人工经济林核桃、枣树木材性质及其变异规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies upon Wood Properties and Variation of Walnut and Jujube Wood From Artificial Non-timber Plantation
  • 作者:虞华强
  • 论文级别:硕士
  • 学科专业名称:木材科学与技术
  • 学位年度:2001
  • 导师:刘盛全
  • 学科代码:082902
  • 学位授予单位:安徽农业大学
  • 论文提交日期:2001-05-01
摘要
粗放和集约(两种栽培措施下的人工经济林核桃试材采集于山西
    省汾阳市核桃种子园。人工经济林枣木试材采集于山西省太原市晋
    源区、万柏林区。
     一、核桃
     1、两种栽培措施下人工经济林核桃各种材性的比较
     集约栽培措施下核桃的的抗弯强度,抗弯弹性模量,顺纹抗压
    强度,全干干缩率皆比粗放栽培措施下的小;集约栽培措施下的气
    干密度、基本密度均较粗放的大;两种栽培措施下的气干干缩率差
    异不大。根据木材物理力学性质分级标准,核桃木材的各物理力学
    性质中等或偏小。回归分析表明,核桃木材抗弯强度、抗弯弹性模
    量、顺纹抗压强度与密度之间、各力学性质之间均成较强的正相关
    性。
     集约栽培措施下胸高处的纤维长度、宽度、壁厚、长宽比和壁
    腔比均比粗放的小。集约栽培措施下胸高处的导管、木射线、轴向
    薄壁组织比量,微纤丝角和木射线高度均比粗放栽培措施下的小;
    但纤维比量、木射线宽度前者相对较大。
     2、两种栽培措施下人工经济林核桃材性的径向变异规律
     纤维长度、宽度、壁厚、长宽比、木射线高度和宽度的径向变
    异规律皆相似:从髓心向外,先有适度的增大,到一定年龄后在一
    定范围内上下波动。其中纤维长度(y)可通过生长轮年龄(x)进行早期
    预测,模型为:y=a+b Ln(x)。
     纤维组织比量从髓心向外先略有下降,后呈递增趋势,到第9
    年左右增速较缓,后变化不大;木射线比量、导管比量的径向变异
    规律相似,即由髓心向外,开始增大,后变化不大或略有下降。轴
    向薄壁组织比量的径向变异规律不明显。
     微纤丝角的径向变化不大。基本密度(除h4外)从髓心向树皮
    先增大,后变化不大。年轮宽度从髓心向树皮先增大,到最大值后
    又减小,以后趋于平稳。
     3、两种栽培措施下人工经济林核桃材性的纵向变异规律
    
    
     集约栽培措施下的人工经济林核桃木材的纤维比量从0.3m向上
    有减小的趋势,各个高度之间差异在0刀5水平显著;其它各种特征
    的纵向变异不大,方差分析结果不显著。
     粗放栽培措施下人工经济林核桃木材纤维壁厚、壁腔比的纵向
    变异规律均为从0.3m向上先减小,向树梢又增大;基本密度从0.3m
    向上先增大,向树梢又减小。方差分析表明纤维壁厚、壁腔比、基
    本密度在不同高度之间差异均在0.05水平显著;其它各种特征的纵
    向变异不大,方差分析结果不显著。
     4、通过对年轮宽度、基本密度与果实产量等的相关分析,可以
    看到:通过集约栽培措施,培育出结果量高、木材质量好、生长速
    度快的核桃人工经济林是可行的。
     二、枣木
     1、人工经济林枣木的物理力学性质
     根据木材物理力学性质分级标准,人工经济林枣树木材气干密
    度、基本密度、抗弯强度、顺纹抗压强度、气干弦向干缩率等指标
    均较高,抗弯弹性模量、气干径向干缩率和全干径向及弦向干缩率
    等指标中等。回归分析表明,枣树木材的抗弯强度、抗弯弹性模量、
    顺纹抗压强度与密度之间、各力学性质之间均成较强的正相关性。
     2、人工经济林枣木材性的径向变异规律
     纤维长度从髓心向外逐渐增加,到十五年左右达到最大值,后
    向树皮方向减小;纤维宽度、壁厚、木射线高度和宽度径向变异规
    律不明显;纤维腔径从髓心向外有先减小后增大的趋势。
     纤维比量、木射线比量从髓心向树皮有微弱的下降的趋势,导
    管组织比量从髓心向外,先略有上升,后上下波动。
     微纤丝角自髓心向外,先减小,到第20年左右后微弱上升,且
    上下波动。
     基本密度自髓心到树皮以直线或曲线形式降低,属于Pashinlll
    型。基本密度O)可通过生长轮年龄k)进行早期预测,模型为:
    y-8X2+bX+C。
     3、人工经济林枣木材性的纵向变异规律
     纤维壁厚、纤维壁腔比、基本密度的纵向变异从0.3m向上均有
     1且
    
    减小的趋势。导管比量从0.3m向上先减小,后增大。方差分析表明
    纤维壁厚、壁腔比、导管比量、基本密度在不同高度之间差异均在
    0刀1 水平显著;其它各种特征的纵向变异不大,方差分析结果不显
    著。
     4人工经济林枣木幼龄材与成熟材的划分
     根据纤维长度和基本密度的径向变异特征,确定枣木幼龄期为
    十五年左右。枣木胸高处幼龄材与成熟材相比,年轮宽度、纤维长
    度、长宽比、基本密度均较大,方差分析表明其差异均在0.05水平
    显著,其它各项指标之间的差异均不显著。
The walnut wood samples were got in Fen yang Walnut Seed Garden of Shanxi province in two sivcultures. The walnut trees cultivated with fertilization, graft and shear measures in the first siviculture, but in the second not .The jujube wood samples were got in Wanbo forest district of Jinyuan ward,Taiyuan city, Shanxi Province. The results were as following: 1. Walnut
    a) The comparison of walnut wood properties in two sivcultures
    The average of each property of the walnut in the first siviculture such as the maximum bending strength, modulus of elasticity in static bending, the compressive strength parallel to the grain, tangential shrinkage rate from wet to air-dry, shrinkage rate (tangential, radial, of volume) from wet to oven-dry is smaller than that in the second one, but the average of shrinkage rate (radial, of volume) from wet to air-dry, air- dry density, basic density is bigger. All the mechanical strength properties are medium or low in terms of the wood physic-mechanical classifying criteria. Regressive analysis shows that each physic-mechanical property positively related to density and the mechanical properties positively related to each other.
    The average value of such properties as each fiber formal feature except lumen, micro- fibril angle, ray height, and the tissue proportion (vessel, ray, axial parenchyma) of the walnut in the second siviculture is bigger than that in the first one, but the tissue proportion of fiber, ray
    
    
    
    
    width, basic density is smaller.
    b) The radial variation laws of walnut wood properties in two sivcultures
    The fiber length, length-diameter ratio, width, wall thickness, ray height and width possess the similar radial variation pattern: increase moderately firstly, then fluctuate from pith to bark, the radial variation pattern of the fiber length follows Panshinllor Panshinlll, and fiber length(y) could be predicted by the model: y=a+b Ln(x).
    From the pith to the bark, the proportion of fiber decreases moderately firstly, then increase, and after the ninth growth -ring fluctuate, but vessel and ray proportion follow an opposite pattern. Axial parenchyma varies randomly from pith to bark in two sivicultures.
    Microfibril angle varies a little from pith to bark in two sivicultures.
    Growth - ring width increases moderately firstly, then decreases, and then varies a little from pith to bark.
    c) The axial variation laws of walnut wood properties in two sivcultures
    In the siviculture with fertilization, graft and shear measures, fiber proportion of the walnut wood declines from stump to the top, and differs significantly on 0.05 level among different stem-heights. All the other properties vary a little among different stem-heights.
    In the siviculture without such measures, the fiber wall thickness, fiber wall-lumen ratio possess the similar axial variation pattern, decrease first, then increase from the bottom to the top; basic density increase first, then decrease from the bottom to the top. The analysis of variance shows that the fiber wall thickness, fiber wall-lumen ratio, basic density differ significantly on 0.05 level among different heights, and all the other r properties do not differ significantly among different heights.
    d) Regressive analysis shows that it is feasible to cultivate fruitful,
    
    
    
    
    fine-wood, fast-growth walnut artificial plantation with fertilization, graft and shear measures. 2. Jujube
    a) The physic-mechanical properties of jujube Regressive analysis shows that each physic-mechanical property positively related to density and the mechanical properties positively related to each other. The maximum bending strength, the compressive strength parallel to the grain, tangential shrinkage rate from wet to air-dry are high, and modulus of elasticity in static bending, radial shrinkage rate from wet to air-dry, shrinkage rate (tangential, radial) from wet to oven-dry are medium in terms of the wood physic-mechanical classifying criteria.
    b) The radial variation laws of jujube wood properties
    The radial variation p
引文
1.管宁,姜笑梅.文小明.木材材性株内径向变异模式初探 Ⅰ.林业科学.1996,7(4):366-373
    2.柯病凡,江泽慧,王传贵等.杉木速生与非速生材的木材物理力学性质.世界林业研究专集.1994,Vol.7:322-330
    3.骆秀琴,管宁,张寿槐等.32个杉木无性系木材密度和力学性质的变异.林业科学研究,1994,7 (3):259-261
    4.柯病凡,江泽慧,王传贵等.杉木不同尺寸试件物理力学性质的研究.世界林业研究专集,1994,Vol.7:311-318
    5.姜笑梅,张立非,张绮纹等.36个美洲黑杨无性系基本材性遗传变异的研究.林业科学研究.1994,7(3):253-258
    6.周志春,傅玉狮,吴天林.马尾松生长和材性的地理遗传变异及最优种源区的划定.林业科学研究,1993,6(5):556-563
    7.鲍甫成,江泽慧主编.短周期工业用材林木材性质研究.世界林业研究专辑.1995
    8.栾树杰.郭德荣,王书光.红松小拉伸强度与其各项指标的相关性,生长轮材质分析之四.沈阳农业大学学报,1990,21(1):60-66
    9.徐有明.油松木材基本密度的变异.华中农业大学学报,1991,10(3):281-285
    10.王传贵.柯曙华.大别山五针松木材结构与材性.南京林业大学学报,1997.(3):51-54
    11.汪佑宏.长江中下游滩地枫杨材性研究.安徽农业大学硕士学位论文,1998
    12.徐斌.不同林分陈山红心杉材性及其变异的比较研究.安徽农业大学硕士学位论文.1999
    13.成俊卿.杨家驹.刘鹏编著.中国木材志.中国林业出版社.1992
    14.中国林业科学研究院木材工业研究所主编.中国主要树种的木材物理力学性质.中国林业出版社,1982
    15.李坚主编.木材科学.东北林业大学出版社,1994
    16.唐耀编著.云南热带材及亚热带材.科学出版社,1973
    17.成俊卿,李侬,孙成志等编著.中国热带及亚热带木材,科学出版社.1980
    
    
    18.罗良才编著.云南经济木材志,云南人民出版社,1989
    19.柯病凡主编.中条山木材志.中国林业出版社,1994
    20.鲍甫成,江泽慧主编.中国主要人工林树种木材性质.中国林业出版社,1998
    21.周崟,姜笑梅编著.中国裸子植物材的木材解剖学和超微构造.中国林业出版社,1994
    22.刘鹏主编.非洲热带木材.中国林业出版社,1996
    23.姜笑梅主编.拉丁美洲热带木材.中国林业出版社,1999
    24.卫广杨,唐汝明,江泽慧等编著.东南亚木材识别与用途.安徽科学技术出版社,1988
    25.姜笑梅主编.非洲木材.中国林业出版社,1999
    26.徐从建。中条山山杨木材解剖、物理力学性质及其变异的研究.安徽农学院学报,1986,(1):45-58
    27.王章荣.马尾松木材性状在林分间和林分内个体间的差异.南京林业大学学报,1988,(2):35-38
    28.段新芳.陕西兰考泡桐全树木材构造和材性及其变异的研究文献综述,1991
    29.崔永志,吴玉章,刘一星等.莱氏切片法测定木材管胞长度.东北林业大学学报,1996,24(6):102-104
    30.郭明辉,潘月洁,陈广胜.不同海拔高度白桦木材解剖特征径向变异.东北林业大学学报,2000,28(4):25-29
    31.腰希申著.扫描电子显微镜中国主要木材构造.中国林业出版社,1998,8
    32.徐柏生,陈敏忠,周世国.木材超薄切片及超微结构的初步研究.南京林业大学学报,1995,19(3):94-96
    33.李坚,刘一星,崔永志等.人工林杉木幼龄材与成熟材的界定及材质早期预测,东北林业大学学报,1999,27(4):13-19
    34.阮锡根、尹思慈、孙成志.应用x射线衍射—(002)衍射弧法—测定木材纤维次生壁的微纤丝角.林业科学,1982,18 (1):64—67
    35.尹思慈.应用偏光显微镜测定木材纤维胞壁的微纤丝角。林业科学.1986.22(2):209~212
    36.阮锡根,潘惠新.x射线木材密度测定.林业科学,1995,31 (3):260-267
    37.管宁,曲竞赛,王艳君.MWMY型木材微密度测定仪的研制.木材工业,1995,19 (1):19—23
    
    
    38.秦特夫.酸雨及大气污染对木材性质影响的研究,木材化学性质与基本密度部分.林业科学,1995,31 (6):528—535
    39.柴修武,陆熙娴,相亚明等.林地施肥对Ⅰ-214杨木材性质的影响.林业科学研究,1991,4(3):297-301
    40.江泽慧.大别山五针松在不同立地条件下木材构造及材性的研究.安徽农学院学报,1985,1:51-57
    41.柯病凡.安徽习见树木木材物理性质的研究.安徽农学院森林利用教研组研究报告第六号,1956
    42.汀秉全编著.陕西木材.陕西人民出版社.1979
    43.周崟.李源哲编著.中国胶合板用材树种及其性质.中国林业出版社,1985
    44.卫广扬主编.安徽木材识别与用途.安徽科学技术出版社,1982
    45.谢福惠,牟继平.胡桃科各属的木材解剖.广西农业大学学报,1995,14(4):321-324
    46.张淑莲,左永忠.枣树枝条解剖特点及提高插条生根率的研究.湖北农大学报,1994,17 (3):19-22
    47.朱丽华,张毅平主编.核桃高产栽培.金盾出版社,1993,102
    48.王华田编著.经济林培育学.中国林业出版社,1997,12
    49.中国林业局科技司.面向二十一世纪的林业发展战略.中国林业出版社,1999
    50.国家技术监督局.中华人民共和国国家标准(GB1927-1943-91).木材物理力学性质试验方法.1991
    51.卫广扬.木材切片制作方法(讲义),1985
    52.李正理.植物切片技术(第二版).科学出版社(北京).1991
    53.邵卓平.湿地松木材物理力学性质相关关系的研究,2000.27(1):64-66
    54.徐有明.中条山油松木材解剖特征、物理力学性质的变异及其相互关系的研究.安徽农业大学.硕士学位论文,1988
    55.陈佩蓉,屈维均,何福望编著.制浆造纸实验.轻工业出版社,1990
    56.刘盛全.长江滩地杨树人工林木材性质与培育及利用的关系研究.中国林业科学研究院.博士学位论文,1997
    57.刘盛全.剌楸木材解剖特征、物理力学性质的变异及其相互关系的研究.安徽农业大学.硕士学位论文.1992
    58.费本华.铜钱树木材解剖特征、物理力学性质的变异及其相互关系的研究.安徽农业大学.硕士学位论文,1992
    
    
    59.刘杏娥.人工经济林板栗木材材性及变异规律研究.安徽农业大学.硕士学位论文,2000
    60.成俊卿主编.木材学.中国林业出版社,1985
    61.任海青.三角枫材性变异研究.安徽农学院.硕士学位论文,1993
    62.广东省林科所.木麻黄木材定量解剖,林业科学,1978(3):52-57
    63.徐永吉主编.木材学.南京林业大学木材学教研室,1994
    64.孙成志,尹思慈.十种国产针叶树管胞次生壁微纤丝角的测定.林业科学,1980.16(4):302~303
    65.王婉华等.湿地松、火炬松和马尾松幼龄材构造特征的研究.南京林业大学学报,1991,15(4):89~92
    66.徐有明.油松木材管胞纤丝角的变异及其与解剖、抗拉强度和抗弯强度的关系.安徽农学院学报,1989,16(2):141~151
    67.渡边治人著,张勤丽等译.木材应用基础.上海科学技术出版社,1986
    68.郭德荣.人工林红松纤丝角变异与管胞长度和拉伸强度的关系.东北林业大学学报,1982,12(2):39-46
    69.张顺泰.人工林油松木材管胞长度与纤丝角的变异性和相关性研究.山东农业大学学报,1988,19(3):53-60
    70.李火根,黄敏仁,阮锡根等.美洲黑杨新无性系木材细胞次生壁S_2层微纤丝角株内变异的初步研究.西北林学院学报,1997,12(1):61-65
    71.陆文达,郭莉,刘一星等.生长过程中湿地松木材微纤丝角的变异研究.世界林业研究专集,1994,Vol.7:292-300
    72.杨家驹,卢鸿俊.木材密度力学性质及其换算关系.林业科学,1997,11(1):35-38
    73.徐从建.中条山山杨木材解剖物理力学性质及其变异的研究.安徽农学院学报,1986,1:45-58
    74.柴修武,吴荷英.人工林和天然林长白落叶松幼龄期与成熟期木材构造比较研究.世界林业研究专集,1994,Vol.7:35-49
    75.陆文达,刘一星,崔永志等.湿地松幼龄与成熟材划分及材质早期预测的初步研究.世界林业研究专集,1994,Vol.7:282-291
    76.蔡少松.广东湛江热带松、南亚松、湿地松和短叶松材性的初步研究.木材工业,1988.12 (2):1-6
    77.郭德荣,杨彩民,林彦.人工林红松纤丝角变异与管胞长度和拉伸强度的关系.东北林学院学报,1982,2:40-48
    
    
    78.成俊卿.泡桐属木材的性质和用途的研究.林业科学.1983.19(1):57-63
    79.罗良才,徐莲芳.云南松木材物理力学性质的研究.林业科学,1981,3:238-246
    80.尹思慈.宋章,吴达期.长苍铁杉木材物理力学性质的研究.南京林学院学报,1984,2:58-65
    81. Panshin, A, J and Carl.de Zeeuw. Textbook of wood technology, 4th edition. McGraw-Hill Book Company, 1980, 43 (1): 1-2.
    82. Barefoot, A. C. et al. Identification of modern and tertiary woods. Clarendon Press. Oxford. 1982
    83. Elliot. G. K. Wood density in conifers. FOR. BUR. OXFORD:TECH. Commune. No.8, 1970
    84. Kollmann, F. P. et al. Principles of wood science and technology I-Solid Wood. Sprenger-Verlag, 1968
    85. Volkert. E. Unterschungen tiber Grosse und Verteilung des Raumgewichts in Nadelholzst(?)mmen. Scbr Reihc Akad. Dtsch. Forstmiss. 1941, 2:1-144
    86. Bisset, I. J. and H. E. Dadswell. The variation of fiber length within one tree of Eucalyptus regnans. Australian Forest, 1949, 8:86-96
    87. Pillow, M. Y. and B. Z. Terrell. Patterns of variation in fibril angle in loblolly pine, Rep. U. S. For. Prod. Lab. Madison. 1953
    88. Rendle, B. J. et al. The effect of growth on the density of softwoods. 1957
    89. Hiller, C. H. Estimating size of the fibril angle in latewood tracheid of slash pine. Journal Forester, 1964, 62(4): 249-252
    90. Fukazawa. K. Juvenile wood of hardwoods judged by density variation. IAWA. 1984, 5(1): 65-73
    91. Zobel. B. J and J. P. Van Buijtenen. Wood variation-its causes and control. Springer-Verlag, 1989
    92. Olson, J. R. et al. Specific gravity, fiber length, and extractive content of young paulownia, Wood and Fiber, 1985,17(4): 428-438
    93. Stringer. J. W. et al. Radical and vertical variation in stem properties of juvenile black locust(Robinia peseusoacacia). Wood and Fiber, 1987, 19(1): 59-67
    
    
    94.Raymond,C.A.澳大利亚塔斯马尼亚蓝桉和光亮桉人工林木材基本密度的树内变异.New Forestry,1998,15(3):205-221
    95. Robison, T. L. et al. Specific gravity and viber length variation in a European black alder provenance study. Wood and Fiber, 1987, 19 (3): 225-232
    96. Forest Products Research Laboratory. The preparation of wood for microscopic examination -Leaflet No.40. USDA Forest Service, Washington, DC. October, 1946
    97.Stehr,M.紫外激光切除法:制备显微镜试样的一种改进的方法.Holzforschrng,1998,52(1):1-6
    98.Chun,Ye.利用显微透射椭圆计法确定S2层纤丝角与纤维壁厚.Tappi,1997,80(6):181-190
    99.Ona,T.通过傅立叶变换光谱测定木材的基本密度.J.of Wood Chem.Technol,1998,18(3):367-379
    100.Divos,F.应用γ射线反向散射的现场木材密度测定仪.Holz Roh-w,1996,54(4):279-281
    101.中村升.立木材质的超声波测定及立木材质图.东京大学农学部演习林报告,1996,(96):125-135
    102. Yang, K. C. and C. Benson. Ultra structure of pits in Pinus banksiana Lamb. Wood Science and Technology. Springer-Verlag, 1997, (31):15 3-169
    103.Richter,H.G.木材密度结构和弹性对胡桃木冲击负荷强度的影响.Drovarsky vyskum,1996,41(1):43-57
    104.Le Dizès,S.模拟胡桃幼树生长过程中结构-功能关系的模型.Silva Fenn,1997,31(3):313-318
    105.Sinoquet,H.用数字化技术测定胡桃的三维结构.Silva Fenn,1997,31(3):265-273
    106.Burtin,P.胡桃木材天然着色过程随边材与心材过渡区积累的天然酚化合物而变化.Trees,1998,12(5):258-264
    107. Wood Handbook. U. S. Forest Service. Agri. Handbook, 1955:72
    108. Leclecq, A. Relationships between beech wood anatomy and its physic-mechanical properties. IAWA Bull, 1980, 1:65-71
    
    
    109. Ifju. G. Quantitative wood anatomy certain geometrical-statistical relationships. Wood and Fiber, 1983,15(4) : 326-355
    110. Foulger, A. N. et al. Stem anatomy of 30-year-old yellow-poplar. Forest Science, 1975,21:23-33.
    111. Senft. J. F et al. Measuring microfibrile angle using light microscopy. Wood and Fiber. 1985, 17(4) , 564-567.
    112. Leney, L. 1981: A technique for measuring fibrile angle using polarized light. Wood and Fiber, 1985,13(1) : 13-16
    113. Meylan, B. A. et al. Microfibril angle as a parameter in timber quantity assessment. For prod J, 1969,19(6) : 30-33
    114. Meylan, B.A: Reaction wood in Psendowintera Colorata-A vessel-less dicotyledon, 1981
    115. Cave,I.D. and J.C.Walker. Stiffness of wood in fast-grown softwood s: the Influence of microfibril angle. Forest Prod. J. 1994. 44:43-48
    116. Cave, I.D. x-ray Measurement of microfibril angle in wood. Forest. Prod. J. 1996,16:37-42
    117. Prud' homme, R.E. and J. Noah. Determination of fibril angle distribution in wood fibers: A comparison between the x-ray diffraction and the polarized microscope methods. Wood and Fiber, 1975. 6:282-289
    118. Danborg. F. The effect of silvicultural practice on the amount and quality of juvenile wood in Norway spruce. Reports From Section ofForestry (Denmark), 1992,29:1-12
    119. Jain. K.K. and M.K.Seth. Intra-increment variation in specific gravity of wood in blue pine. Wood Science and Technology, 1979, 13:239-248
    120. Taylor. F.W. Property variation within stems of selected hardwoods growing in the Mid-South. Wood and Fiber, 1979,11 (3) :153-165
    121. Bhat, K.M.et al. Fiber length variation in stem and branches of eleven tropical hardwoods. IAWA, 1989,9(1) : 35-40
    122. Jeffrey. W.et al. Radical and vertical variation in stem properties of juvenile black locust. Wood and Fiber, 1987,1:60-63
    123. Yanchuk. A.D. et al. Variation and habitability of wood density and
    
    fiber length of trembling aspen in Alberta, Candada. Silvae Genetica, 1984. 33(1) :11-16
    124. Paraskevopoulu, A. H. Variation of wood structure and properties of cupressus semper virens var horizontals in natural Populations in Greece, 1991
    125. Chikamai, B.N.Variation in the wood quality of pinus patula grown in Kenya East. African Agriculture and Forestry, 1987, 52 (3)
    126. Robisin, T.L. et al. Specific gravity and fiber length variation in a European black alder (Alnus Glutinosa) provenance Study. Wood and Fiber, 1987. 19(3) : 225-232.
    127. Liska. J.A. Research progress on the relationships between density and strength. Proc.the symposium on density:A key to wood quality,. USDA Forest Service, Forest Prod.Lab.,Madison,WI. 1965:89-97
    128. Roos, K.D. et al. The relationship between selected mechanical properties and age in quaking ospen. For prod, 1990,30 (8) : 54-57
    129. Marcella, Szymanski .et al. Loblolly pine province variation in age of transition from juvenile to mature wood specific gravity. For. Science, 1991,37: 160-174
    130. Keith C.T.et al. Basic wood properties of European larch from fast-growth plantations in eastern Canada. J.of For. Research, 1988, 18(10) :9-15
    131. Loo, J. A. et al. Genetic variation in the time of transition from juvenile to mature wood in loblolly pine. Silvae Genetica, 1985,33(1) : 11-16.
    132. Bendtsen, B.A. et al. Mechanical and anatomical properties in individual growth rings of plantation-grown eastern cotton-wood and loblolly pine. Wood and Fiber, 1986,18(1) :23-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700