以水蒸气为发泡剂制备高熔体强度PP发泡塑料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(PP)树脂是应用最广泛的五大通用塑料之一,它具有来源广、易回收、便宜等优点。发泡材料具有质轻、隔热、隔音、缓冲、价格低廉等优点,在国民经济和日常生活中的应用日益增长。近年来,传统的发泡材料(PE、PS等)在成型过程中使用的发泡剂会破坏大气且制品废弃物不腐烂、难回收,易对周围环境造成“白色污染”,PP发泡材料更具有弹性好、强度高、可降解等优异性能,可广泛应用于包装、汽车、建筑等工业领域。目前引起了人们的极大关注。必将成为一种极具开发潜力的新型发泡材料。但由于PP属于结晶性聚合物,在超过熔融温度后熔体强度会快速下降,使得其发泡成型较为困难。目前只有少数发达国家实现了工业化生产。
     基于对PP发泡材料国内外研究进展的分析,本文采用非连续法制备PP泡沫塑料,分为两部分:1.在单螺杆挤出机上以水为发泡剂制备PP预发泡颗粒;2.以水蒸气作为发泡剂对PP预发泡颗粒进行发泡。用水蒸气作为发泡剂较之其它的化学发泡剂及物理发泡剂有以下两点优势:①发泡时不会产生副产物从而影响制品质量;②原料成本较低,不会引起温室效应,不会破坏臭氧层,发泡过程无毒。所以水蒸气是一种绿色发泡剂。
     本文以水蒸气为发泡剂,采用细胞模型为泡孔长大的物理模型,以泡孔生长的连续性方程,动量方程,本构方程等为控制方程,得到泡孔生长的数学模型。通过改变松弛时间、粘度、界面张力等物性参数以及水蒸气温度、压力和卸压速率等工艺参数研究泡孔生长的变化规律及这些参数对泡孔生长的影响。在实验上通过改变工艺参数研究泡孔的结构和分布。通过理论和实验研究,对PP发泡材料的微观结构进行观察,并进一步分析各因素(水蒸气压力、卸压速率等)对发泡体结构和性能的影响。研究发现,当压力在1MPa至1.5MPa内,提高水蒸气的压力可使泡孔平均直径增大,这与理论研究的数学模型结果相近;卸压速率在4.8-77.8MPa/s内,卸压速率越大,得到的发泡塑料发泡倍率也就越大,当卸压速率小于4.8MPa/s时,PP预发泡颗粒不能发泡;当水蒸气压力为1.5 MPa,卸压速率是77.8MPa/s时,可以获得发泡均匀、泡孔密度大、表观密度小的PP发泡制品。
     因此,我们可以通过提高压力和卸压速率来改善制品的泡孔结构。这对以水蒸气为发泡剂来研究和制备泡沫塑料具有一定的指导作用。
Due to its highly availability, easiness to recycle, cheap and excellent performance, Polypropylene (PP) is one of the most popular five resins in the world. The foamed materials have many performances such as light weight, heat insulation, sound insulation, Gushing, low cost and so on, so it has been used in national economy and daily life more and more. However, recent years , The traditional foam plastics (PE、PS and so on)are made by using CFC as blowing agent which destroyed the ozone layer of the nature and the waste of the products which are not rotten and difficult to be recycled became“white pollution”. While Polypropylene (PP) and its foamed products have good elastic, high mechanical strength and easy to degradable, so it can be widely used in many fields such as packaging, automotive uses, construction and other industrial fields. Now, People attach importance to the foamed PP, therefore, the foam plastics PP is destined to be a new kind of materials in the future. But PP belongs to family of crystal polymer. The melt strength decreases rapidly after the melting point. This makes it difficult to expand and shape. Currently, it's industrialized only in several advanced country.
     By the analysis bases on the research in the progress on polypropylene (PP) foaming at home and abroad, the experiment uses non-continuous way to prepare PP foaming plastics, which is divided into two parts. 1. Preparing pre-foam PP particles using water as a blowing agent in the single-screw extruder. 2. Preparation of HMS-PP foaming using water vapor as a blowing agent. Use water vapor as a blowing agent has the following two advantages than other chemical foaming agents (for example AC blowing agent)and physical blowing agents such as CO2 ,butane and so on.①there is no by-products while foaming.②It is cheap, will not cause the greenhouse effect and damage the ozone layer. The foaming process is non-toxic. So it is a green blowing agent.
     In this paper, cellular model is taken to describe the physical model of cellular growing, and equation of continuity, equation of momentum and constitutive equation are taken as control equation. Through these above, mathematical model of cellular growing can be drawn.
     By changing material parameter (relaxation time, viscosity, interfacial tension and so on) and technological condition (pressure, pressure drop rate), principle about how cellular grow and how these parameters influence the growth of cellular. By theory and experiments. Observing the microstructure of PP foaming material and further analyze the factors (pressure, pressure drop rate and so on) which influence the foam structure and properties. Drawing the following conclusion mainly: The pressure of water vapor influences the foaming greatly. The average diameter of bubble becoming bigger when increasing the pressure of water vapor .Which matches the theory; Pressure drop rate is the most important factor which influence the foam structure and properties, the faster the pressure drop rate is , the bigger the average diameter of bubble is ,especially when the pressure drop rate is small enough, the pre-foam PP particles can’t be foamed; When the pressure of water vapor is high and the pressure drop rate is fast, we can get a big bubble diameter, low density, and high expansion ratio PP foaming products.
     We can improve bubbles’morphology of the produces through increasing the pressure and pressure drop rate. So the content of this paper presented have important significance to research and production for foaming plastics using water vapor as a blowing agent.
引文
[1]吴舜英,徐敬一.泡沫塑料成型[M].北京:化学工业出版社,1999: 28-35
    [2]牟文杰,吴舜英.微孔泡沫塑料成型技术.塑料. 2001.3:33
    [3] S.N Singh, S.B Burns and J.S Costa. Method of Increasing the Solubility of Hydrocarbons and HFCs in Polyurethanes Raw Materials and the Effects on the Performance and Processing Characteristics of Construction Foams. Cellular Polymers. 1997,16(6):444-467
    [4] Y. Zhang, R.J Heath and D.J Hourston. Morphology, Mechanical Properties, and Thermal Stability of Polyurethane-epoxide Resin Interpenetrating Polymer Network Rigid Foams. Journal of Applied Polymer Science. 2000, 75(3):406-416
    [5] S.W Lye, S.G Lee and S.B Tor. Parametric Study of the shock Characteristics of Expandable Polystyrene Foam Protective Packaging. Polymer Engineering and Science. 1998,38(4):558-565
    [6]文巍伟. PP物理发泡片材工艺的可行性研究,华南理工大学硕士论文,2002
    [7]塑料市场,1998(25):13-15
    [8]黄锐.塑料成型工艺学[M].北京:中国轻工业出版社,1997: 237-243.
    [9] Y B. Zeldovich. On the theory of new phase formation: Cavitation [J] Acta. Physicochim URSS,1943(18): 1.
    [10] Colton J S,Suh N P. Nucleation of Microcellular thermoplastic foam with additives Polym[J]. Eng. Sci, 1987(27):485.
    [11] D.klempner and K.C. Frisch. Handbook of Polymeric Foams and Foam Technology [M]. New York: Oxford University Press, 1991: 235.
    [12] D.klempner and K.C. Frisch. Handbook of Polymeric Foams and Foam Technology [M]. Munich: Hanser Publishers, 1991: 182.
    [13] C. B. Park and N. P. Suh. Filamentary Extrusion of Microcellular Polymers Using a Rapid Decompressive Element[J]. Polymer Engineering and Science. 1996,36(1): 34.
    [14] S.K Goel. A Pressure-based Method of Generating Microcellular Polymers Using Supercritical Carbon Dioxide as Foaming Agent (poly(methyl methacrylate)): [D]. Boston: Massachusetts Institute of Technology,1993.
    [15] Hani E.Naguib, Seung-Wong Song, Young-Ji Byon and Chul B. Park. Effect of Supercritical CO2 and N2 on the Crystallization of Linear and Branched Propylene Resins Filled with Foaming Additives[J].1995,(12):16.
    [16] Baser S A, Khakhar D V. Modeling of the dynamics of water and R-11 blown polyurethane foam formation[J] Polymer Engineering and Science, 1994,8:642.
    [17] Petro Vic Zoran S, et al. Thermal degradation of segmented polyurethanes [J]. Journal of Applied Polymer Science, 1994,6:1087.
    [18]张锋,朱彬,闫敏,等.全水发泡中高密度超软聚氨酯泡沫的制备[J].聚氨酯工业,1998,13(4).
    [19]苏莉.聚氨酯泡沫低密度全水发泡代替氯氟烃[J].天津化工,2001,(4).
    [20] J.S.Colton, N.P.Suh, The Nucleation of Microcellular Thermoplastic Foam with Additives: ParⅠt:The oretical cons ide rations [J] . Polymer Engineering and Science, 1987,27(70): 485-492
    [21] J.S.Colton, N.P.Suh, The Nucleation of Microcellular Thermoplastic Foam with Additives: PartⅡ:Experim ental R esults and D iscussion[J]. Polym. Eng. Sci., 1987,27(7): 493-499
    [22]蔡业彬,国明成,彭玉成,谢存禧.泡沫塑料加工过程中的气泡理论(Ⅰ).塑料科技[J],2005(3):11-16
    [23] V.Kumar and N.P Suh. A Processing for Making Microcellular Thermoplastic Parts. Polymer Engineering and Science. 1990,30:1323
    [24]陈国华,彭玉成.微孔塑料物理发泡泡孔控制.1998,(3):30—33
    [25] C.D.Han,H.J.Yoo. Polym [J]. Eng Sci,1981,21(9):518-533
    [26] M Amon,C.D.Denson. Polym [J]. Eng Sci,1984,24(13):1026-1034
    [27] M Amon,C.D.Denson. Polym [J]. Eng Sci,1986,26(3):255-267
    [28]吴晓丹,彭玉成,国明成.微孔发泡过程的气泡成长动力学模型[J].轻工机械,2005(2):22-26.
    [29] Amon M, C D Denson. A Study of Dynamics of Foam Growth of Closely Spaced Spherical Bubble[J]. Polym Eng Sci, 1984, 24:1026.
    [30] Barlow E J and Langlois W E, Diffusion of Gas from a Liquid into an Expanding Bubble, IBM J. Res. Develop.,1962,7:329-337
    [31]林建忠,阮晓东,陈邦国等.流体力学[M]北京:清华大学出版社,2005:78-80
    [32]金日光.高聚物流变学及其在加工中的应用.化学工业出版社,1986
    [33]徐佩弦.高聚物流变学及其应用.化学工业出版社,2003
    [34] Lai J and Bakker A, An Integral Constitutive Equation for Nonlinear Plastoviscoelastic Behavior of High-Density Polyethylene, Poly. Eng. Sci., 1995,35(17):1339-1347
    [35] Han CD and Ma C-Y, Rheological Properties of Mixtures of Molten Polymer and Fluorocarbon Blowing AgⅠen:tM ixtures of Low -Density Polyethylene and Fluorocarbon Blowing Agent, J. Appl. Poly. Sci.,1983,28(2):831-850
    [36] Han CD and Yoo HJ, Oscillatory Behavior of a Gas Bubble Growth in Viscoelastic Liquids, AICHE Journal, 1982,28(6):1002-1009
    [37] Han CD and Ma C-Y, Rheological Properties of Mixtures of Molten Polymer and Fluorocarbon Blowing AgenⅡt :M ixtures of Polystyrene and Fluorocarbon B low ing Agent, J. Appl. Poly. Sci.,1983,28(2):851-860
    [38] Yang H-H and Han CD, Foam Extrusion Characteristics of Thermoplastic Resin with Fluorocarbon Blowing AgentⅢ: Foam Sheet Extrusion of Polystyrene and Low -Density Polyethylene, J. Appl. Poly. Sci.,1985,30(8):3297-3316
    [39] Ma C-Y and Han CD, Foam Extrusion Characteristics of Thermoplastic Resin with Fluorocarbon Blowing AgeⅡnt : Polyethylene Foam Extrusio n, J. Appl. Poly. Sci.,1983,28(9):2983-2998
    [40] A.Arefmanesh,S.G.Advani.Diffusion—induced growth of gas bubble in a viscoelastic fluid,Rhoel.Acta..1991,30(3):274—283
    [41] Bird RB, Armstrony RC and Hassager O, Dynamics of Polymeric Liquids, New York, Wiley, 1987
    [42] C.D.Han,H.J.Yoo.Studies on structural foam processing IV.Bubble growth during mold filling.Poly.Eng.Sci..1981,21(9):518
    [43]金日光.高聚物流变学及其在加工中的应用[M].化学工业出版社,1986
    [44]陈再良.气体进入聚合物熔体时的界面形态与运动分析[D].华南理工大学博士学位论文.2000
    [45]天津大学物理化学教研室.物理化学(上)[M].北京:高等教育出版社,1983,135-220
    [46]韩式方.非牛顿流体本构方程和计算解释理论[M].北京:科学出版社,2000
    [47]邹应,数学分析(上),北京:高等教育出版社,1995
    [48]伍海尉.超临界CO2/PS微孔塑料挤出成型中气泡核自由长大阶段的机理研究[D].华南理工大学硕士学位论文,2005
    [49] Gain G.L. Surface and Interfacial Tension of Polymer Liquids Poly. Eng. Sci. 1972, 12(1):1-11
    [50] Plazek D.J. The Temperature Dependence of the Viscoelastic Softening and Terminal Dispersion of Linear Amorphous Polymers J. Poly. Sci: Polymer Physics Edition. 1982,20:729-742
    [51] Campbell G.A and Adams M.E.A Modified Power Law Model for the Steady Shear Viscosity of Polystyrene Melts. Poly. Eng. Sci. 1990,30(10):587-595
    [52] Lee J.G and Klumerfelt R.W. Nitrogen Solubilities in Low-Density Polyethylene at High Temperatures and High Pressures. J. Appl. Polym. Sci.1995,58:2213
    [53] Olafi O and Simha. R. Configurational Thermodynamic Properties of Amorphous Polymers and Polymer Melts.Ⅱ.Theoretical C onsiderations M acrom ol. 1975,8:211
    [54]范仲元.水和水蒸气热力性质图表[M].北京:中国电力出版社,1996:4-10.
    [55]李双宝.非等温条件下挤出发泡成型与定型过程的研究[D].华南理工大学硕士论文. 1996,24-26
    [56]汪存东,张丽华.高分子物理中WLF方程的剖析[J].华北工学院学报,2004,25(1):56-60
    [57]田森平.挤出发泡成型中气泡膨胀过程的数学模型研究及简化[D].华南理工大学博士论文.1999 48-52
    [58] Goel S K, Beckman E J. Polym Eng Sci, 1994, 34(14): 1137 - 1147
    [59] Park C. B., Baldwin D. F., Suh N. P., et al.. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers, Polym. Eng. Sci., 1995,35(5):432-440
    [60]李开林,彭玉成,颜家华.微孔发泡塑料的研究进展[J].现代化工,1998,6:11-14
    [61]赵忠尧,王家斌,张永田.压力容器的应力分析与强度设计概论[J].一重技术,2000, 3:5-9
    [62]石坚.机械设计基础[M].重庆:重庆大学出版社,2006, 209-216
    [63]王积伟,章宏甲,黄谊.液压与气压传动[M].北京:机械工业出版社,1999,35-40
    [62]张权.聚合物显微学[M].北京:化学工业出版社,1993
    [63]陈国华.超临界CO2/PS挤出微孔发泡理论及实验研究[D].华南理工大学博士学位论文.1998.
    [64]滕建新.泡沫塑料动态成核机理的研究[D].华南理工大学博士学位论文.2000
    [65] C.B Park, L.K Cheung and S.W Song. The effect of Talc on cell nucleation in extrusion foam processing of polypropylene with CO2 and Isopentane. Cellular Polymers. 1998, 17(4) :221
    [66] Quan Huang, Bernd Seibig and Dieter Paul. Melt extruded open-cell microcellular foams for membrane separation: Processing and cell morphology Relationship. Cellular Plastics. 2000, 36(3):112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700