抗人卵巢癌scFv基因的构建、克隆、筛选和表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是妇科恶性肿瘤中最主要死亡原因之一。尽管近十年来,随着肿瘤细胞减灭术和化疗水平的提高,卵巢癌的生存率有所提高,但由于大多数病人发现时已是晚期,所以生存率一直很差,其5年生存率在30%左右,因此探索新的治疗方法非常必要。
     自从杂交瘤技术问世以来,单克隆抗体在人类肿瘤诊断和治疗上的应用成为人们关注的焦点。然而,单克隆抗体在肿瘤诊断治疗上所取得的成就并不大,因为抗体的应用有很高的要求。例如,治疗性的或用于体内诊断的抗体片段要求肿瘤穿透力强,在血液中清除更快、免疫原性低等。同时,还需要一个更有效的方法,可以很容易得到对每一个抗原都有优惠特性和有效作用的分子,并达到高水平产量,以满足抗体应用的高标准和日益增加的应用量。由于大多数单克隆抗体是鼠源的,且体积相对较大,故其作为治疗和诊断试剂的主要限制是肿瘤穿透力较差及其免疫原性。此外,直到最近,单克隆抗体的产量依旧受限于涉及到动物免疫和/或杂交瘤制备这一非常耗时耗力的过程。单链抗体片段(scFv)因此成为一种特别流行的抗体形式。该分子的体积减小只有抗原结合部分,由抗体重链可变区(VH)和轻链可变区(VL)经过一个弹性linker连接而成。与完整抗体IgG及抗体Fab段相比,scFv片
    
     第四军医大学博士学位论文 复6页
    段相对小的体积和没有k段,使其能更快穿透肿瘤,在血液中更快清除、免
    疫原性低,且能很容易的用来构建含有药物或细胞因子的嵌合分子、双价或
    双特异抗体。此外鼠s。Fv可通过基因工程的方法修饰他们的亲和性或将鼠的
    框架置换为人的来进一步提高他们在人体内的作用,而且大多数ScFv片段
    能很容易的在大肠杆菌中重组表达获得足够的量。因此S。FV成为将药物、
    毒素、放射性毒素导向肿瘤的很有价值的分子,在治疗和诊断试剂的发展上
    具有巨大的潜力。
     目前,成功生产重组抗体的方法已研制出来,此方法依赖于将抗体片段
    以融合蛋白呈现在噬菌体表面的噬菌体呈现系统。由于呈现的抗体保持着它
    的抗原结合活性,因此可通过亲和筛选富集表达特异性抗体的重组噬菌体。
    使用这种方法,具有特异性和亲和活性的抗体便能从富集重组噬菌体中筛选
    出来。重组噬菌体技术能有效的模仿免疫多样性和选择性的特征,能很容易
    的通过测序、突变和筛选来提高重组噬菌体抗体对抗原的结合力,并可用细
    菌系统来代替目前的动物免疫和杂交瘤制备,无限量的合成和表达实际上可
    针对任何抗原的抗体分子。本研究的目的就是利用噬菌体表面呈现技术构建
    一个较大容量的抗人卵巢癌单链抗体基因文库,并表达出活性片段,以期更
    早应用于临床,对卵巢癌的诊断、治疗水平的提高有所帮助。
     由于上皮性卵巢癌在卵巢癌中致死率中一直最高,因此我们选用来自上
    皮性卵巢癌的细胞株HO七,SKOV3,COCI和组织做抗原免疫6七周的
    Balb/c小鼠从免疫小鼠脾脏中分离tnRNA,RTPcR分别扩增抗体重、轻链
    可变区基因,二者经一个特殊构建的 Linkef(Gly4Sef)连接形成 scFv,然后
    克隆到高效噬菌粒载体pCANTABSE中,并在大肠杆菌中表达。经M13KO7
    辅助噬菌体挽救后,产生呈现抗体sCFv片段的重组噬菌体。获得库容量约为
    4.5 xl 06噬菌体 ScFv库,经过四轮 palllling淘筛后,能与特异性抗原结合的噬
    菌体呈现的抗体被筛选出来和富集,噬菌体呈现的重组抗体用ELISA进行检
    测和鉴别。结果显示:从随机挑取的 94个噬菌体克隆中筛选到 31个具有抗
     DePGrtfllBltt ofobsW and GynecolbglL Xi JwHoWI,m- FMMU
     g
    
     纷四军医大学博士学位论文 第7更
    原结合活性的阳性克隆,所有的阳性克隆与其他肿瘤细胞、人正常成纤维细
    胞进行ELISA检测,无阳性反应。说明通过pannillg淘筛,从构建的噬菌体
    抗体文库中成功去除了能与其他肿瘤细胞和人正常细胞共同结合的噬菌体抗
    体组分,获得的阳性克隆具有卵巢癌细胞特异性。
     由于可溶性重组抗体能快而经济的生产,是非常有用的免疫试剂,因此
    抗原阳性的克隆被分离出来后,我们在大肠杆菌中进行可溶性单链抗体片段
    的表达,并用能识别 E-tag sk段的 ntiE Ta gtR以验证。可溶性抗体在大肠杆
    菌 TG和 HBZI sl细胞中都能产生,但在 HBZISI细胞中的产量较高,因此
    我们用抗原阳性的噬菌体感染 HBZISI细胞,加诱导剂 IPTG诱导可溶性
    SCFV蛋白的产生。可溶性抗体可能位于培养上清、细菌周质和细菌内,离心
    沉淀细胞,制备不同细胞提取物,用 SDS-PAGE和 nti*Ang进行 Western blot
    检测加以证实可溶性抗体集中的位置。结果显示:表达蛋白为分子量~30KDa
    的可溶性蛋白,与预期大小相符,证实有可溶性抗体产生,可溶性抗体主要
    集中在细菌内和细菌周质中,但只有细菌周质中细胞内的可溶性抗体具有生
    物功能活性。表达的重组可溶性抗体继续用 D。t hi。t、流式细胞仪和免疫荧
    光竟争抑制实验检测其与抗原的结合活性。结果显示?
Ovarian carcinoma is the leading cause of death from gynecological cancer. Although advances in treatment with cytoreductive surgery and chemotherapy have improved the survial rate in the last decade, in most patients,the disease is diagnosis at an advanced stage,survial is still poor,with a 5-yr survial rate of only 30%. thus requiring new therapeutic modalities.
    Since the advent of hybridoma technology, the potential of murine mAbs for therapeutic and diagnostic application in human cancers has been a focus of interest. However, the therapeutic use of monoclonal antibodies in human cancers has emt with limited success, because there are great demands on such applications of antibody fragments. For example, therapeutic antibody fragments require lower immunogenicity, exhibit more rapid blood clearance and better tumor penetration.The high demand for and the increasing number of applications of antibodies require more efficient methods for their high-level production and the availability of molecules with favorable properties for every antigen. As most of McAb are rodent antibodies with relatively large size, The major limitations of monoclonal antibody conjugates as therapeutic agents have
    
    
    been inadequate tumor penetration and immunogenicity. Furthermore, until recently, the production of antibodies was limited to very laborious and time-consuming processes involving animal immunization schemes and/or hybridoma generation. Thus single-chain Fv (scFv) fragments became a particularly popular antibody format. The size of these molecules is reduced to the antigen-binding part of the antibody, and they contain the variable domains of the heavy and light chain connected via a flexible linker. Compared to intact IgG or Fab fragments, their relatively small size and absence of Fc-effector domains may allow them to penetrate tumors more rapidly, exhibit more rapid blood clearance and lower immunogenicity and can readily be used to construct chimeric molecules containing drus or cytokines or bivalent and bispecific antibodies, In addition, Murine scFv can be also engineered for improving their performances in vivo in humans by modulating their affinity or by replacing murine by human frameworks and Most scFv fragments can be obtained easily from recombinant expression in Escherichia coll in sufficient amounts. ScFv therefore represent valuable molecules for the targeted delivery of drugs. Toxins or radionuclides to a tumor site and has great potential for the development of therapeutic or diagnostic reagents.
    One successful approach to recombinant antibody production has been developed ,This approach relies on a phage-display system in which fragments of antibodies are expressed as fusion proteins displayed on the phage surface. Since the displayed antibody retains its antigen-binding capability, it is thus possible to enrich for recombinant phage expressing specific antibodies by affinity selection. With this approach, antibodies of defined specificity and affinity can be selected from a population. Recombinant phage antibody technology has the power and versatility to mimic the features of immune diversity and selection. In time, it may even be possible to replace the current practices of animal immunization and hybridoma development with a bacterial system capable of synthesizing and
    
    expressing virtually unlimited quantities of antibodies to practically any antigen. Phage antibody genes can be easily sequenced, mutated and screened to improve antigen binding. It is even possible to rearrange the genes which code for the various regions of an antibody molecule such that its specificity and affinity for an antigen are altered (3). The aim of the present study was to construct anti-ovarian cancer scFv genes library and obtaine ScFv fragments with binding activities to ovarian cancer antigen By recombinant phage antibody technique,which paves a way for the study of prevention and cure of ovarian cancer.
    Since epithelial ovarian carcinoma still remains the most lethal of gynecologic cancers, ovarian cancer cel
引文
1. Adams GP., Improving the tumor specificity and retention of antibody-based molecules[J]. In Vivo 1998; 12: 121-134.
    2. Bast RC Jr. Reactivity of a monoclonal antibody with human ovarian carcinoma[J]. J Clin Invest, 1981;68:1-31.
    3. Adams GP and Schier R. Generating improved single-chain Fv molecules for tumor targeting [J]Immunological Methods, 1999; 231: 249-260
    4 Aujame L, Geoffroy F and Sodoyer R. High affinity human antibodies by phage display[J]. Human Antibodies, 1997; 8: 155-168
    5. Barbas CF, Kang AS, Lerner RA et al. Assembly of combinatorial antibody libraries on phage surfaces: the gene Ⅲ site[J]. Proc Natl Acad Sci USA, 1991; 88(16): 7978-7982
    6. Becerril B, Poul MA and Marks JD. Toward selection of internalizing antibodies from phage libraries[J]. Biochem. Biophys. Res. Commun. 999;255 386-393.
    7. Bedzyk W, Weider K, Denzin L. Immunlogical and structural characterization of high affinity anti-fluorescein single-chain antibody[J]. J Biol Chem, 1990; 265: 18615-18620
    8. Benhar I, Nahary L, Shaky S, et al. DIP selection of phage-antibodies mediated by antigen expression on live bacteria[J]. J Mol Bio, 12000; 301: 893-904.
    9. Bhattacharya-Chatterjee M., Chatterjee S. K. and Foon K. A. Anti-idiotype vaccine against cancer. Immunol. Letters, 2000; 74: 51-58.
    10. Bird RE, Hardman, KD, Jacobson JW, et al. Sing-chain antigent-binding proteins[J].Science, 1998;242:423.
    11. Bradbury A and Sblattero D. Exploiting recombination in single bacteria to make large phage antibody libraries[J]. Nat Biotechnology, 2000; 18:75
    12. Bradbury A, Persic L, Werge T and Cattaneo A. Use of living columns to select specific phage antibodies[J]. Biotechnology, 1993;11:1565-1569.
    13. Bhattacharya-Chatterjee M, Chatterjee SK and Foon KA, Anti-idiotype vaccine against cancer[J]. Immunol. Letters, 2000;74:51-58.
    14. Burton, DR and Barbas, CF. Human antibodies from combinatorial libraries [J]. Adv Immuno, 1 1994;57:191-280.
    
    
    15. Cabilly S. The basic structure of filamentous phage and its use in the display of combinatorial peptide libraries[J]. Mol Biotechnol, 1999; 12:143-148.
    16. Cai, X and Garen, A. Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: selection of specif-ic antibodies from single-chain Fv fusion phage libraries[J]. Proc Natl Acad Sci USA, 1995; 92: 6537-6541.
    17. Carter P, Presta L, Gorman CM, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy[J]. Proc. Natl Acad. Sci. USA, 1992; 89: 4285-4289.
    18. Chaudhary VK. A rapid method of cloning functional variable region antibody genes in Escherichia coli as single chain immunotoxins [J]. Proc Natl Acad Sci USA, 1990; 87(2): 1066-1070
    19. Chen, G, Cloud, J, Georgiou, G and Iverson, BL, 1996. A quantitative immunoassay utilizing Escherichia coli cells possessing surface-expressed single chain Fv molecules. Biotechnol Prog 12, pp. 572-574.
    20. Chester KA, Begent RH, Robson L, et al. Phage libraries for generation of clinically useful antibodies[J]. Lancet, 1994; 343: 455-456.
    21. Chowdhury PS and Pastan I. Improving antibody affinity by mimicking somatic hypermutation in vitro[J]. Nat Biotechnol, 1999; 17: 568-572.
    22. Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 1987; 196:901
    23. Clackson, T, Hoogenboom HR, Griffiths AD and Winter G. Making antibody fragments using phage display libraries[J]. Nature, 1991; 352: 624-628.
    24. Coleher D, Bird R, Roselli M et al. In vivo tumor targeting of a recombinant single-chain antigen-binding protein[J]. J Natl Cancer Inst, 1990; 82:1191-1197
    25. Daniels DA and Lane DP. Phage peptide libraries[J]. Methods, 1996;9:494-507.
    26. Daugherty PS, Chen G, Olson MJ, et al. Antibody affinity maturation using bacterial surface display[J]. Protein Eng, 1998; 11: 825-832.
    27. de Kruif J, Boel E. and Logtenberg T. Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions[J]. J Mol Bio, 1995; 248: 97-105.
    
    
    28. DeNardo SJ, DeNardo GL, Denardo DG et al. Antibody phage libraries for the next generation of tumor targeting radioimmuntherapeutics [J]. Clin Cancer Res, 1999; 5(suppl): 3213s-3218s
    29. Deng S J, MacKenzie CR, Sadowska, J, et al. Selection of antibody singlechain variable fragments with improved carbohydrate binding by phage display[J]. J. Biol. Chem,. 1994;269:9533-9538.
    30. Deshane J, Cabrera G, MD et al. Targeted eradication of ovarian cancer mediated by intracellular expression of anti-erbB-2 single-chain antibody [J]. Gynecol Oncol, 1995; 59(1): 8-14
    31. Deshane J, Siegal GP, Wang M et al. Transduction efficiency and safety of an Intraperitoneally delivered adenovirus encoding an anti-erbB-2 single chain antibody for ovarian cancer gene therapy[J]. Gynecol Oncol, 1997; 64(3): 378-852
    32. Ewert S, Huber T, Honegger A and Plückthun A. Biophysical Properties of Human Antibody Variable Domains[J]. J Mol Bio, 2003;325:531-553 (讨论)
    33. Foote J, Eisen HN. Kinetic and affinity limits on antibodies produced during immune responses. PNAS 1995; 92:1254
    34. Francisco JA and Georgiou G. The expression of recombinant proteins on the external surface of Escherichia col[J]i. Biotechnological applications. Ann NY Acad Sci, 1994; 745: 372-382.
    35. George AJ, Jamar F, Tai MS et al. Radiometal labeling of recombinant proteins by a genetically engineered minimal chelation site: technetium-99m coordination by single-chain Fv antibody fusion proteins through a C-terminal cysteinyl peptide [J]. Proc Natl Acad Sci USA, 1995; 92: 8358-8362
    36. Goding JW. Monoclonal Antibodies: Principles and Practice., Academic Press (1996).
    37. Gram H, Marconi LA, Barbas CF, et al. In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library[J]. Proc Natl Acad Sci USA, 1992; 89: 3576-3580.
    38. Griffiths, AD and Duncan, AR. Strategies for selection of antibodies by phage display. [J]Curr Opin Biotechnol, 1998; 9: 102-108.
    
    
    39. Griffiths AD,. Williams SC, Hartley O, et al. Isolation of high affinity human antibodies directly from large synthetic repertoires[J]. EMBO, 1994; 13:3245-3260.
    40. Hawkins R, Russell S and Winter G. Selection of phage antibodies by binding affinity. Mimicking affinity maturation[J]. J Mol Biol, 1992; 226: 889-896.
    41. Heitner T, Moor A, Garrison JL, et al. Selection of cell binding and internalizing epidermal growth factor receptor antibodies from a phage display library[J]. J Immunological Methods, 2001; 248: 17-30.
    42. Hoogenboom HR and Winter G. By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro [J]. J Mol Biol, 1992;227:381-388.
    43. Hoogenboom HR, Bruine AP, Hufton SE et al. Antibody phage display technology and its applications[J]. Immunotechnology. 1998; 4:1-20
    44. Hudson PJ. Recombinant antibody fragments[J]. Curr. Opin. Biotechnol. 1998; 9: 395-402.
    45. Huse WD, Sastry L, Lverson SA et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda[J]. Science, 1989; 246:1275-1281
    46. Huston JS, Levnson D, Mudgett-hunter M et al. Protein engineering of antibody binding site: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli [J]. Proc Natl Acad Sci USA, 1988; 85(12): 5879-5883
    47. Huston. JS Mudgett-Hunter M, Tai MS, et al. Protein engineering of singlechain Fv analogs and fusion proteins[J]. Methods Enzymol. 1991; 203:46.
    48. J(?)ger M and Plückthun A. Domain interactions in antibody Fv and scFv fragmems: effects on unfolding kinetics and equilibria. FEBS Letters. 1999; 462: 307-312.
    49. Jain RK and Baxter LT. The next frontier of molecular medicine: delivery of therapeutics[J]. Nat Med 1988; 4:655
    50. James K. and Bell G. T., Human monoclonal antibody production. Current status and future prospects[J]. J. Immunol. Methods, 1987;100:. 5-40.
    51. Jerne N K. Towards a network theory of the immune syste[J]. Ann. Immunol, 1974:125C:373-389.
    
    
    52. Johns M, Geroge AJT, Ritter MA. In vivo selection of sFv from phage display libraries[J]. J. Immunol. Methods, 2000; 239: 137-151
    53. Jung S., Honegger A and Plückthun A. Selection for improved protein stability by phage display 1[J]. J. Mol. Bio,1999;294:163-180.
    54. Kabat EA, Wu TT. Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. J Immunol 1991; 147:1709
    55. Kettleborough CA, Ansell KH, Allen RW, et al. Isolation of tumor cell-specific single-chain Fv from immunized mice using phage-antibody libraries and the reconstruction of whole antibodies from these antibody fragments[J]. Eur J Immunol, 1994;24:952-958.
    56. Kipriyanov SM, Moldenhaner G, Little M et al. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures [J]. J Immunol Metho, 1997;200:69-77
    57. Kipriyanov S.M. and Little M., Generation of recombinant antibodies[J]. Mol. Biotechnol. 1999; 12:173-201.
    58. Kipriyanov SM, Moldenhaner G, Little M et al. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures [J]. J Immunol Metho, 1997;200:69-77
    59. Krebber A, Bornhauser S, Burmester J,et al. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. [J]. J. Immunol. Methods 1997; 201: 35-55.
    60. Lamarre A and Talbot PJ. Characterization of phage-displayed recombinant anti-idiotypic antibody fragments against coronavirus-neutralizing monoclonal antibodies[J]. Viral. Immunol. 1997; 10: 175-182.
    61. Li, Y, Cockburn W, Kilpatrick JB and Whitelam GC,. High affinity ScFvs from a single rabbit immunized with multiple haptens[J]. Biochem Biophys Res Commun, 2000; 268: 398-404.
    62. Little, M, Fuchs, P, Breitling, F and Dubel, S, Bacterial surface presen-tation of proteins and peptides: an alternative to phage technology?[J]. Trends Biotechnol, 1993;.11: 3-5.
    
    
    63. Low, NM, Holliger, PH and Winter, G. Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol, 1996:260:. 359-368.
    64. Luo D, Geng M, Noujaim T et al. An engineered bivalent single-chain antibody fragment that increases antigen binding activity [J]. J Biochem, 1997; 121(5):111-114
    65. MA J, Lou D, Kwon GS et al. Use of encapsulated single chain antibodies for induction of anti-idotypic humoral and cellular immune responses[J]. J Pharm Sci, 1998; 87(11): 1375-1378.
    66. Marks JD, Hoogenboom HR, Bonnert TP et al. By-passing immunization: human antibodies form V-gene libraries displayed on phage[J]. J Mol Biol, 1991; 222:581-97
    67. Marks, JD, Griffiths, AD, Malmqvist M et al. By-passing immunization: building high affinity human antibodies by chain shuffling[J]. Bio/Technology, 1992; 10:779
    68. McCafferty J, Griffiths AD, Winter G and Chiswell, DJ, Phage antibodies: filamentous phage displaying antibody variable domains[J]. Nature, 1990; 348: 552-554.
    69. Meltaer MS, Leonard EJ, Rapp HJ et al. Tumor-specific antigen solubilized by hypertonic KCl[J]. J Nati Cancer Inst, 1971; 47: 703-709
    70. Meulemans E. V., Slobbe R., Wasterval P, et al. Selection of phage-displayed antibodies specific for a cytoskeletal antigen by competitive elution with a monoclonal antibody[J]. J. Mol. Biol. 1994;244:353-360.
    71. Michelsen BK. Transformation of Escherichia coli increases 260-fold upon inactivation of T4 DNA ligase[J]. Analytical Biochemistry 1995; 225: 172-17
    72. Mullaney JM and Black LW. Activity of foreign proteins targeted within the bacteriophage T4 head and prohead: implications for packaged DNA structure[J]. J Mol Bio, 1 1998; 283: 913-929.
    73. Nieba L, Honegger A, Krebber C and Plückthun A. Disrupting the hydro phobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment[J]. Protein Eng, 1997; 10:435-444.
    
    
    74. Nissim A, Hoogenboom HR., Tomlinson IM, et al. Antibody fragments from a "single pot" phage display library as immunochemical reagents[J]. EMBO, 1994; 13: 692-698.
    75. Ohage E andSteipe B. Intrabody construction and expression. I. The critical role of VL domain stability[J]. J. Mol. Biol,. 1999; 291: 1119-1128.
    76. Pace CN. easuring and increasing protein stability[J]. Trends Biotechnol. 1990; 8: 93-98.
    77. Perez L, Vazquez JE, Ayala M et al. Production, purification and characterization of an (anti-carcinoembryonic antigen) recombinant single-chain Fv antibody fragment [J]. Biotechnol Appl Biochem, 1996; 24(pt1): 79-82
    78. PeZhou-G, Liu-KD, Sun-HC, et al. Expression and purification of single-chain anti-HBx antibody in Escherichia coli[J]. J Cancer Res Clin Onco1, 1997; 123: 609-13
    79. Piche A, Grim J, Rancourt C et al. Modulation of Bc1-2 protein levels by an intracellular anti-Bc1-2 single-chain antibody increases drug-induced cytotoxicity in the breast cancer cell line MCF-7[J]. Cancer Res, 1998; 58(10): 2134-2140
    80. Portolano S, McLachlan SM, Rapoport B. High affinity, thyroid-specific human autoantibodies displayed on the surface of filamentous phage use V genes similar to other autoantibodies[J]. J Immunol 1993; 151:2839
    81. Poul MA, Becerril B, Nielsen UB et al. Selection of tumor-specific internalizing human antibodies from phage libraries. J Mol Biol 2000; 301: 1149-1161
    82. Rader C and Barbas CF. Phage display of combinatorial antibody libraries[J]. Curr Opin Biotechnol, 1997; 8: 503-508.
    83. Raychaudhuri S, Kang CY, Kaveri SV, et al. Tumor idiotype vaccines. Ⅶ. Analysis and correlation of structural, idiotypic, and biologic properties of protective and nonprotective Ab2[J]. J. Immuno,(1990; 145:760-767.
    84. Ridgway JBB, Ng E, Kern JA et al. Identification of a human anti-CD55 single chain Fv by subtractive panning of a phage library using tumor and nontumor cell lines. Cancer Res 1999; 59:2718
    85. Rodi DJ and Makowski L, Phage-display technology-finding a needle in a vast molecular haystack[J]. Curr Opin Biotechnol, 1999; 10:87-93.
    
    
    86. Rondot S, Koch J, Breitling F and Dübel S. A helper phage to improve single-chain antibody presentation in phage display[J]. Nature Biotechno, 2001;19:75-78.
    87. Sblattero D and Bradbury A. A definitive set of oligonucleotide primers for amplifying human V regions[J]. Immunotechnology 1998; 3: 271
    88. Sheets MD, Amersdorfer P, Finnern R et al. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens[J]. PNAS 1998; 95:6157
    89. Siegel DL, Chang TY, Russell SL et al. Isolation of cell surface-specific human monoclonal antibodies using phage display and magnetically-activated cell sorting: application in immunohematology[J]. J Immunological Methods 1997; 206: 73
    90. Skerra A and Plückthun, A, Assembly of a functional immunoglobulin Fv fragment in Escherichia col[J]i. Science, 1988;240:1038-1041.
    91. Smith GP, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985; 228: 1315-1317.
    92. S(?)derlind E, Strandberg L, Jirholt P, et al. Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries[J]. Nature Biotechnol, 2000; 18: 852-856.
    93. Tang Y, Jiang N, Parakkh C et al. Selection of linkers for a catalytic singlechain antibody using phage display technology [J]. J Biol Chem, 1996; 271: 15628-15687
    94. Thompson J, Pope T, Tung J-S, et al. Affinity maturation of a high-affinity human monoclonal antibody against the third hypervariable loop of human immunodeficiency virus: use of phage display to improve affinity and broaden strain reactivity[J]. J Mol Biol, 1996;256:77-88.
    95. Tse E, Lobato MN, Forster A, et al. Intracellular antibody capture technology: application to selection of intracellular antibodies recognising the BCR-ABL oncogenic protein[J]. J. Mol. Biol, 2002; 317: 85-94.
    96. Turner DJ, Ritter MA, George AJ et al. Importance of the linker in expression of single-chain Fv antibody fragments: optimisation of peptide sequence using phage display technology[J]. J Immunol Method, 1997; 205: 43-54{3}
    
    
    97. Vaughan TJ, Williams AJ, Pritchard K, et al. Human antibodies with subnanomolar affinities isolated from a large non-immunized phage display library [J]. Nat Biotechnol. 1996; 14: 309-314.
    98. Ward ES, Ggussow D, Ggriffths AD et al. Binding of a repertoire of single immunoglbulin variable domains secreted form Eschcerichia coli [J]. Nature, 1989; 34(1): 544-546
    99. Waterhouse P, Griffiths AD, Johnson KS et al. Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires[J]. Nucleic Acids Reserch 1993; 21: 2265
    100. Wels W, Moritz D,Schmidt M et al. Biotechnological and gene therapeutic strategies in cancer treatment[J]. Gene, 1995; 159(1): 73-80.
    101. Willson TA and Gough NM. High voltage E. coli electro-transformation with DNA following ligation[J]. Nucleic Acids Res, 1988; 16:11820.
    103. Willuda J, Honegger A, Waibel R, et al. High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized antiepithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment.[J] Cancer Res, 1999; 59: 5758-5767.
    104. Winter, G, Griffiths, AD, Hawkins, RE and Hoogenboom, HR, Making antibodies by phage display technology[J]. Annu Rev Immunol, 1994; 12: 433-455.
    105. Winthrop MD, DeNardo SJ, DeNardo GL et al. Development of a hyperimmune anti-MUC-1 single chain antibody fragments phage display library for targeting breast cancer[J]. Clin Cancer Res, 1999; 5(10 Suppl): 3088s-3094s
    106. Wong C, Waibel R, sheets M, et al. Human scFv antibody fragmens specific for the epithelial tumor marker MUC-1, selected by phage display on living cells [J]. Cancer Immunol Immunother, 2001; 50: 93-101
    107. W(?)rn A and Plückthun A. Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol[J]. 2001;305:989-1010.
    108. Wu TT, Johnson G, and Kabat EA. Length disrtribution of CDRH3 in antibodies. Proteins 1993; 16:1-31
    109.杨丽娟,苏成芝.抗人胃癌全套单链抗体基因噬菌体呈现文库的构建、初步筛选及鉴定[J].第四军医大学学报,1998;19(1):22-24
    
    
    110. Yokota TY, Mlinic DE, Whitlow M, et al. Repaid tumor penetration of a single-chain Fv and comparison with other immunogblolin forms. Cancer Res, 1992; 52: (14)3402-3408
    111. Zabarovsky ER and Winberg G. High efficiency electroporation of ligated DNA into bacteria. 1990, nucleic Acids Res 18:5912-5923
    112. Zahra DG, Vancov T, Dunn JM et al. Selectable in-vivo recombination to increase antibody library size—an improved phage display vector system. Gene 1999; 227: 49-56
    113. Zhou-G, Liu-KD, Sun-HC et al. Expression and purification of single-chain anti-HBx antibody in Escherichia coli[J]. J Cancer Res Clin Oncol, 1997; 123: 609-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700