松属植物rRNA基因的变异模式及其进化生物学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被子植物的rRNA基因已经得到深入研究。二倍体被子植物一般拥有1-4对18S-5.8S-26S rDNA位点和1-2对5S rDNA位点。作为特殊的多基因家族成员,rDNA会受均一化力(homogenizing forces)的作用,通过基因转换、不等交换等机制,形成基因的致同进化(concerted evolution)。长期以来,我们一直认为动植物rDNA致同进化水平很高,各种拷贝的序列几乎完全一致,因此可以直接应用PCR测序的方法进行分子系统学研究。但是在裸子植物中由于研究资料的匮乏,使我们对裸子植物rDNA的变异模式了解甚少。松属植物作为裸子植物的最大类群,它的rDNA变异和进化有何特点、与被子植物是否相同,是这个重要类群的进化研究中目前尚未解决的问题。本文的研究内容从三个方面进行:
     (1)rDNA的染色体定位 目前,松属的18S-5.8S-26S rDNA的染色体定位研究只包括5种植物,其中的3种同时涉及到5S rDNA定位。这些研究结果表明,不同种存在相异的rDNA位点数目,甚至不同的个体的rDNA位点均有变化。其共同点是,18S-5.8S-26S rDNA位点数平均较被子植物多,5S rDNA除Pinus radiata外,在其它种里则与被子植物相似。这种现象是松属或裸子植物的共同特征,亦或是特例呢?有限的研究限制了对裸子植物rDNA的了解。本研究的目的之一就是研究松属植物rDNA的染色体空间分布特征,希望借此了解松属植物间的关系,比较裸子植物和被子植物rDNA在染色体组水平的差异。
     (2)5S rDNA的分子进化 5S rDNA的序列水平的进化研究在松属中尚属空白。5S rDNA在染色体数目上没有显示裸子植物与被子植物的差异,是否意味着松属乃至裸子植物的5S rDNA也同被子植物一样——致同进化完全,序列高度一致呢?利用克隆测序方法对松属植物5S rDNA的研究无疑是有开创性的工作,可以探讨裸子植物的5S rDNA的进化机制和种间关系。
     (3)杂种基因组研究 杂交物种的起源演化是当前生物学研究的热点,通过杂种基因组的研究,可以了解杂种的的基因组构成,组织方式和进化历史,探讨杂交事件对成种过程的影响及意义。这项研究涉及到高山松、云南松和油松。之所以采用这三种植物,因为等位酶、cpDNA和mtDNA证据证明高山松为油松和云南松的自然杂交种。但这些证据不足以反映杂种核基因组的重组特征和构成及其进化规律。我们利用rDNA-FISH、5S rDNA和基因组原位杂交分析三种松树间的基因组关系,为揭示高山松的进化机制和历史提供新的依据。
     本项研究得到以下结果:
     一.rDNA荧光原位杂交(FISH)
     通过对华山松和白皮松两种单维管束亚属植物及油松、云南松、高山松、马尾松和南亚松等五种双维管束亚属植物的18S rDNA与5S rDNA的荧光原位杂交,结果表明:
     (1)裸子植物的18S rDNA位点数目明显多于二倍体被子植物。其中主要位点数目,油松有7对,高山松5对,云南松8对,马尾松10对,南亚松6对,
    
     白皮松3对,华山松10对,平均在7对;另外,部分松树还存在弱位点。无论
     强弱位点都有部分存在于染色体的着丝粒区,除了赤松 (Pinu dens伽raX在其
     它松科植物中并没有发现这种现象。究竟是基因转移的结果或该位点是 18s
     riZNTA的原始起源位置还有待确证。
     (2)SS fi3:NA位点相对变异较小,与被子植物相当。除了华山松 SS d3NA
     有旱对位点,马尾松只有1对位点外,其它松树的SS riZNA位点数目均为2对,
    、并且在双维管柬亚属植物中有一对属于弱位点。
     (3)两种 fi3NA存在不同连锁模式。双维管束亚属植物中,SS与 18s rDNA
     连锁在同一染色体的同一臂或两条臂上。在同一染色体臂时,18s fi3NA在臂的
     远端。单维管束亚属植物的SS与185 d7NA或连锁于同一染色体的同一臂上,
     或分别处于不同染色体。前一情况,SS n3NA位于臂的远端。据此可以说明两个
     亚属的rDNA结构在染色体组水平的很大分化。
     (4)松属植物的关系及高山松核型特征。由于SS与18s n3NA连锁关系的
     不同,可以将单维管束亚属和双维管束亚属分开。各亚属的不同物种可以依据杂
     交位点的多少、位置、信号强弱构成的核型图加以区分,并且构成一定的系统关
     系。杂交起源的高山松在染色体组上,表现出对油松和云南松两亲本不同染色体
     特征的分别继承与重组,并产生独有的特征。其*同源染色体之一 18s rDNA位
     点的缺失,可能是染色体重组的痕迹。
     二.SS if7:NA的序列变异与分子进化
     利用分子克隆和DNA测序分析了油松、云南松、马尾松、白皮松和不同遗
     传背景的高山松居群的SS iLNA基因序列变异及基因进化规律,得到以下主要
     结果:
     (1)SS rDNA的结构特征。双维管束亚属植物长度在 658刁28 hp,白皮松则
     为 49952 hp。长度差异体现在基因间隔区,而基因区极端保守,“基本为
Ribosomal RNA genes (rDNA),a group of tandem repetitive sequence,are well-studied in angiosperms. Usually,1 - 4 pairs of 18S-5.8S-26S rDNA sites and 1-2 pairs of 5S rDNA sites are found in diploid genome of angiosperms. As a special type of multigene family,rDNA undergo concerted evolution by homogenizing forces through processes such as gene conversion,unequal crossing-over. For a long time we assumed strong concerted evolution in rDNAs of various animal and plant species and direct PCR-sequence approach has been widely used in molecular systematic research. However,the variation patterns of rDNA in gymnosperms are little known because of the limited sequence data. In Finns,18S-5.8S-26S rDNA localization were reported for five species,and 5S rDNA sequences were obtained for only three species. Till today there is no report on molecular evolution of 5S rDNA in Pinus. Thus,the rDNA variation pattern and organization in gymnosperm genomes are the primary focus of the present project. The evolutionary implicati
    on of our results for genome structure,gene evolution,and speciation inferences are discussed.
    In this study,fluorescence in situ hybridization (FISH) was used to localize rDNAs on chromosomes in seven Pinus species in order to reveal the rDNA organization. 5S rDNA cloning and sequencing were carried out to analyze the 5S rDNA variation pattern. Genomic in situ hybridization (GISH) was performed for better understanding of genomic relationship among closely relative pines. Among the species selected,P. densata is a putative hybrid between P. tabulaeformis and P. yunnanensis. The analyses of these three types of data in the hybrid and its parents could provide new information on genomic composition and evolutionary mechanisms of the hybrid. The main results are the followings:
    1. rDNA FISH
    Chromosomal localization of 18S and 5S rDNA was carried out for two soft pines (Subgenus Strobus) and five hard pines (Subgenus Pinus) using FISH. The number of major 18S rDNA sites is generally much more than that in angiosperms and varies markedly among pines. There are seven pairs of 18S sites in Pinus tabulaeformis,five in P. desata,eight in P. yunnanensis,10 in P. massoniana,six in P. latteri,three in P. bungeana,and ten for P. armandi. Furthermore,weak signals are found on the centromeres of many chromosomes. Unlike 18S,pines have 1-2 pairs of 5S rDNA sites,except for P. armandi that has four pairs. Each pine could be discriminated by its rDNA FISH karyotype,although most of these pines cannot be distinguished by traditional karyotype analysis.
    The two types of rDNAs has different linkage pattern. In diploxylon pines,18S and 5S rDNA usually locate on the same or opposite arm of the same chromosome. 5S is more adjacent to the centromere if both rDNAs are on the same arm. In haploxylon pines,18S and 5S locate either on the same arm of the same chromosome or on different chromosomes. In the former situation,5S is near the telomere. This pattern shows the clear divergence of the two subgenera. At the same time,the
    
    
    differentiation of rDNA sites on chromosomes among pines correlates well to their phylogenic positions in Pimis reconstructed with other molecular data. P. densata resembles its parents by combining patterns characteristic of each parent as well as shows new features resulting possibly from recombination and genome reorganization.
    2 Heterogeneity and evolution of 5S rDNA
    Pattern of intragenomic and interspecific variation of 5S rDNA hi five pines (including subgenus Strobus and Pinus) were studied through cloning and sequencing multiple 5S rDNA copies The length of 5S rDNA unit is 658-728 bp hi diploxylon pines while 499-521 bp hi the haploxylon P. bungeana. The conversed 120 bp gene region contains an intragenic control box related to the gene tanscription. The loops,identified in the secondary structure,are generally more conserved than stems. However,marked high transition/transversion was found on loop E. This could be caused by the presence of pseudogenes. In the spacer region,elements rel
引文
陈天华,叶志宏,葛颂.1985,马尾松不同海拔群体的核型分析.南京林学院学报,3,132-137
    管中天.1981,四川松杉类植物分布的基本特征.植物分类学报,19:393—407
    李常宝.2000,稻属Oryza officinalis复合体基因组研究——兼论基因组原位杂交的原理和方法.中国科学院植物研究所博士论文
    李林初,钱吉.1993,两种中国特有松属植物核型的研究兼论松属的系统位置云南植物研究,15(1):47-56
    李懋学,张赞平.作物染色体及其研究技术.中国农业出版社,北京
    卢孟柱,Szmidt,A.E.1999,松属线粒体基因序列变异研究.林业科学,35(4):14-20
    牛伟.2001,木根麦冬RNA基因进化的研究.中国科学院植物研究所硕士论文
    石大兴,王米力.1994,中国西部六种特有松科植物核型及细胞地理学研究.四川农业大学学报12(1):84-91
    王文奎,戴思兰.2000,染色体原位杂交技术在植物亲源关系研究中的应用.北京林业大学学报,22(6):100-104
    王建波,张文驹,陈家宽.1999,核rDNA的ITS序列在被子植物系统与进化研究中的应用.植物学报,37(4):407-416
    张乃群,董庆阁.2000,原位杂交技术在植物研究中的应用.南都学坛(自然科学版),20(3):66-68
    吴中伦,1956,中国松属的分布与分类.植物分类学报5:131—164
    向巧萍,向秋云,Liston,A,傅立国,傅德志.2000,ITS(nrDNA)片段在冷杉属植物中的长度多态性及其在松科的系统与演化研究中的应用.植物学报,42(9):946-95
    杨雪彦.1987,高山松的核型分析.西北林学院学报,1(2):51-53
    虞泓,葛颂,黄瑞复,姜汉侨.2000,云南松及其近源种的遗传变异与亲源关系.植物学报,42(1):107-110
    张德玉,钟少斌,李浩兵.1995,麦类作物原位杂交影响因素的研究.植物学报,37(3):181-185
    郑万钧,傅立国.1978,中国植物志(第七卷).科学出版社,北京
    Allaby, R. G., and T. A. Brown. 2001. Network analysis provides insights into evolution of 5S rDNA arrays in Triticum and Aegilops. Genetics 157: 1331-41.
    Amarasinghe, V., and J. E. Carlson. 1998. Physical mapping and characterization of 5S rRNA genes in Douglas-fir. J Hered 89: 495-500.
    Anamthawat-Jonsson, K., and S. M. Reader. 1995. Pre-annealing of total genomic DNA probes for simultaneous genomic in situ hybridization. Genome 38: 814-6.
    Appels, R., and R. L. Honeycutt, eds. 1986. rDNA: evolution over a billion years. CRC Press, Boca Raton, Florida.
    Amheim, N., M. Krystal, R. Schmickel, G. Wilson, O. Ryder, and E. Zimmer. 1980. Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. PNAS 77: 7323-7327.
    Arnold, M. L. 1992. Natural hybridization as an evolutionary process. Annual Review of Ecology and Systematics 23: 237-261.
    
    
    Arnold, M. L., B. D. Bennnet, and E. A. Zimmer. 1990. Natural hybridization between Iris fulva and Iris hexagona: Pattern of ribosomal DNA variation. Evolution 44: 1512-1521.
    Ausubel, F. M.. R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith and K. Struhl. 1995. Short protocols in molecular biology. John Wiley & Sons, Inc.
    Baldwin, B. G., and S. Markos. 1998. Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Mol Phylogenet Evol 10: 449-63.
    Barciszewska, M. Z., V. A. Erdmann, and J. Barciszewski. 1994. A new type of RNA editing. 5S ribosomal DNA transcripts are edited to mature 5S rRNA. Biochem Mol Biol Iht 34: 437-48.
    Baum, B. R., and B. Appel. 1992. Evolutionary change at the 5S-DNA loci of species in the Triticeae. Pl. Syst. Evol. 183: 195-208.
    Bauman, J. G. J., J. Wiegant, P. Borst, and P. Van Daijn. 1980. A new method for fluorescence microscopical localizationof specific DNA sequences by insitu hybridizaiton of fluorochrome-labelled RNA. Experimental Cell Research 128: 485-490.
    Benabdelmouna, A., M. Abirached-Darmency, and H. Darmency. 2001. Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. Theor Appl Genet 103: 668-677.
    Bennett, M. D. 1995. The development and use of genomic in situ hybridization (GISH) as a new tool in plant biosystematics. Pages 167-1.83 in P. F. Brandham and M. D. Bennett, eds. Kew chromosome conference Ⅳ. Royal Botanic Gardens, Kew.
    Bobola, M. S., D. E. Smith, and A. S. Klein. 1992. Five major nuclear ribosomal repeats represent a large and variable fraction of the genomic DNA of Picea rubens and P. mariana. Mol Biol Evol 9: 125-37.
    Borisjuk, N., L. Borisjuk, G. Petjuch, and V. Hemleben. 1994. Comparison of nuclear ribosomal RNA genes among Solanum species and other Solanaceae. Genome 37: 271-9.
    Bowe, L. M., G. Coat, and C. W. de Pamphilis. 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proc Natl Acad Sci U S A 97: 4092-7.
    Brown, D. D., P. C. Wensink, and E. Jordan. 1972. A comparison of the ribosomal DNA's of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. Journal of Molecular Biology 63: 57-73.
    Brown, G. R., and J. E. Carlson. 1997. Molecular cytogenetics of the genes encoding 18s-5.8s-26s rRNA and 5s rRNA in two species of spruce (Picea). Theor Appl Genet 95: 1-9.
    Buckler, E. S. I., and T. P. Holtsford. 1996. Zea ribosomal repeat evolution and substitution patterns. Molecular Biology and Evolution 13: 623-632.
    Buerkle, C. A., R. J. Morris, M. A. Asmussen, and L. H. Rieseberg. 2000. The likelihood of homoploid hybrid speciation. Heredity 84:441-51.
    
    
    Campbell, C. S., M. F. Wojciechowski, B. G. Baldwin, L. A. Alice, and M. J. Donoghue. 1997. Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). Molecular Biology and Evolution 14: 81-90.
    Castilho, A., and J. S. Heslop-Harrison. 1995. Physical mapping of SS and 18S-25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91-96.
    Chaw, S. M., A. Zharkikh, H. M. Sung, T. C. Lau, and W. H. Li. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol Biol Evol 14: 56-68.
    Ciliberto, G., G. Rangei, F. Constanzo, L. Dente, and R. Cortese. 1983. Common and interchangeable elements in the promoters of genes transcribed by RNA polymerase Ⅲ. Cell 32: 725-733.
    Cloix, C., S. Tutois, O. Mathieu, C. Cuvillier, M. C. Espagnol, G. Picard, and S. Tourmente. 2000. Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genome Res 10: 679-90.
    Cloix, C., S. Tutois, Y. Yukawa, O. Mathieu, C. Cuvillier, M. C. Espagnol, G. Picard, and S. Tourmente. 2002. Analysis of the 5S RNA pool inArabidopsis thaliana: RNAs are heterogeneous and only two of the genomic 5S loci produce mature 5S RNA. Genome Res 12: 132-44.
    Cronn, R. C., X. Zhao, A. H. Paterson, and J. F. Wendel. 1996. Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42: 685-705.
    Cullis, C. A., G. P. Creisson, S. W. Gorman, and R. Teasdale. 1988. The 25S, 18S, and 5S ribosomal RNA genes from Pinus radiata D. Don. Canadian Forest Service, Petawawa National Forest Institute.
    Curtiss, W. C., and J. N. Vournakis. 1984. Quantitation of base substitutions in eukaryotic 5S rRNA: selection for the maintenance of RNA secondary structure. J Mol Evol 20: 351-61.
    D' Hont, A., D. Ison, K. Alix, C. Roux, and J. C. Glaszmann. 1998. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221-225.
    Dhillon, S. S. 1987. DNA in tree species. Pages 299-313 in J. M. Bonga and D. J. Durzan, eds. Cell and tissue culture in forestry. Marfinus Nijhoff Publ, Dordrecht, Netherlands.
    Dinman, J. D., and R. B. Wickner. 1995.5S rRNA is involved in fidelity of translational reading frame. Genetics 141: 95-105.
    Doudrick, R. L., J. S. Heslopharrison, C. D. Nelson, T. Schmidt, W. L. Nance, and T. Schwarzacher. 1995. Karyotype of slash pine (Pinus elliottii var elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. Journal of Heredity 86: 289-296.
    Dover, G. A. 1982. Molecular drive, a cohesive model of species evolution. Nature 299: 11-117.
    
    
    Doyle, J.J. and Doyle, J.L.,1987. A rapid DNA isolation procedure of fresh tissue. Phytochem. Bull. 19:11-15
    Elela, S. A., and R. N. Nazar. 1997. Role of the 5.8S rRNA in ribosome translocation. Nucleic Acids Res 25:1788-1794.
    Elsik, C. G., and C. G. Williams. 2000. Retroelements contribute to the excess low-copy-number DNA in pine. Mol Gen Genet 264: 47-55.
    Fan, C. Z., and Q. Y. Xiang. 2001. Phylogenetic ralationships within Cornus (Cornaceae) besed on 26S rDNA sequences. Am J Bot 88: 1131-1138.
    Gall, J. G., and M. L. Pardue. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. PNAS 63: 378-383.
    Ganley, A. R., and B. Scott. 1998. Extraordinary ribosomal spacer length heterogeneity in a Neotyphodium endophyte hybrid: implications for concerted evolution. Genetics 150: 1625-1637.
    Gemandt, D. S., and A. Liston. 1999. Internal Transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae). Am J Bot 86:711-723.
    Gemandt, D. S., A. Liston, and D. Pinero. 2001. Variation in the nrDNA ITS of Pinus Subsection Cembroides: implicaiton for molecular systematic studies of pine species complexes. Molecular Phylogenetics and Evolution 21: 449-467.
    Gonzalez, I. L., and J. E. Sylvester. 2001. Human rDNA: evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes. Genomics 73: 255-263.
    Gorman, S. W., R. D. Teasdale, and C. A. Cullis. 1992. Structure and organiztion of the 5S rRNA genes (5S DNA) in Pinus radiata (Pinaceae). Pl. Syst. Evol. 183: 223 -234.
    Gottlob-McHugh, S. G., M. Levesque, K. MacKenzie, M. Olson, O. Yarosh, and D. A. Johnson. 1990. Organization of the 5S rRNA genes in the soybean Glycine max (L.) Merrill and conservation of the 5S rDNA repeat structure in higher plants. Genome 33: 486-94.
    Halanych, K. M. 1991.5S ribosomal RNA sequences inappropriate for phylogenetic reconstruction. Molecular Biology and Evolution 8: 249-253.
    Hall, T. A. 1999. BioEdit: a user friendly biological sequence alignment editor an danalysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98.
    Hasterok, R., G. Jenkins, T. Langdon, R. N. Jones, and J. Maluszynska. 2001. Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103: 668-677.
    Hayes, J. J., and T. D. Tullius. 1992. Structure of the TFIIIA-5S DNA complex. J. Mol. Biol 227: 407-417.
    Hershkovitz, M. A., E. A. Zimmer, and W. J. Hahn. 1999. Ribosomal DNA sequences and angiosperm systematics. Pages 268-326 in P. M. Hollingsworth, R. M. Bateman, and R. J. Gornall, eds. Molecular systematics and plant evolution. Taylor & Francis, London.
    Hillis, D. M., and M. T. Dixon. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411-53.
    
    
    Hizume, M., F. Ishida, and K. Kondo. 1992. Differential Staining and In situ Hybridization of Nucleolar Organizers and Centromeres in Cycas revoluta Chromosomes. Japanese Journal of Genetics 67:381-387.
    Hizume, M., E Shibata, K. Kondo, Y. Hoshi, T. Kondo, S. Ge, Q. E. Yang, and D. Y. Hong. 1999. Identification of chromosomes in two Chinese spruce species by multicolor fluorescence in situ hybridizaiton. Chromosome Science 3:37-71.
    Hizume, M., F. Shibata, Y. Maruyama, and T. Kondo. 2001. Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. & Zucc. Chromosoma 110: 345-351.
    Horimoto, K., J. Otsuka, and T. Kunisawa. 1989. Rapid evolutionary repair of base mispairings in stem regions of eukaryofic 5S rRNA. Protein Seq Data Anal 2:93-9.
    Jiang, J. M., and B. S. Gill. 1994. Nonisotopic in situ hybridization and plant genome mapping: The first 10 years. Genome 37: 717-725.
    John, H. A., M. Birnstiel, and K. W. Jones. 1969. RNA-DNA hybrids at the cytological level. Nature 223: 582-587.
    Joyner, K. L., X.-R. Wang, J. S. Johnston, H. J. Price, and C. G. Williams. 2001. DNA content for Asian pines parallels New World relatives. Can J Bot 79:192-196.
    Karlov, G. I., L. I. Khrustaleva, K. B. Lim, and J. M. Vantuyl. 1999. Homoeologous recombination in 2n-gametes producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome 42: 681-686.
    Karvonen, P., M. Karjalainen, and O. Savolainen. 1993. Ribosomal RNA genes in Scots pine (Pinus sylvestris L.): chromaosomal organization and structure. Genetica 88: 59-68.
    Kellogg, E. A., and R. Appels. 1995. Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics 140: 325-43.
    Khoshoo, T. N. 1961. Chromosome numbers in gymnosperms. Silvae Genet 10: 1-9.
    Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.
    Kita, Y., and M. Ito. 2000. Nuclear ribosomal ITS sequences and phylogeny in East Asian Aconitum subgenus Aconitum (Ranunculaceae), with special reference to extensive polymorphism in individual plants. Plant Systematics and Evolution 225: 1-13.
    Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA 2: molecular evolution genetics analysis software. Arizona State University, Tempe, Arizona, USA.
    Leitch, A. R., T. Schwarzacher, D. Jackson, and I. J. Leitch. 1994. In situ hybridization: a practical guide. BIOS Scientific Publishers.
    Leitch, I. J., and J. S. Heslop-Harrison. 1993. Physical mapping of 4 sites of 5S rDNA sequences and one site of the alpha-amylase-2 gene in barley (Hordeum vulgare). Genome 36:517-523.
    
    
    Li, C.-B., D. M. Zhang, S. Ge, B.-R. Lu, and D. Y. Hong. 2001. Differentiation and inter-genomic relationships among C, E and D genomes in the Oryza officinalis complex(Poaceae) as revealed by multicolor genomic in sin hybridizaiton. Theor Appl Genet 103: 197-203.
    Li, W.-H. 1997. Molecular evolution. Sinauer Associates, Inc., Publisher, Sunderland, USA.
    Liao, D. 2000. Gene conversion drives within genie sequences: concerted evolution of ribosomal RNA genes in bacteria and archaea. Journal of Molecular Evolution 51: 305-317.
    Liao, X. B., K. R. Clemens, L. Tennant, P. E. Wright, and J. M. Gottesfeld. 1992. Specific interaction of the first three zinc fingers of TFIIIA with the internal control region of the Xenopus 5 S RNA gene. J Mol Biol 223: 857-71.
    Lim, K. B., J. D. Chung, B. C. van Kronenburg, M. S. Ramanna, J. H. de Jong, and J. M. van Tuyl. 2000. Introgression of Lilium rubellum Baker chromosomes into L. longiflorum Thunb.: a genome painting study of the Fl hybrid, BC1 and BC2 progenies. Chromosome Res 8:119-25.
    Linares, C., J. Gonzalez, E. Ferrer, and A. Fominaya. 1996. The use of double fluorescence in situ hybridization to physically map the positions of 5S rDNA genes in relation to the chromosomal location of 18S-5.8S-26S rDNA and a C genome specific DNA sequence in the genus Arena. Genome 39: 535-542.
    Liston, A., W. A. Robinson, D. Pinero, and E. R. Alvarez-Buylla. 1999. Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Mol Phylogenet Evol 11: 95-109.
    Little, E. L., and C. Jr., W B. 1969. Subdivisions of the genus Pinta (pines). USDA Forest Service., Washington DC.
    Lubareta, O., J. Fuchs, R. Ahne, A. Meister, and I. Schubert. 1996. Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theoretical and Applied Genetics 92:411-416.
    MacKay, R. M., D. F. Spencer, M. N. Schnare, W. F. Doolitfie, and M. W. Gray. 1982. Comparative sequence analysis as an approach to evaluating structure, function, and evolution of 5S and 5.8S ribosomal RNAs. Can J Biochem 60: 480-9.
    Miksche, J. 1985. Recent advances of biotechnology and forest trees. The Forestry Chronicle 61: 449-453.
    Millar, C. I. 1998. Early evolution of pines. Cambridge University Press, Cambridge.
    Mirov, N. T. 1967. The genus Pinus. The Ronald Press Company, New York.
    Moran, G. F., D. Smith, J. C. Bell, and R. Appels. 1992. The 5S RNA genes inPinus radiata and the spacer region as a probe for relationship between Pinus species. Pl. Syst. Evol. 183: 209-221.
    Mukai, Y., Y. Nakahara, and M. Yamamoto. 1993. Simultaneous Discrimination of the 3 Genomes in Hexaploid Wheat by Multicolor Fluorescence In situ Hybridization Using Total Genomic and Highly Repeated DNA Probes. Genome 36: 489-494.
    Murata, M., J. S. Heslopharrison, and F. Motoyoshi. 1997. Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. Plant Journal 12: 31-37.
    
    
    Murray, B. G. 1998. Nuclear DNA amounts in gymnosperms. Ann Bot 82: 3-15.
    Nagylaki, T. 1990. Gene conversion, linkage, and the evolution of repeated genes dispersed among multiple chromosomes. Genetics 126:261-276.
    Niu, W., and D. M. Zhang. 2002. Evolution of 5S rRNA genes in Ophiopogen xylorrhizus Wang et Dai and O.sylvicola Wang et Tang (Convallariaceae). Acta Botanica Sinica 44: 329-336.
    Ohri, D., and T. N. Khoshoo. 1986. Genome size in Gymnosperms. Plant Syst Evol 153: 119-132.
    Ohta, T. 1990. How gene families evolve. Theoretical Population Biology 37: 213-219.
    Orgaard, M. 1994. Intergeneric Hybridization Between Species of Leymus, Psathyrostachys and Hordeum (Poaceae, Triticeae). Annals of Botany 73: 471-479.
    Pederick, L. A. 1970. Chromosome relationships between Pinus species. Silvae Genet 19: 171-180.
    Persson, C. 2000. Phylogeny of the Neotropical Alibertia group (Rubiaceae), with emphasis on the genus Alibertia, inferred from ITS and 5S ribosomal DNA sequences. Am J Bot 87: 1018-1028.
    Rayburn, A. L., and B. S. Gill. 1985. Use of biontin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 76: 79-91.
    Reddy, P., and R. Appels. 1989. A second locus for the 5S multigene family in Secale L.: sequence divergence in two lineages of the family. Genome 32: 457-67.
    Ricroch, A., E. B. Peffley, and R. J. Baker. 1992. Chromosomal Location of rDNA in Allium - In situ Hybridization Using Biotin-Labelled and Fluorescein-Labelled Probe. Theoretical and Applied Genetics 83:413-418.
    Rieseberg, L. H. 1997. Hybrid origins of plant species. Annual Review of Ecology and Systematics 28: 359-389.
    Rieseberg, L. H. 2001. Chromosomal rearrangements and speciation. Trend Ecol Evolut 16: 351-357.
    Rieseberg, L. H., and S. E. Carney. 1998. Plant hybridization. New Phytologist 140: 599-624.
    Rogers, S. O., and A. J. Bendich. 1987. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol Biol 9: 509-520.
    Rozas, J., and R. Rozas. 1999. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174-175.
    Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
    Sastri, D. C., K. Hilt, R. Appels, E. S. Lagudah, J. Playford, and B. R. Baum. 1992. An overview of evolution in plant 5S DNA. Pl. Syst. Evol. 183: 169-181.
    Saylor, L. C. 1964. Karyotype analysis of Pinus - group Lariciones. Silvae Genet 13: 165-192.
    Schlotterer, C., and D. Tautz. 1994. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Current Biology 4: 777-783.
    
    
    Schmidt, A., R. L. Doudrick, and J. S. Heslop-Harrison. 2000. The contribution of short repeats of low sequence complexity to large conifer genomes. Theor Appl Genet 101:7-14.
    Schneeberger, R. G., G. P. Creissen, and C. A. Cullis. 1989. Chromosomal and molecular analysis of 5S RNA gene organization in the flax, Linum usitatissimum. Gene 83: 75-84.
    Schwarzacher, T., A. R. Leitch, M. D. Bennett, and J. S. Heslop-Harrison. 1989. In situ localization of parental genomes in a wide hybrid. Annals of Botany 64: 315-324.
    Sharma, A. K., and A. Sharma. 1999. Plant chromosomes: analysis, manippulation and engineering. Harwood Academic Publishers.
    Siljak-Yakovlev, S., M. Cerbah, J. Coulaud, V. Stolan, S. C. Brown, V. Zoldos, S. Jelenic, and D. Papes. 2002. Nulear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor Appl Genet 104: 505-512.
    Smith, G. P. 1976. Evolution of repeated DNA sequences by unequal crossover. Science191: 528-535.
    Soltis, P. S., D. E. Soltis, P. G. Wolf, D. L. Nickrent, S. M. Chaw, and R. L. Chapman. 1999. The phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of rDNA signal? Mol Biol Evol 16: 1774-84.
    Song, B.-H., X.-Q. Wang, X.-R. Wang, L.-J. Sun, D.-Y. Hong, and P.-H. Peng. 2002. Maternal lineages of Pinus densata, a diploid hybrid. Molecular Ecology 11:1057-1063.
    Stace, C. A., and J. P. Bailey. 1999. The value of genomic in sim hybridization (GISH) in plant taxonomic and evolutionary studies. Taylor & Francis, London.
    Stebbins, G. L. 1969. The significance of hybridization for plant taxonomy and evolution. Taxon 18: 26-35.
    Steele, K. P., H. K. E., R. K. Jansen, and D. W. Taylor. 1991. Assessing the reliability of 5S rRNA sequence data for phylogenetic analysis in green plants. Mol. Biol. Evol. 8: 240-248.
    Swofford, D. L. 1998. PAUP. Phylogenetic analysis using parsimony (and other methods). Sinauer Associates, Sunderland, Massachusetts.
    Szymanski, M., M. Z. Barciszewska, J. Barciszewski, and V.A. Erdmann. 1999. 5S Ribosomal RNA Data Bank. Nucleic Acids Res 27:158-60.
    Szymanski, M., M. Z. Barciszewska, V. A. Erdmann, and J. Barciszewski. 2002.5S Ribosomal RNA Database. Nucleic Acids Res 30:176-8.
    Szymanski, M., T. Specht, M. Barciszewska, J. Barciszewski, and V. A. Erdmann. 1998. 5S rRNA data bank. Nucleic Acids Res 26: 156-159.
    Tagashira, N., and K. Kondo. 2001. Chromosome phylogeny of Zamia and Ceratozamia by means of Robertsonian changes detected by fluorescence in situ hybridization (FISH) technique of rDNA. Plant Syst Evo1227: 145-155.
    Taketa, S., G. E. Harrison, and J. S. Heslop-Harrison. 1999. Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98: 1-9.
    
    
    Thompson, J. D., T. J. Gibson, F. Plewniak, E Jeanmougin, and D. G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24: 4876-4882.
    Trontin, J. F., C. Grandemange, and J. M. Favre. 1999. Two highly divergent 5S rDNA unit size classes occur in composite tandem array in European larch (Larix decidua Mill.) and Japanese larch (Larix kaempferi (Lamb.) Carr.). Genome 42: 837-848.
    Van de Peer, Y., R. De Baere, J. Cauwenberg, and R. De Watcher. 1990. Evolution of green plants and their relationship with other photosynthetic eucaryotes as deduced from 5S ribosomal RNA sequences. Evolution 170: 85-96.
    Venkateswarlu, K., S.-W. Lee, and R. N. Nazar. 1991. Conserved upstream sequence elements in plant 5S ribosomal RNA-encoding genes. Gene 105: 249-253.
    Wakamiya, I., R. J. Newton, J. S. Johnston, and H. J. Price. 1993. Genome size and environmental factors in the genus Pinus. Am J Bot 80: 1235-1241.
    Wang, J. B., W. J. Zhang, and J. K. Chen. 1999a. Application of ITS sequences of nuclear rDNA in phylogenetic and evolutionary studies of angiosperms. Acta Phytotaxonomica Sinica 37:407-416.
    Wang, X. Q. 1999. On molecular phylogenetics and evolution of the Pinaceae. Pages 25-33 in C. S. Li, ed. Advances in plant sciences. China Higher Eduation Press, Beijing, China.
    Wang, X. Q., D. C. Tank, and T. Sang. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Mol Biol Evol 17:773-81.
    Wang, X.-R., and A. E. Szmidt. 1990. Evolutionary analysis of Pinus densata (Masters), a putative Tertiary hybrid. 2. A study using species-specific chloroplast DNA markers. Theoretical and Applied Genetics 80: 641-647.
    Wang, X.-R., and A. E. Szmidt. 1993. Chloroplast DNA-based phylogeny of Asian Pinus species (Pinaceae). Plant Syst Evol 188:197-211.
    Wang, X.-R., and A. E. Szmidt. 1994. Hybridization and chloroplast DNA variation in a Pinus species complex from Asia. Evolution 48:1020-1031.
    Wang, X.-R., A. E. Szmidt, A. Lewandowski, and Z.-R. Wang. 1990. Evolutionary analysis of Pinus densata (Masters), a putative Tertiary hybrid. 1. Allozyme variation. Theoretical and Applied Genetics 80: 635-640.
    Wang, X.-R., A. E. Szmidt, and O. Savolainen. 2001. Genetic composition and diploid hybid speciation of a high mountain pine, Pinus densata, native to the Tibetan Plateau. Genetics 159: 337-346.
    Wang, X.-R., Y. Tsumura, H. Yoshimaru, K. Nagasaka, and A. E. Szmidt. 1999b. Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcl, matK,rp120-rps18 spacer, and trnV intron sequences. Am J Bot 86: 1742-1753.
    Wendel, J. F., A. Schnabel, and T. Seelanan. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci U S A 92: 280-284.
    Wu, R. J., and F. z. Lu. 1994. Preliminary research into the karyotype evolution among 51 species of genus Pinus. Journal of Fujian College of Forestry 14: 73-76.
    
    
    Zhang, D. M., and T. Sang. 1999. Physical mapping of ribosomal RNA genes in peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization: Implications for phylogeny and concerted evolution. American Journal of Botany 86: 735-740.
    Zoldos, V., D. Papes, M. Cerbah, O. Panaud, V. Besendorfer, and S. Siljakyakovlev. 1999. Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700