FeSOD-ScFv的构建、表达、复性及其与视黄酸联合给药对肺腺癌细胞活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,癌症已经是危害人类生命健康的首要疾病。近年来,全世界癌症发病每年超过1000万人,每年死亡约700万人。鉴于此,有效抗癌药物的研究刻不容缓。FeSOD-ScFv(Superoxide dismutase-single chain variable fragment)是一种双功能蛋白,能靶向性作用于肺腺癌细胞,然而FeSOD-ScFv通过胞吞作用进入细胞后,大部分被溶酶体消化,只有少部分发挥作用,这就减弱了FeSOD的抗肿瘤效果。研究表明,视黄酸(Retinoic acid,RA)通过改变内吞小泡的胞内途径,降低内吞小泡被溶酶体消化的概率,增强某些药物的药效。
     本论文通过定点突变技术将本实验室保存的已突变的FeSOD-ScFv质粒回复突变,然后重新构建表达载体pET-28a-FeSOD-ScFv,转化到大肠杆菌BL21中。构建好的工程菌经正交试验得到最佳表达条件为:37℃、0.5 mmol/L IPTG浓度下诱导表达7小时;SDS-PAGE分析表明目的蛋白以包涵体形式表达,表达的目的蛋白占全菌蛋白总量的53%。包涵体经提取、纯化,通过尿素线性梯度透析复性后,蛋白的比活约为620U/mg,回收率为84.3%。将复性后的FeSOD-ScFv与视黄酸单独及联合作用肺腺癌细胞A549,结果表明FeSOD-ScFv在体外具有显著的抗肿瘤作用,且视黄酸显著提高FeSOD-ScFv对肺腺癌细胞A549的抑制作用,抑制效果提高87%。
     本研究回复突变fesod-ScFv基因,成功构建pET-28a-FeSOD-ScFv工程菌,在大肠杆菌中高效表达了FeSOD-ScFv双功能蛋白,表达的目的蛋白在体外对肺腺癌细胞A549有抑制效果,视黄酸能够增强这一抑制效果,这为FeSOD-ScFv临床应用于治疗肿瘤提供理论基础,具有重要的社会和经济效益。
At present, cancer is harmful to human life and health, and it has been the primary disease. The number of cancer incidences is more than 10 million now, and the number of death is about 700 million each year. In view of this, the study of effective anti-cancer drugs is hardly urgent. Although the FeSOD-ScFv (Superoxide dismutase-single chain variable fragment) can targetedly kill lung adenocarcinoma cells, most of FeSOD-ScFv that enter into cells by endocytosis are digested by lysosomes, and only a small parts can really work, which greatly reduce the anti-tumor efficacy of FeSOD. Some studies showed that retinoic acid (RA) could change the intemalization pathway of endocytic vesicles, which enormously reduced the probability that the lysosome digested endosome and enhanced the efficacy of some drugs.
     In this study, our lab's FeSOD-ScFv plasmid that had 4 mutated bases was re-mutated by site-directed mutagenesis technology, and then the plasmid of pET-28a-FeSOD-ScFv was constructed and transformated to E.coli.. Expression conditions was optimized by orthogonal experiments. The optimum expression conditions: at 37℃, 0.5 mmol/L IPTG induce expression for 7 hours. SDS-PAGE analysis showed that the protein expressed as inclusion bodies, and the amount of protein accounted for 53% of the total bacterial protein. The inclusion bodies were extracted and purificated. The specific activity of FeSOD-ScFv was about 620 U/mg, the yield was about 84.3% by continuous urea gradient dialysis refolding. The anti-tumor characterization of FeSOD-ScFv targeted to lung adenocarcinoma A549 cells alone or in combination with RA was studied. The results showed that FeSOD-ScFv had significant anti-tumor effeciency in vitro, and RA could significantly increase the effeciency of FeSOD-ScFv on A549 cells more than 87%.
     In this study, fesod-ScFv gene was re-mutated, pET-28a-FeSOD-ScFv was successfully constructed. fesod-ScFv gene was highly expressed in E.coli.. FeSOD-ScFv had effeciency on A549 cells in vitro, and RA can enhance the effeciency, which contribute to the clinical application of FeSOD-ScFv and has important social and economic benefits.
引文
[1]Mann T&,Keilin D.Haemocuprein and hepatocuprein.Copper-protein compounds of blood and liver in mammals.Proc R soc B[J],1938,126:303-315.
    [2]MeCord.J,M.Irwin Fridovich.Superoxide dismutase:An enzymatic function for erythrocuprein (hemocuprein).J Biol Chem[J].1969,244:6049-6055.
    [3]Salvemini D.& Cuzzocrea S.Therapeutic Potential of Superoxide Dismutase Mimetics as Th erapeutic Agents in Critical Care Medicine.Crit.Care Med.[J],2003,31:29-38.
    [4]Bush,A.I.The Metallobiology of Alzheimer's Disease.Trends Neurosci.[J],2003,26:207-214.
    [5]Ebadi M.,Svinivasan S.& Baxi M.D.Oxidative Stress and Antioxidant Therapy in Parkinson Disease.Prog.Neurobiol.[J],1996,48:1-19.
    [6]Veronese,F.M.,Caliceti,P.,Schiavon,et al.Polyethylene Glycol-superoxide Dismutase,a Conjugate in Search of Exploitation.Adv.Dmg Deliv.Rev.[J],2002,54:587-606.
    [7]自俊青,杨志毅.超氧化物歧化酶SOD及其研究简介.大理师专学报[J].1998,1:56-61.
    [8]陈忠宁,毛宗万,唐雯霞.铜锌超氧化物歧化酶的结构机理及其模拟研究进展.化学通报[J].1993.6:1-7.
    [9]沈良,郭洪.超氧化物歧化酶及其模拟研究.杭州师范学院学报.2002,1(3):54-70.
    [10]Stoddard,B.L.,Howell,P.L.,Ringe,D.et al.The 2.1-A resolution structure of iron-superoxi de dismutase from Pseudomonas ovalis.Biochemistry[J].1990,29:8885-8893.
    [11]Oberley,L.W.,St Clair,et al.Increase in manganese superoxide dismutase activity in the mouse heart after X-irradiation.Arch Biochem Biophys[J].1987,254:69-80.
    [12]Pervaiz,S.,Ramalingam,J.K.,Hirpara,J.L.,and Clement,M.V.Superoxide anion inhibits druginduced tumor cell death.FEBS Lett.[J].1999,459:343-348.
    [13]Undaresan,M.,Yu,Z.,Ferrons,V.J.,et al.Requirement for Generation of H_2O_2 for PlateletDerived Growth Factor Signal Transduction.Science[J].1995,270:296-299.
    [14]Suh,Y.A.,Arnold,R.S.,Lassegue,B.,et al.Cell transformation by the superoxide-generating oxidase moxl.Nature[J].1999,401:79-82.
    [15]Min Lu,Xingguo Gong,Yuwen Lu,et.al.Molecular Cloning and Functional Characterization of aCell-permeable Superoxide Dismutase Targeted to Lung Adenocarcinoma cells.J.B.C.2006,281(19):13620-13627.
    [16]Shi,D.Y.,Deng,Y.R.,Liu.S.L.,et.al.Redox stess regulates cell proliferation and apoptosis of human hepatoma through Akt protein phosphorylation.FEBS Lett.2003,542:60-64.
    [17]An Xian,Wei Hu-lai,Qi Ping,et al.Apoptosis of K562/ADM cells induced by mimics of Mn -SOD.Journal of Modern Oncology.2008,16(5):703-706.
    [18]QuikChange Site-Directed Mutagenesis Kit,Stratagene,2009.
    [19]H.-G.Yoon,H.-Y.Kim,Y.-H.Lim,et al.ChoIdentification of essential amino acid resid -ues for catalytic activity and thermostability of novel chitosanase by site-directed mutagenesis.Appl Microbiol Biotechnol,2001,56:173-180.
    [20]Alessio Peracchi.Enzyme catalysis:removing chemically 'essential' residues by site-directed mutagenesis.TRENDS in Biochemical Sciences,2001,26(8):497-503
    [21]Andreas Seyfang,Jean Huaqian Jin.Multiple site-directed mutagenesis of more than 10 sites simultaneously and in a single round.Analytical Biochemistry,2004,324: 285-291.
    
    [22] Li Liu & George Lomonossoff. A site-directed mutagenesis method utilising large double-stranded DNA templates for the simultaneous introduction of multiple changes and sequential multiple rounds of mutation: Application to the study of whole viral genomes. Journal of Virological Methods,2006,137:63-71.
    
    [23] Qiwen Deng,Wensheng Luo & Michael S.Donnenberg. Rapid site Rapid siteRapid site Rapid site—directed domain scanning mutagenesis of enteropathogenic Escherichia coli espD. Biol. Proced. 2006,9(1): 18-26.
    
    [24] Eckhard Boles ,Thomas Miosga. A rapid and highly efficient method for PCR-based site-directed mutagenesis using only one new primer. Curr Genet,1995, 28:197-198
    
    [25] Robert M. Horton. PCR-Mediated Recombination and Mutagenesis SOEing Together Tailor-Made Genes. Molecular Biotecnology, 1995,3:93-99.
    
    [26] Zyan, X Sun, JF Engelhardt, et al . Progress and prospects: techniques for site-directed mutagenesis in animal models. Gene Therapy, 2009,16:581-588.
    
    [27] Sundar Isaac Kirubakaran&Natarajan Sakthivel. Site-Directed Mutagenesis, Heterol -ogous Expression of Cyanamide Hydratase Gene and Antimicrobial Activity of Cyanamide. Curr Microbiol,2008,56:42-47.
    
    [28] Shozo Ohta, Yuji Ishida & Satoru Usami. High-level expression of cold-tolerant pyruvate,orthophosphate dikinase from a genomic clone with site-directed mutations in transgenic maize. Mol Breeding,2006,18:29-38.
    
    [29] Guangfei Liu, Jiti Zhou, Jing Wang,et al. Site-directed mutagenesis of substrate binding sites of azoreductase from Rhodobacter sphaeroides. Biotechnol Lett.2008,30:869-875.
    
    [30] Renato Chavez, Hans Krautwurst & Emilio Cardemil. Site-Directed Mutagenesis in Basic Amino Acid Residues of Saccharomyces cerevisiae Phosphoenolpyruvate Carboxykinase. Journal of Protein Chemistry, 1997,16(3):233-236.
    
    [31] Seiji Miura, Stefano Ferri, Wakako Tsugawa,et al. Active site analysis of fructosyl amine oxidase using homology modeling and site-directed mutagenesis. Biotechnol Lett 2006,28:1895-1900.
    
    [32] Hideaki Yamaoka, Yuki Yamashita, Stefano Ferri,et al. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia. Biotechnol Lett,2008,30:1967-1972.
    
    [33] Jean-Marc Moulis, Valerie Davasse, Marie-Pierre Golinelli,et al. The coordination sphere of iron-sulfur clusters:lessons from site-directed mutagenesis experiments. JBIC,1996,1:2-14.
    
    [34] Samuel D,Kumar TK,Ganesh G,et al.Proline inhibits aggregation during protein refoling. Protein Sci,2000, 9(2):344-352.
    
    [35] Gregory A. Bowden , Angel M. Paredes & George Georgiou. Structure and Morphology of Protein Inclusion Bodies in Escherichia Coli. Nature Biotechnology, 1991,9:725-730.
    
    [36] 龙英娜,刘焕奇,王明志.重组包涵体的纯化与复性.兽医临床,2008,1:70—74.
    
    [37] Burgess RR. Refolding solubilized inclusion body proteins.Guide to protein purification, second edition.2009,466:259-263.
    
    [38] Choe, W.-S., Nian, R., Lai, W.-B.,et al. Recent advances in biomolecular process intensification. Chem. Eng. Sci. 2006,61:886-906.
    [39]Bernhard E.Fischer.Renaturation of recombinant proteins produced as inclusion bodies.1994,12(1):89-101.
    [40]汪家政,范明 主编.蛋白质技术手册.2000,189-259.
    [41]Alois Jungbauer & Waltraud Kaar.Current status of technical protein refolding.Journal of Biotechnology.2007,128:587-597.
    [42]Lee,C.T.,Mackley,M.R.,Stonestreet,P.,et al.Protein refolding in an oscillatory flow reactor.Biotechnol.Lett.2001,23:1899-1901.
    [43]Taeho Ahn a,,Chul-Ho Yun,Ho Zoon Chae,et al.Refolding and reconstitution of human recombinant Bax inhibitor-1 into liposomes from inclusion bodies expressed in Escherichia coli.Protein Expression and Purification.2009,66:35-38.
    [44]于德强,何询.重组蛋白复性技术研究进展.生物技术通讯.2004,15(1):67-69.
    [45]Cleland J.L.Polyethylene-glycol enhanced protein refolding.Bio-technology.1992,10:1013.
    [46]Brian M.Baynes,Daniel I.C.Wang and Bernhardt L.Trout.Role of Arginine in the Stabilization of Proteins against Aggregation.Biochemistry.2005,44:4919-4925.
    [47]Xiao-Yan Dong,Li-Jun Chen,Yan Sun,et al.Refolding and purification of histidine-tagged protein by artificial chaperone-assisted metal affinity chromatography.Journal of Chromatography A.2009,1216:5207-5213.
    [48]Schlegl,R.,Iberer,G.,Machold,C.,et al.Continuous matrix-assisted refolding of proteins.J.Chromatogr A.2003,1009:119-132.
    [49]Schlegl,R.,Necina,R.,Jungbauer,A.,et al.Continuous matrixassisted refolding of inclusion body proteins:effect of recycling.Chem.Eng.Technol.2005a,28:1375-1386.
    [50]Park,B.-J.,Koo,Y.-M.,Lee,C.-H.,et al.Development of novelprotein refolding using simulated moving bed chromatography.Korean J.Chem.Eng.2005.22:425-432.
    [51]Cho,T.H.,Ahn,S.J.,Lee,E.K.,et al.Refolding of protein inclusion bodies directly from E.coli homogenate using expanded bed adsorption chromatography.Bioseparation.2001,10:189-196
    [52]Jafaru Abu,Madu Batuwangala &Karl Herbert.Retinoic acid and retinoid receptors:potential chemopreventive and therapeutic role in cervical cancer.Lancet Oncol.2005,6:712-720.
    [53]Dianne Robert Soprano,Pu Qin,and Kenneth J.Soprano.Retinoic acid receptors and cancers.Annu.Rev.Nutr.2004.24:201-221.
    [54]Mollard,R..Tissue-specific expression ofretinoic acid receptor isoform transcripts in the mouse embryo.Mech.Dev.2000,94:223-232.
    [55]Maden,M.,Sonneveld,E.,Gale,et al.The distribution of endogenous retinoic acid in the chick embryo:implications for developmental mechanisms.Development.1998,125:4133-44
    [56]Mic,F.A.,Molotkov,A.,Benbrook,D.M.et al.Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis.Proc.Natl Acad.Sci.USA.2003,100:7135-7140.
    [57]Bastien,J.& Rochette-Egly,C.Nuclear retinoid receptors and the transcription of retinoidtarget genes.Gene.2004,328:1-16.
    [58]Rosenfeld,M.G.,Lunyak,V,V.et.al.Sensors and signals:acoactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response.Genes Dev.2006,20:1405-1428.
    [59]Balmer,J.E.& Blomhoff,R.Gene expression regulation by retinoic acid.J.Lipid Res.2002,43:1773-1808.
    [60]Karen Niederreither and Pascal Dolle.Retinoic acid in development:towards an integrated view.Nature reviews genetics.2008,9:541-554.
    [61]Gregg Duester.Retinoic Acid Synthesis and Signaling during Early Organogenesis.Cell.2008,134:921-932.
    [62]Wilson,J.G.,Roth,C.B.& Warkany,J.An analysis ofthe syndrome of malformations induced by maternal vitamin A deficiency.Effects of restoration of vitamin A at various times during gestation.Am.J.Anat.1953,92:189-217.
    [63]Simeone,A..Retinoic acid induces stage-specific antero-posterior transformation ofrostral central nervous system.Mech.Dev.1995,51:83-98.
    [64]Halilagic,A..Retinoids control anterior and dorsal properties in the developing forebrain.Dev.Biol.2007,303:362-375.
    [65]Tickle,C..Making digit patterns in the vertebrate limb.Nature Rev.Mol.Cell Biol.2006,7:45-53.
    [66]Wang,Z.,Dolle,P.,Cardoso,W.V.et al.Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives.Dev.Biol.2006,297:433-445.
    [67]Niederreither,K..The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system.Development.2003,130:2525-2534.
    [68]Gudas L,Spon MB,Rpberts AB,et al.Cellular biology and biochemistry of the retinoids.MB Sporn,AB R oberts,DS Goodman.In the Retinoids,ed[M].New York:Raven.2nd ed.1994,443-520.
    [69]Moon RC,Mehta RG& Rao KVN.Retinoids and cancer in experimental animals.MB Sporn,AB Roberts,DS Goodman.In the Retinoids,ed[M].New York:Raven.2nd ed.1994,573-595.
    [70]McGregor F,Wagner E,Felix D,Soutar D,et al.In appropriate retinoic acid recepter-beta expression in oral dysplasias:correlation with acquisition of the immortal phenotype.Cancer Res.1997,57:3886-3889.
    [71]Salvemini D.& Cuzzocrea S..Therapeutic Potential of Superoxide Dismutase Mimetics as Therapeutic Agents in Critical Care Medicine.Crit.Care Med.,2003,31:29-38.
    [72]Bush,A.I.The Metallobiology of Alzheimer's Disease[J].Trends Neurosci.,2003,26:207-214.
    [73]Ebadi M.,Svinivasan S.,Baxi M.D.,et al.Oxidative Stress and Antioxidant Therapy in Parkinsons Disease.Prog.Neurobio 1.,1996,48:1-19.
    [74]Veronese,F.M.,Caliceti,P.,Schiavon,et al.Polyethylene Glycol-superoxide Dismutase,a Conjugate in Search of Exploitation.Adv.Drug Deliv.Rev.,2002,54:587-606.
    [75]Ge X R,.Lin S J,.Yu N X,et al.McAb LC-1 against human lung cancer 1989,22(3):359-365.
    [76]Xie,W.,Zhang,R.X.and Ge,X.R..Internalization of tumor associated antigen on human lung adenocarcinoma cell line SPC-A-1 by McAb LC-1.Shi Yan Sheng Wu Xue Bao 1996,29:207-219.
    [77]Min Lu,Xingguo Gong,Yu Hong,et al.Construction and Functional Characterization of Lung Adenocarcinoma Targeting SOD.Progress in biochemistry and biophysics.2006,33(1):51-58.
    [78]王友如.CaCl_2浓度对感受态细胞转化效率的影响.湖北师范学院学报:自然科学版.2006,3:30-32.
    [79]涂知明,陈明洁,何光源等.三种大肠杆菌高效感受态的制备及转化.华中科技大学学报:自然科学版.2006,4:112-115.
    [80]吴海燕,谢应桂,何雄斌等.快速准确制备大肠杆菌高效感受态细胞中有关OD600值的探讨.湘南学院学报:医学版 2006,3:13-15.
    [81]罗元明,罗规民.单链抗体2F3表达条件的优化及其提纯和性质研究.生物工程学报2002,18(1):74-78.
    [82]徐瑞元,袁明秀,陈丽蓉等.生物化学实验原理和方法(第二版),北京:北京大学出版社.2005:324-327.
    [83]彭凌,朱必风,刘主.包涵体复性研究.韶关学院学报·自然科学.2007,28(6):89-93.
    [84]Zhenyu Gu,Zhiguo Su & Jan-Christer Jason..Urea gradient size-exclusion chramatography enhanced the yield of lysozyme refolding.Journal of Chromatography A,2001,918:311-318.
    [85]M.Li/Z.Su.Refolding Human Lysozyme Produced as an Inclusion Body by Urea concentration and pH Gradient Ion Exchange Chromatography.Chromatogrphia,2002,56:33-38.
    [86]Terra B.Potocky & A.K.M..Cytoplasmic and nuclear delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into Hela cells.J Biol Chem,2003.278:50188-50194.
    [87]YouNeng Wu,Massimo Gadina,Jung-Hwa,et.al.Retinoic Acid Disrupts the Golgi Apparatus and Increases the Cytosolic Routing of Specific Protein Toxins.J Cell Biol.1994,125:743-753.
    [88]卢敏.SOD和Env的体内外靶向给药研究[博士学位论文].杭州,浙江大学,2008:94-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700