乙醇脱氢酶的克隆表达及生物活性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人乙醇脱氢酶(alcohol dehydrogenase,ADH,EC 1.1.1.1)是含锌原子NAD依赖的胞质二聚体酶,能可逆氧化各种醇为相应的醛酮,是乙醇代谢的关键酶。它可分成五大类,共七个基因,具有基因多态性、种族特异性、性别特异性、组织特异性和时间特异性。目前对其动力学性质、结构和功能的研究较多,但整个乙醇脱氢酶体系作用的机制还不清楚。
     小量摄取酒精对身体有益,但过度饮用却会引起酒精敏感性反应(表现为脸红、心博加快、血压下降、头晕、恶心、呕吐等),甚至导致器官病变(如肝硬化、上下消化道癌、心脏病等)。随着酒销售量的增加,人们对解酒保肝类物质的需求日益迫切。人ADH制成的保健品在来源上比同类产品更具优势,基本没有副作用,用它来研制解酒药将会是一项重要的应用和未来发展的趋势。在人乙醇脱氢酶中,ADH1B2同工酶的活性最高,它的基因工程研究有重要的经济价值和社会价值。
     本文以人肝脏总RNA为模板,RT-PCR扩增得到ADH1B2基因,克隆到pUCm-T载体。再利用引物上的酶切位点,把ADH1B2基因重组到原核表达载体pProEX HTb中,构建成pProEX-ADH1B2质粒。ADH1B2基因与6×His的编码序列在大肠杆菌BL21(DE3)中进行融合表达。在最佳表达条件37℃、0.5 mM IPTG浓度、诱导表达7h后,ADH1B2融合蛋白以包涵体的形式高效表达,其外源基因表达量占全菌蛋白的58%,刷新了原核表达ADH1B2高产的新记录。二次洗涤包涵体,可以获得纯度较高的目的蛋白,这为工业化生产提供了条件。利用6×His标签,Ni~(2+)亲和层析,可获得超高纯度的目的蛋白。亲和层析结果表明,当咪唑浓度达到60 mmol/L时,目的蛋白开始流出,到达100 mmol/L时有最大的洗脱峰。纯化后的蛋白经含有精氨酸的变性溶液透析复性后,监测A_(340)的变化,结果表明复性蛋白具有ADH活性,比活力达到954 U/mg蛋白。这是我国首次用原核表达载体pProEX HTb获得ADH1B2。
Human alcohol dehydrogenase (ADH, EC 1.1.1.1) is a cytosolic, dimeric, zinc-containing and NAD-dependent enzyme. It catalyzes the reversible oxidation of a wide variety of alcohols to the corresponding aldehydes and ketones, and acts as rate-limiting enzyme in ethanol metabolism. The new nomenclature organizes seven human alcohol dehydrogenase genes into five classes. It has the characteristics of gene polymorphism, ethnic specificity, gender specificity, tissue specificity and time specificity. Recently there have been many researches on its kinetic property, structure and function, but the overall mechanism for the entire alcohol dehydrogenase system has as yet to be established.
     Little amount of alcohol is beneficial. However, excessive alcohol consumption could induce alcohol toxicity, showing rubicundity, quick heartbeat, low blood pressure, swirl, surfeit, vomit and et al. It could even cause organ pathologic changes such as liver cirrhosis, digestive tract cancer, heart disease and so on. With the increasing consumption of alcohol, people are increasingly demand for anti-alcohol and liver-protection materials. Human ADH drug is superior to other congener products due to its source and side-effect. So applying of alcohol dehydrogenase on developing anti-alcohol drugs will be its important application and future development trend. Because isoenzyme ADH1B2 has the highest activity in human ADH class, its study on gene engineering may have great economic and social values.
     In this paper, ADH1B2 gene was obtained by RT-PCR using human liver total RNA as template and was cloned into pUCm-T vector. Then according to restrict site on primers, we insert ADH1B2 gene into pProEX HTb vector to construct plasmid pProEX-ADH1B2. ADH1B2 and 6×His were fused-expression in E.coli BL21(DE3). After perfect expression in 37℃environment inducted by 0.5mM IPTG for 7h, high-yield expression of ADH1B2 fused protein, existing in the inclusion body, was achieved, and it is 58% of total bacteria protein. This data exceeds any other prokaryotic expression system before. The washed inclusion body achieved high purity and this is useful for industrialized production. Nickel affinity chromatography was used to obtain higher purity protein according to its 6×His tag. The results indicated that target protein was firstly eluted by 60 mmol/L pyrazole and then reached elution peak by 100 mmol/L pyrazole. The purified protein was refolded by dialyzing in refolding solution with L-arginine. The results showed that the refolded protein has ADH activity through tracing A340. We are first to express ADH1B2 protein using prokaryotic expression vector pProEX HTb.
引文
[1] Yin SJ, Chou CF, Lai CL, et al. Human class IV alcohol dehydrogenase: kinetic mechanism, functional roles and medical relevance [J]. Chem Biol Interact 2003, 143-144: 219-227.
    [2] Ramchandani VA, Boston WF, Li TK. Research advances in ethanol metabolism [J]. Pathol Biol 2001, 49: 676-682.
    [3] Duester G, Farres J, Felder M, et al. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family [J]. Biochem Pharmacol 1999, 58: 389-95.
    [4] McEvily A J, Holmquist B, Auld DS, et al. 3Β-hydroxy-5Β-steroid dehydrogenase activity of human liver alcohol dehydrogenase is specific to γ-subunits [J]. Biochemistry 1988, 27: 4284-4288.
    [5] 朱孔锡,阎明.乙醇脱氢酶乙醛脱氢酶基因多态性与酒精性肝病关系的研究现状[J].临床肝胆病杂志,2003,19(5):273-275.
    [6] Kotagiri S, Edenberg HJ. Regulation of human alcohol dehydrogenase gene ADH7: importance of an AP-1 site DNA [J]. Cell Biol 1998, 17: 583-590.
    [7] Lieber CS. Ethanol metabolism, cirrhosis and alcoholism [J]. Clin Chim Acta, 1997, 257(1): 59-84.
    [8] Jornvall H, Hoog JO, Persson B. SDR and MDR: Completed genome sequences show these protein families to be large, of old origin, and of complex nature [J]. FEBS Lett 1999, 445: 261-264.
    [9] Lee SL, Hoog JO, Yin SJ. Functionality of allelic variations in. human alcohol dehydrogenase gene family: assessment of a functional window for protection against alcoholism [J]. Pharmacogenetics 2004, 14: 725-732.
    [10] Jungermann K, Kietzmann T. Zonation of parenchymal and nonparenchymal metabolism in liver [J]. Annu Rev Nutr 1996, 16: 179-203.
    [11] Maly IP, Toranelli M, Sasse D. Distribution of alcohol dehydrogenase isoenzymes in the human liver acinus [J]. Histochem Cell Biol 1999, 111: 391-397.
    [12] Dannenberg LO, Chen H J, Tian H, et al. Differential regulation of the alcohol dehydrogenase 1B (ADH1B) and ADHIC genes by DNA methylation and histone deacetylation [J]. Alcohol Clin Exp Res 2006, 30: 928-937.
    [13] Gibbons BJ and Hurley TD. Structure of three class Ⅰ human alcohol dehydrogenases complexed with isoenzyme specific formamide inhibitors [J]. Biochemistry 2004, 43: 12555-12562.
    [14] Holford NHG. Clinical pharmacokinetics of ethanol [J]. Clin Pharmacokinet 1987, 13: 273-92.
    [15] Eckardt MJ, File SE, Gessa GL, et al. Effects of moderate alcohol consumption on the central nervous system [J]. Alcohol Clin Exp Res 1998, 22: 998-1007.
    [16] Han CL, Liao CS, Wu CW, et al. Contribution to first-pass metabolism of ethanol and inhibition by ethanol for retinol oxidation in human alcohol dehydrogenase family. Implications for etiology of fetal alcohol syndrome and alcohol-related diseases [J]. Eur J Biochem 1998, 254: 25-31.
    [17] Hoog JO, Hedberg J J, Stromberg P, et al. Mammalian alcohol dehydrogenase-functional and structural implications [J]. J Biomed Sci 2001, 8: 71-76.
    [18] McCarver DG. ADH2 and CYP2E1 genetic polymorphisms: risk factors for alcohol-related birth defects [J]. Drug Metab Dispos 2001, 29: 562-565.
    [19] Hoog JO. Cloning and characterization of a novel rat alcohol dehydrogenase of class Ⅱ type [J]. FEBS letters 1995, 368(3): 445-448.
    [20] Boleda MD, Saubi N, Farres J, et al. Physiological substrates for rat alcohol dehydrogenase classes: Aldehydes of lipid peroxidation, omega-hydroxyfatty acids, and retinoids [J]. Arch Biochem Biophys 1993, 307: 85-90.
    [21] Schindler JF, Berst KB, Plapp BV. Inhibition of human alcohol dehydrogenase by formamides [J]. J Med Chem 1998, 41: 1696-1701.
    [22] Hurley, TD and Bosron, WF. Human alcohol dehydrogenase: Dependence of secondary alcohol oxidation on the amino acids at positions 93 and 94 [J]. Biochem Biophys Res 1992, 183: 93-99.
    [23] Stone CL, Li TK, Bosron WF. Stereospecific oxidation of secondary alcohols by human alcohol dehydrogenases [J]. J Biol Chem 1989, 264: 11112-11116.
    [24] Niederhut MS, Gibbons BJ, Perez-Miller S, et al. Three-dimensional structures of the three human class Ⅰ alcohol dehydrogenases [J]. Protein Sci 2001, 10(4): 697-706.
    [25] Davis GJ, Bosron WF, Stone CL, et al. X-ray structure of human beta3beta3 alcohol dehydrogenase. The contribution of ionic interactions to coenzyme binding [J]. J Biol Chem 1996, 271: 17057-17061.
    [26] Broch M, Crosas B, Hjelmqvist L, et al. Genetic polymorphism of alcohol dehydrogenase in Europeans: The ADH2*2 allele decreases the risk for alcoholism and is associated with ADH3*1[J]. Hepatology 2000, 31: 984-989.
    [27] Plapp BV, Berst KB. Specificity of human alcohol dehydrogenase 1C*2 (gamma2gamma2) for steroids and simulation of the uncompetitive inhibition of ethanol metabolism [J]. Chem Biol Interact 2003, 143-144: 183-193.
    [28] Svensson S, Stromberg P, Sandalova T, et al. Class Ⅱ alcohol dehydrogenase (ADH2)-adding the structure [J]. Chem Biol Interact 2001, 130-132(1-3): 339-350.
    [29] Lee SL, Wang MF, Lee AI, et al. The metabolic role of human ADH3 functioning as ethanol dehydrogenase [J]. FEBS Lett 2003, 544: 143-147.
    [30] Hoog J, Brandt M, Hedberg J J, et al. Mammalian alcohol dehydrogenase of higher classes: analyses of human ADH5 and rat ADH6 [J]. Chem Biol Interact 2001, 130-132: 395-404.
    [31] Zgombic-Knight M, Foglio MH, Duester G. Genomic structure and expression of the ADH7 gene encoding human class Ⅳ alcohol dehydrogenase, the form most efficient for retinol metabolism in vitro [J]. J Biol Chem 1995, 270(9): 4305-4311.
    [32] Yasunami M, Chen CS, Yoshida A. A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme [J]. Proc Natl Acad Sci USA 1991, 88: 7610-7614.
    [33] Stamatoyannopolos G, Chen S, Fukui M. Liver alcohol-dehydrogenase in Japanese: high population frequency of atypical form and its possible role in alcohol sensitivity [J]. Am J Hum Genet 1975, 27: 789-796.
    [34] Lieber CS, Jones DP, Losowsky MS, et al. Interrelation of uric acid and ethanol metabolism in man [J]. J Clin Invest 1962, 41: 1863-1870.
    [35] Waluga M, Hartleb M. Alcoholic liver disease [J]. Wiad Lek 2003, 56(1-2): 61-70.
    [36] Lieber CS. Alcohol and the liver: 1994 update [J]. Gastroenterology 1994, 106(4): 1085-1105.
    [37] Zintzaras E, Stefanidis I, Santos M, et al. Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease [J]? Hepatology 2006, 43(2): 352-361.
    [1] Han CL, Liao CS, Wu CW, et al. Contribution to first-pass metabolism of ethanol and inhibition by ethanol for retinol oxidation in human alcohol dehydrogenase family. Implications for etiology of fetal alcohol syndrome and alcohol-related diseases [J]. Eur J Biochem 1998, 254:25-31.
    [2] Stamatoyannopolos G, Chen S, Fukui M. Liver alcohol-dehydrogenase in Japanese: high population frequency of atypical form and its possible role in alcohol sensitivity [J]. Am J Hum Genet 1975, 27: 789-796.
    [3] Gibbons BJ, Hurley TD. Structure of three class Ⅰ human alcohol dehydrogenases complexed with isoenzyme specific formamide inhibitors [J]. Biochemistry 2004, 43: 12555-12562.
    [4] Duester G, Farres J, Felder M, et al. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family[J]. Biochem Pharmacol 1999, 58: 389-395.
    [5] Ramchandani VA, Bosron WF, Li TK. Research advances in ethanol metabolism [J]. Pathol Biol 2001, 49: 676-682.
    [6] McCarver DG. ADH2 and CYP2E1 genetic polymorphisms: risk factors for alcohol-related birth defects [J]. Drug Metab Dispos 2001, 29: 562-565.
    [7] Dieffenbach CW, Bveksler GS. PCR Primer: a Laboratory Manual (PCR 技术实验指南,黄培堂等译)2003,科学出版社.
    [8] 李爱丽,姜涛,马峙英等.提高PCR产物的几种有效方法[J].生物技术通报2003,2:33-35.
    [9] 王友如.CaCl_2浓度对感受态细胞转化效率的影响[J].湖北师范学院学报:自然科学版2006,3:30-32.
    [10] 涂知明,陈明洁,何光源等.三种大肠杆菌高效感受态的制备及转化[J].华中科技大学学报:自然科学版2006,4:112-115.
    [11] 吴海燕,谢应桂,何雄斌等.快速准确制备大肠杆菌高效感受态细胞中有关OD600值的探讨[J].湘南学院学报:医学版2006,3:13-15.
    [12] Sam B, Rook J, Russell DW. Molecular Cloning: A Laboratory Manual. 2003, Cold Spring Habor Lab (CSHL) Press.
    [13] 李建武,余瑞元,袁明秀等.生物化学实验原理与方法,2000,北京大学出版社.
    [14] 罗元明,罗规民等.单链抗体2F3表达条件的优化及其提纯和性质研究[J].生物工程学报2002,18(1):74-78.
    [15] Lee KH, Kim HS, Jeong HS, et al. Chaperonin GroESL mediates the protein folding of human liver mitochondrial aldehyde dehydrogenase in Escherichia coil [J]. Biochem Biophys Res 2002, 298(2):216-224.
    [16] Strandberg L, Enfors S O. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli [J]. Appl Environ Microbiol 1991, 57(6): 1669-1674.
    [17] 徐祥,吕凤林,胡承香等.人过敏毒素C5a反义cDNA的克隆、表达和拮抗作用[J].中国生物化学与分子生物学报2003,19(1):53-59.
    [18] 冯小黎.重组包涵体蛋白质的折叠复性[J].生物化学与生物物理进展2001,28(4):482-485.
    [19] 高永贵,关怡新等.包涵体蛋白的变复性研究[J].科技通报2003,19(1):10-15.
    [20] Don RH, Cox PT, Wainwright BJ, et al. "Touchdown" PCR to circumvent spurious priming during gene amplification [J]. Nucl Acids Res 1991, 19(14): 4008.
    [21] D'Aquila RT, Bechtel LJ, Videler JA, et al. Maximizing sensitivity and specificity of PCR by preamplification heating [J]. Nucleic Acids Res 1991, 19: 3749.
    [22] Erlich HA. Recent advances in the polymerase chain reaction [J]. Science 1991, 252: 1643-1651.
    [23] Muilis KB. The polymerase chain reaction in an anemic mode: how to avoid cold oligodeoxyribonuclear fusion [J]. PCR Methods Appl 1991, 1:1-4.
    [24] 吉清,何凤田.包涵体复性的研究进展[J].国外医学:临床生物化学与检验学分册 2004,25(6):516-518.
    [25] De-Bernardez-Clark E, Schwarz E, Rudolph R. Inhibition of aggregation side reactions during in vitro protein folding [J]. Methods Enzymol 1999, 309: 217-236.
    [26] Eiima D, Watanabe M, Sato Y, et al. High yield refolding and purification process for recombinant human interleukin-6 expressed in Escherichia coli [J]. Biotechnol Bioeng 1999, 62(3): 301-310.
    [27] Walsh RC, Koukoulas I, Garnham A, et al. Exercise increases serum HSP72 in humans [J]. Cell Stress Chaperones 2001, 6: 386-393.
    [28] Chandrashekar R, Curtis KC, Rawot BW, et al. Molecular cloning and characterization of a recombinant Histoplasma capsulatum antigen for antibody-based diagnosis of human histoplasmosis [J]. J Clin Microbiol 1997, 35: 1071-1076.
    [29] Carlson JD, Yarmush M L. Antibody assisted protein refolding [J]. Biotechnology(NY) 1992 10(1): 86-91.
    [30] Shi Y, Jiang C, Chen Q, et al. One-step on-column affinity refolding purification and functional analysis of recombinant human VDAC1 [J]. Biochem Biophys Res Commun 2003, 303(2): 475-482.
    [31] Ito M, Nagata K, Kato Y, et al. Expression, oxidative refolding, and characterization of six-histidine-tagged recombinant human LECT2, a 16 kDa chemotactic protein with three disulfide bonds [J]. Protein Expr Purif 2003, 27(2): 272-278.
    [32] Bourot S, Sire O, Trautwetter A, et al. Glycine betaineassisted protein folding in a lysA mutant of Escherichia coli [J]. J Biol Chem 2000, 275(2): 1050-1056.
    Wenna Bao, Haifeng Pan, Min Lu, Yuan Ni, Rui Zhang, Xingguo Gong. The apoptotic effect of sarsasapogenin from Anemarrhena asphodeloides on HepG2 human hepatoma cells. Cell Biology International 2007, 31(9): 887-892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700