47].Martinez C.A. Multivariate geostatistical analysis of evapo-transpiration and precipitation in mountainous terrain [J]. Journal of Hydrology, 1996, 174:19-35.
    [48].Masto R E, Chhonkar P K, Singh D. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilization and manuring for 31 years in the semi-arid soils of India [J]. Environmental Monitoring and Assessment. 2008, 136:419-435.
    [49].Mattsson B., Cederberg C., Blix L. Agricultural land use in life cycle assessment (LCA): case studies of three vegetable oil crops [J]. Journal of Cleaner Production, 2000, 8(4): 283-292.
    [50].McBratney A.B., Odeh I.O.A., Bishop T.F.A., et al.. An overview of pedometric techniques for use in soil survey [J]. Geoderma, 2000, 97: 293-327.
    [51].Mcgrath D, Zhang C.S., Carton O.T.. Geostatistical analysis and hazard assessment on soil lead in Silvermincs area, Ireland [J]. Environmental Pollution, 2004, 127: 239-248.
    [52].McKinion J M, Jenkins J N, Akins D, et al.. Analysis of a precision agriculture approach to cotton production [J]. Computers and Electronics in Agriculture, 2001, 32(3): 213-228.
    
    [53].Michael J S, Stephanie E. Soil quality[M]. In: Interdisciplinary aspects of soil science, 1999.
    [54].Mitasova H, Hofierka J. Interpolation by regularized spline with tension: II. Applications to terrain modeling and surface geometry analysis[J]. Mathematical Geology. 1993, 25(6): 657-669.
    [55].Moor B, Braswell B H. An Understanding of Carbon Cycle: Planetary Metabolism [J]. AMBIO, 1994, 23(2): 4-12.
    [56].Moore I D, Grayson R B, Ladson A R. Digital terrain modeling: a review of hydrological, geomorphological, and biological applications[J]. Hydrological Processes, 1991, 5: 3-30.
    [57].Mora-Vallejo A., Claessens L., Stoorvogel J., et al. Small scale digital soil mapping in Southeastern Kenya [J]. Catena, 2008, 76: 44-53.
    [58].Morton-Bermea O., Hernandez-Alvarez E., Gonzalez-Hernandez G., et al. Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City [J]. Journal of Geochemical Exploration, 2009, 101(3): 218-224.
    [59].Muller J, Chapman P, Prichard P. Creosote contaminated sites: their potential for bioremediation [J]. Environmental Science and Technology, 1989, 23 (10): 1197-1201.
    [60].Nortcliff S. Standardization of soil quality attributes [J]. Agriculture, Ecosystems and Environment. 2002, 88: 161-168.
    [61].Ortega R A, Santibanez O A. Determination of management zones in corn (Zea mays L.) based on soil fertility [J]. Computers and Electronics in Agriculture, 2007, 58: 49-59.
    [62].Pierce F J, Larson W E. Dowdy R H, Graham W A P. Productivity of soils: assessing long-term changes due to erosion [J]. Soil and water conservation. 1983, 38: 9-44.
    
    [63].Power J.F., Myers J.K.. The maintenance or improvement of farming systems in North America and Australia [A]. In: Stewart J WB, eds. Soil quality in semi-arid agriculture [C]. Saskatoon, Saskatchewan, Canada: Proc. of an Int. Conf. Sponsored by the Canadian Int. Development Agency, 11-16 June 1989.
    [64].Qi Y B, Darilek J L, Huang B, et al. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China[J]. Geoderma. 2009, 149: 325-334.
    [65].Rezaei S A, Gilkes R J, Andrews S S, et al. Soil quality assessment in semiarid rangeland in Iran [J]. Soil Use and Management, 2005, 21 (4): 402-409.
    [66].Romic M., Hengl T., Romic D., et al.. Representing soil pollution by heavy metals using continuous limitation scores [J]. Computers & Geosciences, 2007,33: 1316-1326..
    [67].Romig D E, Garlynd M J, Harris R F, McSweeney K. How farmers assess soil health and quality [J]. Journal of Soil and Water Convervation. 1995, 50: 229-236.
    
    [68].Rossi F, Lendasse A, Francois D, et al.. Mutual information for the selection of relevant variables in spectrometric nonlinear modelling [J]. Chemometrics and Intelligent Laboratory Systems, 2006, 80(2): 215-226.
    [69].Scherr, S J. Soil Degradation: A Threat to Developing-Country Food Security by 2020? Food Agriculture, and the Environment Discussion Paper 27 (Feb., 1999) [M]. IFPRI, Washington, DC.
    
    [70].Schoenholtz S H, Miegroet H V, Burger J A. A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities [J]. Forest Ecology and Management, 2000, 138: 335-356.
    [71].Shouse P J, Gerik T J, Russell W B, Cassel D K. Spatial distribution of soil particle size and aggregate stability index in a clay soil [J]. Soil Science, 1990, 149:351-360.
    [72].Sparling G P, Schipper LA, Bettjeman W, et al. Soil quality monitoring in New Zealand: practical lessons from a 6-year trial [J]. Agriculture, Ecosystems and Environment, 2004, 104: 523-534.
    [73].Starr G C. Assessing temporal stability and spatial variability of soil water patterns with implications for precision water management [J]. Agricultural Water Management, 2005, 72(3): 223-243.
    [74].Stenger R, Priesack E, Beese F. Spatial variation of nitrate-N and related soil properties at the plot-scale [J]. Geoderma, 2002, 105(3-4): 259-275.
    [75].Stephen N. Standardisation of soil quality attributes [J]. Agriculture, Ecosystems and Environment. 2002, 88: 161-168.
    [76].Sumf!eth K., Duttmann R.. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators [J]. Ecological indicators.2008: 485-501.
    [77].Svoray T., Shoshany M.. Multi-scale analysis of intrinsic soil factors from SAR-based mapping of drying rates [J]. Remote Sensing of Environment 2004, 92(2): 233-246.
    
    [78].Swaine D J. Why trace elements are important [J]. Fuel Processing Technology, 2000, 65-66: 21-33.
    [79].Trent D L. A meta-analysis and risk assessment of heavy metal uptake in common garden vegetables. A thesis of the degree master presented to the faculty of the department of environmental health, East Tennessee State University. 2001.
    [80].Triantafilis J, Odeh I O A, McBratney A B.Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton [J]. Soil Science Society of America Journal, 2001, 65: 869-878.
    [81].Tukker A. Life cycle assessment as a tool in environmental impact assessment [J]. Environmental Impact Assessment Review, 2000, 20(4): 435-456.
    
    [82].United States Department of Agriculture, Agricultural Research Service and Natural Resources Conservation Service - Soil Quality Institute, Soil Quality Test Kit Guide [M]. 1999.
    [83].Wagendorp T,Gulinck H.,Coppin R et al.Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics[J].Energy,2006,31(1):112-125.
    [84].Walter C.,St(u|¨)tzel H..A new method for assessing the sustainability of land-use systems(Ⅱ ):evaluating impact indicators[J].Ecological Economics,2009,68(5):1288-1300.
    [85].Wang X J,Gong Z T.Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China[J].Geoderma.1998,81(3-4):339-355.
    [86].Wang X Z,Liu G S,Hu H C,et al..Determination of management zones for a tobacco field based on soil fertility[J].Computers and Electronics in Agriculture,2009,65:168-175.
    [87].Webster R.Quantitative spatial analysis of soil in the field[J].Adv.Soil Sci.,1985,3:1-70.
    [88].Weiss A..Topographic position and landform analysis.Poster Presentation,ESRI User Conference,San Diego,CA.2001.
    [89].Welsh J P,Wood G A,Godwin R J,et al..Developing strategies for spatially variable nitrogen application in Cereals,part Ⅱ:Wheat[J].Biosystems Engineering,2003,84(4):495-511.
    [90].Wu C.F.,Wu J.P.,Luo Y.M.,et al..Statistical and geostatistical characterization of heavy metal concentrations in a contaminated area taking into account soil map units[J].Geoderma,2008,144(1-2):171-179.
    [91].Xu M X,Zhao Y G,Liu G B,et al.Soil quality indices and their application in the hilly loess plateau region of China[J].Australian Journal of Soil Research.2006,44:245-254.
    [92].Yates S.R.,Warrick A.W..Estimating soil water content using cokriging[J].Soil Science Society of America Journal,1987,51:23-30.
    [93].Zevenbergen L W,Thorne C R.1987.Quantitative analysis of land surface topography[J].Earth Surface Processes and Landforms.12:47-56.
    [94].Zheng D.,Chen J.,Lemoine J.M.,et al.Influences of land-use change and edges on soil respiration in a managed forest landscape,WI,USA[J].Forest Ecology and Management,2005,215:169-182.
    [95].Ziadat F.M..Analyzing digital terrain attributes to predict soil attributes for a relatively large area[J].Soil Science Society of America,2005,69:1590-1599.
    [96].蔡苇。黄石市基本农田土壤重金属污染调查研究。环境科学与管理。2009,34(2):80-82。
    [97].曹志洪.解译土壤质量演变规律,确保土壤资源持续利用[J].世界科技研究与发展2001,23(3):28-32.
    [98].陈怀满。土壤中化学物质的行为与环境质量IM]。北京:科学出版社。2002。
    [99].陈彦,昌新。基于模糊c-均值聚类法的绿洲农田精确管理分区研究[J]。生态学报,2008,28(7):3067-3074.
    [1D0].陈一定,单英杰,顾培,沈仁芳。浙江省标准农田地力与评价。土壤,2007,39(6):987-991。
    [101].程锋。基于GIS与决策模型整合的基本农田保护规划系统[博士学位论文]。北京,中国农业大学,2003,2-6。
    [102].段永惠.模糊综合评价在土壤环境质量评价中的应用研究[J].农业系统科学与综合研究,2004,20(4):303-305.
    [103].范明,孟小峰,等。数据挖掘:概念与技术[M]。北京:机械工业出版社,2001:185-217.
    [104].龚子同.红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析[J].地理科学.1997,17(2):141-142.
    [105].郝晋珉,朱道林。土地利用规划(第1版)[M]。北京:中国农业科技出版社,1995:23。
    [106].何萍,王家骥.非点源污染控制与管理研究的现状、困境与挑战[J]l农业环境保护,1999,18(5):234-237.
    [107].侯文广,江聪世,熊庆文,等.基于GIS的土壤质量评价研究[J].武汉大学学报(信息科学版),2003,28(1):60-64.
    [108].胡大伟,卞新民,李思米,等.基于GRNN网络模型的土壤重金属空闻分布的研究.土壤通报.2007,38(2):334-340.
    [109].胡月明,万洪富,吴志峰,吴谷丰,李华兴.基于GIS的土壤质量模糊变权评价[J].土壤学报,2001,38(3):266-274.
    [110].胡月明,吴谷丰,江华,等.基于GIS与灰关联综合评价模型的土壤质量评价[J].西北农林科技大学学报,2001,29(4):39-42.
    [111].黄绍文,金继运,杨俐苹,等。县级区域粮田土壤养分的空间变异性[J]。土壤通报,2002,33(3):188-193.
    [112].黄绍文,金继运,杨俐苹,等。县级区域粮田土壤养分空间变异与分区管理技术研究[J]。土壤学报,2003,40(1):79-88.
    [113].黄勇,杨忠芳.土壤质量评价国外研究进展.地质通报.2009,28(1):130-136.
    [114].基本农田环境质量保护技术规范,NY/T 1259-2007。
    [115].姜勇,李琪,张晓珂,等.利用辅助变量对污染土壤锌分布的克立格估值[J].应用生态学报,2006,17(1):97-101.
    [116].姜勇,梁文举,李琪,等.利用与回归模型相结合的克立格方法对农田土壤有机碳的估值及制图[J].水土保持学报,2005,19(5):97-100.
    [117].蒋端生,曾希柏,张杨珠,陈建国.土壤质量管理(Ⅰ)土壤功能和土壤质量[J].湖南农业科学.2008,(5):86-89.
    [118].蒋志欣,李满春,毛亮,刘永学。标准农田规划空间决策支持模型的研究与实现[J]。地球信息科学,2007,9(3):79-84。
    [119].孔祥斌,勒京,刘怡,等。基于农用地利用等别的基本农田保护区划定[J]。农业工程学报。2008,24(10):46-51。
    [120].雷志栋,杨诗秀,许志荣,等.土壤特性空间变异性初步研究[J]..水利学报,1985,9:10-21.
    [121].李方敏,周治安等.渍害土壤肥力综合评价[J].资源科学,2002,24(1):25-29.
    [122].李桂林,陈杰,孙志英,檀满枝.基于土壤特征和土地利用变化的土壤质量评价最小数据集确定[J].生态学报.2007,27(7):2715-2724.
    [123].李其林,黄昀。重庆市近郊区蔬菜地土壤重金属含量变化及污染情况[J]。土壤通报,2002,33(3):158-160.
    [124].李启权,王昌全,岳天祥,等.不同输入方式下RBF神经网络对土壤性质空间插值的误差分析[J].土壤学报.2008,45(2):360-365.
    [125]李武艳,徐保根。农用地分等成果在耕地占补平衡中的应用[J]。中国土地科学。2006,20(2):15-18。
    [126].李翔,潘瑜春,马景宇,等。基于多种土壤养分的精准管理分区方法研究[J]。土壤学报,2007,44(1):14-20.
    [127].李小昱,雷廷武,王为。农田土壤特性的空间变异性及分形特征[J]。干旱地区农业研究,2000,18(4):61-65.
    [128].李晓秀,陆安祥,王纪华,等。北京地区基本农田土壤环境质量分析与评价[J]。农业工程学报。2006,22(2):60-63。
    [129].李艳,史舟,吴次芳,等。基于模糊聚类分析的田间精确管理分区研究[J]。中国农业科学,2007,40(1):114-122.
    [130].李元.土地资源保护和合理开发利用问题研究.21世纪初中国农业发展战略[M],北京:中国农业出版社,2000:63-78.
    [131].李月芬,汤洁,林年丰,杨有德.灰色关联度法在草原土壤质量评价中的应用[J].吉林农业大学报,2003,25(5):551-556.
    [132].李子忠,龚元石.农田土壤水分和电导率空间变异性及确定其采样数的方法[J].中国农业大学学报,2000,5(5):59-60.
    [133].刘付程,郭衍游,闫晓波.土壤属性空间预测的广义回归神经网络方法研究[J].淮海工学院学报(自然 科学版).2008,17(1):38-71.
    [134].刘江.农产品供求总量平衡研究21世纪初中国农业发展战略[M].北京:中国农业出版社,2000:41-60.
    [135].刘世梁,傅伯杰,刘国华,马克明.我国土壤质量及其评价研究的进展[J].土壤通报.2006,37(1):137-143.
    [136].卢海阳,李明月。再议我国耕地占补平衡制度[J]。广东土地科学。2008,7(4):14-17。
    [137].卢良恕.农业可持续发展战略研究.21世纪初中国农业发展战略[M].北京:中国农业出版社;2000:461-495。
    [138].卢铁光,杨广林,王立坤.基于相对土壤质量指数法的土壤质量变化评价与分析[J].东北农业大学学报,2003,34(1):56-59.
    [139].鲁胜力.水土流失灾害[M].中国农业年鉴,1999:451-452.
    [140].鲁植雄,张维强,播君拯,分形理论及其在农业土壤中的应用[J].土壤学进展,1994,22(5):40-45.
    [141].罗利敏.温州市龙湾区标准农田现状及改良措施的探讨[J].浙江农业科学,2009,2:406-407.
    [142].邱丹,万晓红,王崇圣。南京市郊区基本农田保护区土壤重金属污染调查[J]。环境监测管理与技术。2002,14(5):18-20。
    [143].邵学新,黄标,赵永存,孙维侠,严连香,等.长江三角洲典型地区土壤中重金属的土污染评价[J].环境化学,2008,27(2):218-221.
    [144].沈掌泉,施洁斌,王珂,等.应用集成BP神经网络进行田间土壤空间变异研究[J].农业工程学报,2004,20(3):35-39.
    [145].沈掌泉,周斌,孔繁胜,等.应用广义回归神经网络进行土壤空间变异研究[J].土壤学报.2004,41(3):471-475.
    [146].石英,朱德举,程锋,等。属性层次模型在乡级基本农田保护区布局优化中的应用[J]。农业工程学报。2006,22(3):27-31。
    [147].水利部和国家计委21世纪初期水利发展战略研究课题组.21世纪初期水利发展战略研究(提要)[M],1999.
    [148].苏伟,聂宜民,胡晓洁,张西刚,利用Kriging插值方法研究山东龙口镇农田土壤养分的空间变异[J].安徽农业大学学报,2004,31(1):76-81.
    [149].王飞儿,陈英旭.生命周期评价研兖进展[J].环境污染与防治.2001.23(5):249-252.
    [150].王军.邱扬.土地质量的空间变异与尺度效应研究进展[J].地理科学进展,2005,24(4):28-35.
    [151].王军艳,张凤荣.应用指数和法对潮土农口土壤肥力变化的评价研究[J].农村生态环境,2001,17(3):13-16.20.
    [152].王效举,龚子同.红壤丘陵小区域不同利用方式下土壤变化的评价和预测[J].土壤学报.1998,35(1):135-139.
    [153].王效举,龚子同。红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析[J].地理科学,1997,17(2):141-149.
    [154].王效科,庄亚辉,李长生.中国农田土壤N2O排放通量分布格局研究[J].生态学报,2001,21(8):1225-1232.
    [155].吴章荣,俞震豫。浙江土壤[M]。杭州:浙江科学技术出版社,1994:556-560.
    [156].许福涛。基本农田保护区耕地质量监测体系的建立与管理[J]。土壤,2005,37(6):566-568。
    [157]杨瑞珍.我国耕地资源保护的问题及对策[J].地理学与国土研究,1996:12(2):39-42.
    [158].余立斌,张江山,王菲凤.污染损失率法在土壤环境质量评价中的应用[J].环境科学与管理.2008,33(4):180-183.
    [159]程航,卢文喜,杨威,李俊.模糊数学和污染指数法在土壤重金属污染中的应用[J].土壤,2008,40(2):212-215.
    [160].张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究[J].地理学报.1998,53(1):87-94.
    [161].张桂林.潘剑君.土壤质量研究进展与方向[J].土壤,1999,1:1-7.
    [162].张海林.土壤质量与土壤可持续发展[J].水土保持学报,2002,16(6):119-122.
    [163].张华,张甘霖.土壤质量指标和评价方法[J].土壤.2001,(6):326-330.
    [164].张建辉.多层次模糊综合评判在林业土壤评价中的应用[J].资源开发与保护.1991,7(1):8-12.
    [165].张庆利,潘贤章,王洪杰,等.中等尺度上土壤肥力质量的空间分布及定量评价[J].土壤通报.2003,34(6):493-497.
    [166].张心昱,陈利顶.土壤质量评价指标体系与评价方法研究进展昱展望[J].水土保持研究.2006,13(3):30-34.
    [167].张贞,魏朝富,高明,邵景安,秦建成.土壤质量评价方法进展[J].土壤通报.2006,37(5):999-1006.
    [168].章家恩.中国农业生物多样性及其保护[J].农业生态环境,1999,15(2):36-40.
    [169].赵丽芳,黄鹏武,孔亮,刘家明,郑海东等.乐清市标准农田重金属含量的分析[J].浙江农业科学,2005,5:397-398.
    [170].赵其国,孙波,张桃林.土壤质量与持续环境[J]土壤,1997,113-120.
    [171].赵其国,孙波,张桃林.土壤质量与持续环境Ⅰ.土壤质量的定义及评价[J].土壤,1997,29(3):113-120.
    [172].赵其国,周建民,董元华.江苏省农业清洁生产技术与管理体系的研究与试验示范[J].土壤,2001,6:281-285.
    [173].浙江省国土资源厅耕地保护处。土地整理和标准农田建设质量问题与对策[J]。浙江国土资源,2007,2:26-29。
    [174].郑彬,赵绪新,马晓茜,张凌.生命周期评价方法及其应用[J].中国资源综合利用,2004,3:9-12.
    [175].郑袁明,宋波,陈同斌,等。北京不同土地利用下土壤锌的积累及其污染风险[J]。自然资源学报,2006,21(1):64-72.
    [176].周广柱,杨锋杰,程建光,等。土壤环境质量综合评价方法探讨[J]。山东科技大学学报(自然科学版),2005,24(4):113-115.
    [177].周惠珍,龚子同,Lamp J.土壤空间变异性研究[J].土壤学报,1996,33(3):232-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700