岩浆成因CO_2气藏中储集砂岩的热对流成岩作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过岩石学、稳定同位素和放射性同位素地球化学与流体包裹体地质学等多学科相结合的综合研究方法,开展了海拉尔盆地乌尔逊凹陷岩浆成因CO_2气藏中储集砂岩的热对流成岩作用研究。岩浆成因CO_2气藏储集砂岩中以发育片钠铝石胶结物为特征。含片钠铝石砂岩的成岩共生序列依次为粘土矿物包壳-次生加大石英、高岭石、自生石英-油气充注-CO_2充注-片钠铝石-铁白云石。海拉尔盆地乌尔逊凹陷岩浆活动-无机CO_2充注-砂岩成岩(砂岩中片钠铝石胶结物形成)在物质成分和时间上均具有较好的耦合关系,表现为:成岩片钠铝石与气藏中的CO_2具有相同的“碳来源”,绝大部分属于幔源-岩浆成因;CO_2充注或片钠铝石形成晚于90Ma,CO_2与该区辉绿玢岩侵位(约46.2Ma)关系密切。片钠铝石不但是CO_2流体运移、聚集、逸散的“示踪矿物”,而且也记录了CO_2充注驱油过程。引起片钠铝石形成的CO_2流体为“热流体”,含片钠铝石砂岩的成岩作用以垂向强迫热对流为特征。
Thermal convection diagenesis is a geological process between traditional burial diagenesis and traditional contact metamorphism. It belongs to the scientific field of basin fluids and diagenesis in sedimentary petrology, and is one of topics of geological frontier. The CO_2 gas reservoir sandstone of Wuerxun depression in Hailaer basin, abundant in dawsonite, is an ideal rock type to study the thermal convection diagenesis. By integrating the multi-discipline methods of petrology, stable isotopic geochemistry, radioactive isotopic geochemistry and fluid inclusion geology, on the basis of research on petrology characteristics, diagenetic fluid and its evolvement of dawsonite-bearing sandstone, more attention has been paid to study the coupling relationships among magma emplacement, CO_2 thermal fluid activity and sandstone diagenesis in the way of component and timing. The purpose of the study is to search the substance contribution and long-distance control action of deep geological process or magma activity on sandstone diagenesis, and to provide significant theoretical evidence for reservoir evaluation and anisotropic prediction of sandstone in magmatic CO_2 pool.
     The research on petrology characteristics indicates that the dawsonite-bearing sandstone of Wuerxun depression in Hailaer basin comprise of arkose and lithic arkose. Their diagenetic paragenesis includes six discrete diagenetic processes. From earliest to latest, the diagenetic processes are:(1) clay mineral coatings; (2) quartz overgrowth, authigenic quartz, authigenic kaolinite; (3) petroleum charging;(4) CO_2 charging; (5) dawsonite; (6) ankerite. The dawsonite and ankerite formed after CO_2 charging. Based on the diagenetic paragenesis above, according to the tracing characteristic of dawsonite, palaeofluid information from fluid inclusions in cements or authigenic minerals and geochemical characteristics of present groundwater, diagenetic fluid evolvement of dawsonite-bearing sandstone is classified into four stages including (1) alkali diagenetic fluid before petroleum charging, (2) acid diagenetic fluid during petroleum charging; (3) diagenetic fluid varying from acid to alkaline during CO_2 charging and (4) alkali diagenetic fluid from CO_2 charging to the present. The CO_2 charging played a very important role in changing the chemical composition of groundwater, which is characterized by its extremely high degree of mineralization with absolute proportion of Na+ and HCO3-, also with higher amount of CO32-.
     Dawsoniteδ13C values range from -5.3 to -1.5‰PDB. The calculatedδ13C values of CO_2 gas in isotope equilibrium with dawsonite range from -11.4 to -7.3‰PDB, in coincidence withδ13C CO_2 values(-11.36~-8.2‰PDB) from CO_2 gas pool in Hailaer Basin. These values are mainly within the range of inorganic CO_2. Dawsoniteδ18O values range from 5.8 to 10.8‰SMOW, in coincidence with the range of dawsoniteδ18O values with magmatic origin reported both at home and abroad, also show the characteristics of carbonate oxygen isotope with magmatic origin. According to the fact that 3He/4He values are from 1.68×10–6 to 2.08×10–6, R/Ra values are 1.20 to 1.49 of associated helium with CO_2 gas, and that both dawsonite and CO_2 gas pool lie in the vicinity of magmatic rocks and the deep fault, CO_2 both in gas pool and dawsonite almost derived from the mantle-magmatic origin. However, the calculated initial 87Sr/86Sr values of dawsonite and ankerite are respectively 0.708407~0.712720 and 0.706337~0.710808, indicating sialic crust origin. Considering that the trace element of dawsonite and ankerite implied crust origin, the REE contents of dawsonite and ankerite are similar with mantle-magmatic carbonate, while the chondrite-normalized REE patterns are consistent with crust rock, it is concluded that dawsonite and the paragenetic mineral ankerite from Wuerxun depression in Hailaer basin are the results of interaction of mantle-magmatic CO_2 and sandstone in crust.
     Research on fluid inclusions and K-Ar ages of authigenic illite indicates that petroleum charging in dawsonite-bearing sandstone began at about 120Ma, reached climax during 100 to 90Ma. CO_2 charging was later than petroleum charging in large scale, so later than 90Ma, in accord with the age of allgovite (46.2Ma). Therefore, there exists perfect coupling relationship among magma emplacement, CO_2 fluid activity and sandstone diagenesis (or dawsonite forming) not only in components but also in the time. Dawsonite occurring in Wuerxun depression, Hailaer basin, is the tracer mineral on migration, accumulation, and leakage of mantle-magmatic CO_2. In addition, it was for the first time that petroleum inclusions were found in dawsonite cement, and CO_2 gas bottom was discovered in the wells with abundant dawsonite such as Su16, Su3 and Su2 etc. These may prove that the oil displacement by CO_2 occurred in Wuerxun depression, and the dawsonite-bearing sandstone preserved the evidence of oil displaced by CO_2.
     Integrated study on reflectance of vitrinite of the dawsonite-bearing stratum, homogeneous temperature of fluid inclusions in ankerite, and apatite fission track shows that the CO_2 gas causing dawsonite precipitation acted as thermal fluid. The dawsonite-bearing sandstone diagenesis was characterized by vertically forced thermal convection. Based on research above, forced thermal convection diagenetic pattern of reservoir sandstone of magmatic CO_2 pool is established. The CO_2 thermal fluid from magmatic degasification migrated into Nantun Formation sandstone along the Wuxi fracture and its branches. One part of magmatic CO_2 displaced the previous petroleum and then preserved in sandstone as gas phase; another part of magmatic CO_2 participated in the diagenesis of sandstone. Firstly, CO_2 dissolves in water and reacts with water by gas-water boundary to produce weak carbonic acid. Then carbonic acid dissociates rapidly into bicarbonate ion and hydrogen ion. The increasing acidity induces dissolution of many unstable silicate minerals (mostly feldspar) in the primary host rock. With the transformation of pore fluid, the dissolved bicarbonate ion reacts with such cations as Na+ and Al3+ from dissolved feldspar to precipitate dawsonite, and the bicarbonate ion reacts with Ca2+ and Mg2+ to precipitate ankerite. Therefore, CO_2 is solidified in sandstone as secondary carbonate minerals.
     In theory, research on the thermal convection diagenesis and its pattern of reservoir sandstone of magmatic CO_2 pool has added to investigation of mass transformation relationship of deep geological process and shallow geological process. Moreover, it has revealed the interactional rules between deep fluid and shallow sandstone, has widen new research field of basin fluids and diagenesis. In fact, although CO_2 charging may result in dissolution of some framework grains in sandstones, CO_2 charging leads to porosity decreasing as a whole due to the new mineral formation. Therefore, it is of great significance to research on the thermal convection diagenesis and establishing its pattern of reservoir sandstone of magmatic CO_2 pool in Wuerxun depression, Hailaer basin. Conclusions drawn in this paper will play an important role in predicting anisotropic distribution of reservoir and farther directing reservoir quality forecast and evaluation.
引文
[1] 蔡春芳, 梅博文, 马亭, 等. 塔里木盆地流体-岩石相互作用研究. 北京: 地质出版社,1997: 14~15.
    [2] 蔡春芳, 顾家裕, 蔡洪美. 塔中地区志留系烃类侵位对成岩作用的影响. 沉积学报, 2001, 19(1): 60~65.
    [3] 陈国利. 松辽盆地南部天然气的分布特征.新疆石油地质, 2003, 24(6): 520~522.
    [4] 陈红汉, 李思田. 活动热流体与成藏、成矿动力学研究进展. 地学前缘, 1996, 3(4): 259~262.
    [5] 陈守田, 刘招君, 于洪金. 2004.海拉尔盆地热演化史研究. 吉林大学学报(地球科学版), 34(1): 85~92.
    [6] 程有义. 含油气盆地二氧化碳成因研究. 地球科学进展, 2000, 15(6): 684~687.
    [7] 迟效国, 等. 国家油气专项二级课题“大庆探区外围盆地基底与区域构造背景”课题组中期汇报材料. 2006(未发表).
    [8] 大庆油田研究院勘探二室项目组. 海拉尔盆地油气聚集规律与勘探突破方向研究.2005. 内部报告.
    [9] 戴春森, 宋岩, 杨池银. 黄骅坳陷天然气中多成因二氧化碳的判识及其混合模型. 石油勘探与开发, 1994, 21(4): 23~29.
    [10] 戴春森, 宋岩, 孙岩. 中国东部二氧化碳气藏成因特点及分布规律. 中国科学(B 辑), 1995, 25(7): 764~771.
    [11] 戴春森, 宋岩, 戴金星. 中国两类无机成因 CO2 组合、脱气模型及构造专属性. 石油勘探与开发, 1996, 23(2): 1~4.
    [12] 戴金星, 宋岩, 戴春森, 等. 中国东部无机成因气及其气藏形成条件. 北京:科学出版社. 1995.
    [13] 戴金星. 中国东部和大陆架二氧化碳气田(藏)及其气的类型. 大自然探索, 1996, 15(58): 18~20.
    [14] 戴金星. 中国气藏(田)的若干特征. 石油勘探与开发, 1997, 24(2):6~9.
    [15] 戴金星, 卫延昭. 无机成因石油论和无机成因的气田(藏)概略. 石油学报, 2001, 22(6):5~10.
    [16] 杜春国, 付 广, 王 安. 断裂在乌尔逊凹陷油气成藏中的作用. 新疆石油地质, 2004, 25(5): 495~497.
    [17] 杜韫华. 一种次生的片钠铝石. 地质科学, 1982, 4: 434~437.
    [18] 杜韫华. 具二氧化碳气顶储层的成岩作用研究. 石油与天然气地质, 1985, 6(1): 91~95.
    [19] 付晓飞, 宋岩. 松辽盆地无机成因气及气源模式. 石油学报, 2005, 26(4): 23~28.
    [20] 高玉巧, 欧光习, 谭守强, 等. 歧口凹陷西坡白水头构造沙一段下部石油成藏期次研究. 岩石学报, 2003, 19(2): 359~365.
    [21] 高玉巧,刘立. 自生片钠铝石的碳氧同位素特征及其成因意义. 高校地质学报, 2006,12(4): 522~529.
    [22] 郭念发, 尤孝忠, 徐俊. 苏北盆地溪桥含氦天然气田地质特征及含氦天然气勘探前景. 石油勘探与开发, 1999, 26(5): 24~26.
    [23] 郭随平, 王良书, 施央审. 应用磷灰石裂变径迹研究沉积盆地的热史. 南京大学学报, 1995, 31(3): 469~474.
    [24] 韩广玲, 赵洪涛, 边吉. 松辽盆地中央坳陷带青山口组玄武岩与油气分布的关系.石油实验地质, 1988,10 (3): 248~255.
    [25] 郝芳, 孙永传, 李思田. 活动热流体对有机质热演化和油气生成作用的强化. 地球科学, 1996, 2(1): 68~72.
    [26] 何家雄, 李明兴, 陈伟煌, 等. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨. 天然气地球科学, 2000, 11 (6): 29~43.
    [27] 何家雄, 夏斌, 王志欣, 等. 中国东部及近海陆架盆地不同成因 CO2 运聚规律与有利富集区预测. 天然气地球科学, 2005, 16(5): 622~631.
    [28] 赫英, 王定一, 刘洪营, 等. 胜利油气区二氧化碳气藏成因. 石油与天然气地质, 1997, 18 (1).
    [29] 侯启军, 杨玉峰. 松辽盆地无机成因天然气及勘探方向探讨. 天然气工业, 2002, 22(3): 5~10.
    [30] 侯启军, 冯子辉, 霍秋立. 海拉尔盆地乌尔逊凹陷石油运移模式与成藏期. 地球科学-中国地质大学学报, 2004, 29(4): 397~403.
    [31] 侯启军. 松辽盆地古龙地区天然气勘探方向. 石油勘探与开发, 2005, 32(5): 38~41.
    [32] 胡受奚, 赵乙英, 胡志宏, 等. 中国东部中-新生代活动大陆边缘构造-岩浆作用演化和发展. 岩石学报, 1994, 10 (4): 370~381.
    [33] 黄善炳.金湖凹陷阜宁组砂岩中片钠铝石特征及对物性的影响.石油勘探与开发,1996,23(2): 32~34.
    [34] 黄志龙, 姜亮, 郝石生. 东海盆地丽水凹陷天然气成因类型. 天然气工业, 2003, 23(3): 29~31.
    [35] 霍秋立, 杨步增, 付丽. 松辽盆地北部昌德东气藏天然气成因. 石油勘探与开发, 1998, 25 (4): 17~19.
    [36] 霍秋立, 审家年, 付丽, 等. 海拉尔盆地地层水特征及成因分析. 世界地质, 2006, 25(2): 172~176.
    [37] 姜亮, 周新华, 金强. 用磷灰石裂变径迹研究西湖凹陷的古地温. 石油大学学报(自然科学版), 2001, 25(1): 30~33.
    [38] 康铁笙, 王世成. 地质热历史研究的裂变径迹法. 北京: 科学出版社. 1991.
    [39] 李明诚, 单秀芹,马成华,等.油气成藏期探讨. 新疆石油地质, 2005 ,26(5):587~591.
    [40] 李善鹏, 邱楠生. 应用磷灰石裂变径迹分析(AFTA)方法研究沉积盆地古地温. 新疆石油学院学报, 2003, 15(2): 13~17.
    [41] 李思田, 路凤香, 林畅松, 等.中国东部及邻区中新生代盆地演化及地球动力学背景. 武汉:中国地质大学出版社,1994:1~10.
    [42] 李思田, 谢习农, 王华, 等. 沉积盆地分析基础与应用. 2004. 北京: 高等教育出版社.
    [43] 李先奇, 戴金星. 中国东部二氧化碳气田(藏)的地化特征及成因分析. 石油实验地质, 1997, 19(3): 215~221.
    [44] 李小明, 王岳军, 谭凯旋, 等. 云开地块中新生代隆升剥露作用的裂变径迹研究. 科学通报, 2005, 50(6): 577~583.
    [45] 李忠, 费卫红, 寿建峰,等. 华北东濮凹陷异常高压与流体活动及其对储集砂岩成岩作用的制约. 地质学报, 2003, 77(1): 126~134.
    [46] 李忠, 陈景山, 关平. 含油气盆地成岩作用的科学问题及研究前沿. 岩石学报, 2006, 22(8): 2113~2122.
    [47] 廖建波, 刘化清, 林卫东. 鄂尔多斯盆地山城-演武地区三叠系延长组长 6-长 8 低渗储层特征及成岩作用研究. 天然气地球科学, 2006, 17(5): 682~687.
    [48] 陆红, 姚柏平,韦俊宝. 松辽盆地东南隆起区十屋断陷南部储层特征. 长春科技大学学报, 1999, 29(3): 242~246.
    [49] 刘方槐, 颜婉荪. 油气田水文地质学原理. 北京:地质出版社.1991:38~39.
    [50] 刘建章, 刘伟, 王存武. 沉积盆地活动热流体类型及其石油地质意义. 海洋石油, 2004, 24(3): 8~13.
    [51] 刘立, 于均民, 孙晓明, 等. 热对流成岩作用的基本特征与研究意义. 地球科学进展, 2000, 15(5): 583~585.
    [52] 刘立, 高玉巧, 曲希玉, 等.海拉尔盆地乌尔逊凹陷无机 CO2 气储层的岩石学与碳氧同位素特征.岩石学报,2006,22(8):1861~1868.
    [53] 刘小平, 王俊芳, 李洪波. 苏北盆地高邮凹陷热演化史研究. 石油天然气学报, 2005, 27(1): 17~18.
    [54] 刘伟,窦齐丰.成岩作用与成岩储集相研究——科尔沁油田交 2 断块区九佛堂组下段.西安石油学院学报(自然科学版),2003, 18(3):4~8.
    [55] 柳益群, 袁明生, 周鼎武, 等. 新疆吐鲁番-哈密盆地地质热历史研究新进展. 中国科学(D 辑), 2001, 31(3): 257~264.
    [56] 刘志宏, 柳行军, 李传顺, 等. 海拉尔盆地各二级构造单元的构造与构造演化. 2004.大庆油田研究院内部报告.
    [57] 吕锡敏, 任战利, 王红伟, 等. 海拉尔盆地构造特征与演化史研究. 2003. 大庆油田有限责任公司勘探分公司内部报告.
    [58] 马学辉, 张海桥, 宋吉杰. 海拉尔盆地乌尔逊凹陷油气成藏期次研究. 大庆石油地质与开发, 2004, 23(1): 7~8.
    [59] 牟敦山, 孙建军, 刘璟. 2004. 乌尔逊凹陷油气成藏期次及模式. 大庆石油学院学报, 28(3): 83~85.
    [60] 牛嘉玉, 张映红, 袁选俊, 等. 中国东部中、新生代火成岩石油地质研究、油气勘探前景及面临问题. 特种油气藏, 2003, 10 (1): 7~12.
    [61] 欧光习, 李林强, 孙玉梅. 沉积盆地流体包裹体研究的理论与实践. 矿物岩石地球化学通报, 2006, 25(1): 1~11.
    [62] 彭晓蕾. 含油气盆地中岩浆活动对砂岩的改造—以松辽盆地及其外围中生代盆地为例. 2006. 吉林大学博士学位论文.
    [63] 任战利. 利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史. 地球物理学报, 1995, 38(3): 339~348.
    [64] 任战利, 王震亮, 崔军平, 等. 海拉尔盆地热演化史与油气运移聚集条件研究. 2003. 大庆油田有限责任公司勘探分公司内部报告.
    [65] 邵明礼, 门吉华, 魏志平. 松辽盆地南部二氧化碳成因类型及富集条件初探. 大庆石油地质与开发, 2000, 19(4):1~3.
    [66] 宋荣华, 王军, 何艳辉, 等. 荧光图像技术判断储层流体性质研究. 油气井测试,2000, 9(4): 28~32.
    [67] 隋少强, 宋丽红, 张金亮. 海拉尔盆地乌尔逊凹陷大磨拐河组成岩作用研究. 大庆石油 地质与开发, 1996, 15(4):12~16.
    [68] 孙向阳, 解习农. 东营凹陷地层水化学特征与油气聚集关系. 石油实验地质, 2001, 23(3):291~296.
    [69] 孙永传, 陈红汉. 热流体系统的成岩特征及其研究意义. 地学前缘, 1995, 2(3-4):170
    [70] 孙玉梅, 郭迺嬿, 王彦. 莺-琼气区天然气主气源及注入史分析. 中国海上油气(地质), 2000, 14(4): 240~247.
    [71] 汤达祯, 刘鸿祥, 李小孟. 济阳坳陷非生物成因气聚储的深层构造因素探讨. 地球科学——中国地质大学学报, 2002, 27(1): 30~34.
    [72] 唐勇, 黄文华, 郭晓燕, 等. 准噶尔盆地白垩系储集层特征. 新疆石油地质, 2003, 24(5): 403~406.
    [73] 王大锐.油气稳定同位素地球化学. 2000, 北京:石油工业出版社,17~119.
    [74] 王大锐, 张映红. 渤海湾油气区火成岩外带储集层中碳酸盐胶结物成因及意义. 石油勘探与开发, 2001, 28(2):40~42.
    [75] 王飞宇, 何萍, 张水昌, 等.利用自生伊利石K-Ar定年分析烃类进入储层的时间.地质评论, 1997 , 43(5): 540~546.
    [76] 王江,张宏,林东成. 海拉尔盆地乌尔逊含氦CO2气藏勘探前景.天然气工业,2002, 22(4):109~111.
    [77] 王龙樟, 戴谟, 彭平安. 自生伊利石 40Ar/ 39Ar 法定年技术及气藏成藏期的确定. 地球科学—中国地质大学学报, 2005, 39(1): 78~82.
    [78] 王平在,李明生,王江.海拉尔盆地乌尔逊含氦二氧化碳气藏石油地质特征及勘探前景.特种油气藏, 2003, 10(6):9~12.
    [79] 王濮, 潘兆橹, 翁玲宝. 系统矿物学(下). 1987, 北京: 地质出版社, 415.
    [80] 王琪, 史基安, 肖力新, 等. 石油侵位对碎屑储集岩成岩作用序列的影响及其与孔隙演化的关系—已塔西南石炭系石英砂岩为例. 沉积学报, 1998, 16(3): 97~101.
    [81] 王先彬.稀有气体同位素地球化学和宇宙化学. 北京:科学出版社.1989.
    [82] 王振峰, 何家雄, 张树林, 等. 南海北部边缘盆地 CO2 成因及充注驱油的石油地质意义. 石油学报, 2004, 25(5): 48~53.
    [83] 吴向阳, 牟荣, 石胜群, 等. 苏北盆地火成岩发育与构造演化的关系. 勘探家, 1999, 4(1): 44~47.
    [84] 吴新民, 康有新, 姜英泽, 等.吉林大安北油田葡萄花储层岩石基本特征.西安石油学院学报, 1999, 14(1): 6~9.
    [85] 吴新民,康有新,张宁生.吉林油田大 26 井区储层潜在伤害因素分析.西安石油学院学报(自然科学版),2001, 16(5):29~32.
    [86] 解习农, 李思田, 董伟良, 等. 热流体活动示踪标志及其地质意义—以莺歌海盆地为例. 地球科学—中国地质大学学报, 1999, 24(2):183~188.
    [87] 解习农, 李思田, 胡祥云, 等. 莺歌海盆地底辟带热流体输导系统及其成因机制. 中国科学 D 辑, 1999, 29(3):247~256.
    [88] 解习农, 王增明. 盆地流体动力学及其研究进展. 沉积学报, 2003, 21 (1): 19~24.
    [89] 解习农, 李思田, 刘晓峰. 异常压力盆地流体动力学. 2006. 中国地质大学出版社.
    [90] 徐同台等, 王行信, 张有瑜,等.中国含油气盆地粘土矿物. 石油工业出版社.2003.
    [91] 徐衍彬, 陈平, 徐永成. 海拉尔盆地碳钠铝石分布与油气的关系. 石油与天然气地质, 1994, 15(4):322~327.
    [92] 徐衍彬, 冯子辉, 要丹. 海拉尔盆地 CO2 气藏成因. 大庆石油地质与开发. 1995, 14(1):9~11.
    [93] 徐永昌, 傅家谟, 郑建京. 天然气成因及大中型气体形成的地学基础. 北京: 科学出版社. 2000.
    [94] 薛永超, 彭仕宓, 朱红卫, 等. 新立油田泉三、四段储层成岩作用及储集空间演化. 西安石油大学学报(自然科学版), 2005, 20(4): 11~16.
    [95] 杨长清, 姚俊祥. 三水盆地二氧化碳气成藏模式. 天然气工业, 2004, 24(2): 36~39.
    [96] 杨池银. 黄骅坳陷二氧化碳成因研究. 天然气地球科学, 2004, 15(1): 7~11.
    [97] 杨俊杰, 黄月明, 张文正, 等. 乙酸对长石砂岩溶蚀作用的实验模拟. 石油勘探与开发, 1995, 22(4): 82~86.
    [98] 杨默函, 侯贵廷, 史謌. 辽河盆地东部凹陷新生代火山岩 K-Ar 地质年代学及其地质意义. 北京大学学报(自然科学版), 2006, 42 (2): 184~191.
    [99] 杨庆杰, 刘立, 迟元林, 等. 盆地流体的基本类型及其驱动机制. 世界地质, 2000, 19(1): 15~19.
    [100] 叶瑛, 沈忠悦, 彭晓彤, 等. 塔里木盆地下第三系储层砂岩自生碳酸盐碳氧同位素组成及流体来源探讨. 浙江大学学报, 2001, 28(3):321~326.
    [101] 殷红. 下扬子区黄桥 CO 2 气田流体特征分析. 内蒙古石油化工,2005,(5):135~136.
    [102] 应凤祥, 罗平, 何东博. 中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟.石油工业出版社.2004.
    [103] 曾溅辉 . 自由对流及其对成岩作用和烃类运移的影响 . 地质论评 , 1998, 44(2):165~171.
    [104] 曾溅辉. 东营凹陷热流体活动及其对水-岩相互作用的影响. 地球科学—中国地质大学学报, 2000, 25(2):133~142.
    [105] 曾荣树, 孙枢, 陈代钊, 等. 减少二氧化碳向大气层的排放——二氧化碳地下储存研究. 中国科学基金, 2004, 4: 196~200.
    [106] 赵孟军, 宋岩, 潘文庆, 等. 沉积盆地油气成藏期研究及成藏过程综合分析方法.地球科学进展,2004,19(6): 939~946.
    [107] 张长俊, 龙永文.海拉尔盆地沉积相特征与油气分布. 1995.北京:石油工业出版社.
    [108] 张惠良, 张荣虎, 王月华, 等. 粘土膜对砂岩储集性能的影响-以塔里木盆地群 6井区泥盆系东河塘组下段为例. 石油实验地质, 2006, 28(5): 493~498.
    [109] 张吉光, 张宝玺, 陈萍. 海拉尔盆地苏仁诺尔成藏系统. 石油勘探与开发, 1998, 25(1):25~28.
    [110] 张吉光, 彭苏萍, 林景晔.乌尔逊凹陷沉积成岩体系与油气分布. 古地理学报, 2002, 4(3):74~82.
    [111] 张丽霞, 朱国华, 李民. 准噶尔盆地白垩系低电阻油层成因. 新疆石油地质, 2004, 25(4): 388~389.
    [112] 张晓东, 杨玉峰, 殷进垠. 松辽盆地昌德气田天然气成因及成藏模式. 现代地质, 2000, 14(2): 203~208.
    [113] 张岳桥, 赵越, 董树文, 等.2004.中国东部及邻区早白垩世裂陷盆地构造演化阶段.地学前缘,2004, 11(3): 123~ 133.
    [114] 张枝焕, 胡文瑄, 曾溅辉, 等. 东营凹陷下第三系流体-岩石相互作用研究. 沉积学报, 2000, 18(4): 560~566.
    [115] 郑求根, 张育民, 全书进, 等. 焉耆盆地磷灰石裂变径迹分析. 矿物岩石, 2003, 23(3): 69~75.
    [116] 周蒂. CO2 的地质存储——地质学的新课题. 自然科学进展, 2005, 15(7): 782~787.
    [117] 朱文斌, 万景林, 舒良树, 等. 吐鲁番-哈密盆地中新生代热历史: 磷灰石裂变径迹证据. 自然科学进展, 2004, 14(10): 1194~1198.
    [118] 朱岳年. 二氧化碳地质研究的意义及全球高含二氧化碳天然气的分布特点. 地球科学进展, 1997, 12(1): 26~31.
    [119] Allen D E, Strazisar B R, Soong Y, et al. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities. Fuel Processing Technology, 2005, 85: 1569~1580.
    [120] Archer S G, Wycherley H L,Watt G R, et al. Evidence for focused hot fluid flow with in the Britannia Field, offshore Scotland, UK. Basin Research, 2004, 16: 377~395.
    [121] Bader E.Uber die buiding and konstitution des dawsonite and seine synthetic darstelling. Mineralogy Geology and Palaeotology,1938, 74:449~465.
    [122] Baker J C, Price P L and Golding S D. Coal as a source for hydrocarbon gas in the Aldebaran Sandstone, Bowen Basin-geochemical evidence.Queensland Coal Symposium proceedings, 1991: 57~61.
    [123] Baker J C, Bai G P, Hamilton P J, et al. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia. Journal of Sedimentary Research, 1995, 65(3): 522~530.
    [124] Baksa C, Bognar L, Lovas G. Occurrence of dawsonite at Recsk(Matra Mountains, North Hungary). Acta Geologica Academiae Scientiarum Hungariae, 1975, 19:281~286.
    [125] Benezeth P, Palmer D A, Horita J, et al. Experimental determination of dawsonite stability and reactivity: Implications for geological CO2 sequestration. Geophysical Reasearch Abstracts, 2006, 8: 3357.
    [126] Bjφrlykke K, Mo A, Palm E. Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions. Marine and Petroleum Geology, 1988, 5:338~350.
    [127] Bjφrlykke K. Fluid flow processes and diagenesis in sedimentary basin[A]: In: ParnellJ. Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins[C]. London: Geological Society Special Publication, 1994, 78: 127~140.
    [128] BoyntonW V. 1984.Geochemistry of the rare earth elements: meteorite tudies[A] . Henderson P. Rare earth element geochemistry[C ]. Elseriver:63~114.
    [129] Carlson W D, Donelick R A, Ketcham R A. Variability of apatite fission tracks annealing kinetics: 1. Experimental results. American Mineralogists, 1999, 84: 1213~1223.
    [130] Chesworth W. Laboratory synthesis of dawsonite and its natural occurrences. Natural and Physical Sciences,1971,231: 40~41.
    [131] Clowley K D, Cameron M, Schaefer R L. Experimental studies of annealing etched fission tracks in fluorapatite. Geochimica et Cosmochimica Acta, 1991, 55: 1449~1465.
    [132] Coveney R M, Kelly W C. Dawsonite as a daughter mineral in hydrothermal fluid inclusions. Contributions to Mineralogy and Petrology, 1971, 32:334~342.
    [133] Dai J X, Song Y, Dai C S, et al. Geochemistry and accumulation of carbon dioxide gases in China. AAPG Bulletin, 1996, 80(10):1615~1626.
    [134] Davis S H, Rosenblat S Wood J R, et al. Convective fluid flow and diagenetic patterns in domed sheets. American Journal of Science, 1985, 285: 207~223.
    [135] DeRos L F. Heterogeneous generation and evolution of diagenetic quartarenites in the Silurian-devonian Furnas Formation of the Parana basin, southern Brazil. Sedimentary Geology, 1998, 116: 99~128.
    [136] Emberley S, Hutcheon I, Shevalier M, et al. Geochemical monitoring of fluid-rock interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada. Energy, 2004, 29:1393~1401.
    [137] Faure G. 1986. Principles of Isotope Geology.New York:Wiley and Sons Press.
    [138] Genthon P, Schott J, Dandurand J-L.Carbonate diagenesis during thermo-convection: Application to secondary porosity generation in clastic reservoirs. Chemical Geology, 1997. 142: 41~61.
    [139] Girard J P, Deynoux M, Nahon D. Diagenesis of the upper Proterozoic silici clastic sediments of the Taoudeni Basin (west Africa) and relation to diabase emplacemet. Journal of Sedimentary Petrology, 1989, 59: 233~248.
    [140] Gleadow A J W, Duddy I R, Green P F, et al. Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 1986, 94: 405~415.
    [141] Golab A N, Carrb P F, Palamara D R. Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia. International Journal of Coal Geology, 2006, 66(4): 296~304.
    [142] Green P F, Duddy I R, , Gleadow A J W, et al. Thermal annealing of fission tracks in apatite 1. A qualitative description. Chemical Geology (Isotope Geoscience Section), 1986, 59: 237~253.
    [143] Gunter W D, Wiwchar B, Perkins E H. Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling .Mineralogy and Petrology, 1997, 59: 121~140.
    [144] Harrington B J. Notes on dawsonite, a new carbonate. Canadian Naturalist, 1874, 7: 305~309.
    [145] Haszeldine R S, Quinn O, England G, et al. Natural Geochemical analogues for carbon dioxide storage in deep geological porous reservoirs, a United Kingdom perspective. Oil & Gas Science and Technology, 2005, 60(1):33~49.
    [146] Hay R L. Zeolite weathering in Olduvai Gorge, Tanganyika. Bulletin of Geological Society of America, 1963, 74: 1281~1286.
    [147] Haywood H M, Eyre J M, Scholes H. Carbon dioxide sequestration as stable carbonate minerals-environmental barriers . Environmental Geology, 2001, 41:11~16.
    [148] Hellevang H, Aagaard P, Oelkers E, et al. Can dawsonite permanently trap CO2? Environ. Sci. Technol, 2005, 39: 8281~8287.
    [149] Heritsch H. Dawsonite as a product of low-hydrothermal transformation of a volcanic breccia from a borehole in eastern Styria(Austria). Neus Jahrbuch fur Mineralogie, Monatshefte, 1975, 8:360~368.
    [150] Hogg A J C, Hamilton P J, Macintyre R M. Mapping diagenetic fluid flow within a reservoir, K-Ar dating in the Alwyn area(UK North Sea). Marine and Petroleum Geology,1993,10(3): 279~294.
    [151] Howseknecht D W. Assessing the relative importance of compaction processes and cementation on reduction of porosity in sandstones. AAPG. Bull., 1987, 71(6): 633~642.
    [152] Isa Kubach. Gmelin Handbuch der Anorganischen Chemie(Syst-No.39). Springer-Verlag, Berlin Heidelberg New York Press.1981.
    [153] Kamp P J J, Green P F. Thermal and tectonic history of selected Taranaki basin(New Zealand)wells assessed by apatite fission track analysis. AAPG Bulletin, 1990, 74(9):1401~1419.
    [154] Kaszuba J P, Janecky D R, Snow M G. Carbon dioxide reaction processes in a model brine aquifer at 200℃ and 200bars: implications for geologic sequestration of carbon. Applied Geochemistry, 2003, 18:1065~1080.
    [155] Kyser K, Hiatt E E. Fluids in sedimentary basins: an introduction. Journal of Geochemical Exploration, 2003, 80: 139~149.
    [156] Laslett G M, Green P F, Duddy I R, et al. Thermal annealing of fission tracks in apatite 2.A quantitative analysis. Chemical Geology (Isotope Geoscience Section), 1987, 65: 1~13.
    [157] Lee M C, Aronson J L, Savin S M. K/Ar dating of time of gas emplacement in Rotliegendes sandstone, Netherlands. AAPG Bulletin, 1985,69: 1381~1385.
    [158] Li Yanhe, Li Jincheng and Song Hebin. Helium isotope geochemistry of ultrahigh-pressure metamorphic eclogites from the Dabie Mts and Sulu terrane in east China. Acta Geoligica Sinica(English edition),2000, 74(1):14~18.
    [159] Liu Lihui, Yuko Suto, Greg Bignall. CO2 injection to granite and sandstone in experimental rock/hot water systems. Energy Conversion and Management, 2003, 44: 1399~1410.
    [160] Loughnan F C, Goldbery R. Dawsonite and analcite in the Singleton Coal Measures of the Sydney Basin. American Mineralogist, 1972, 57( 9~10):1437~1447.
    [161] Lupton J E. Terrestrial inert gases: Isotope tracer studies and clues to primordial components in the mantle. Annual Review Earth Science, 1983,11:371~414.
    [162] Mckinley J M, Worden R H, Ruffell A H. Contact diagenesis: the effect of an intrusion on reservoir quality in the Trassic Sherwood sandstone group, North Ireland. Journal of Sedimentary Research,2001,7(3):484~495.
    [163] Merino E, Gierre J P, May M T, et al. Diagenetive mineralogy, geochemistry, and dynamics of Mesozoi carkoses, Hart for drift basin, Connecticut, USA. Journal of Sedimentary Petrology, 1997, 67(1): 212~224.
    [164] Mullis A M, Haszeldine R S. Numerical modeling of diagenetic quartz hydrogeology at a graben edge: Brent oilfield, North Sea. Journal of Petroleum Geology, 1995, 18(4): 421~438.
    [165] Nedkvitne T, Karlsen D A, Bjφrlykke K, et al. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula Field, North Sea. Marine and Petroleum Geology, 1993, 10: 255~270.
    [166] Nicoleliwig. Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oil reservoir, North Sea. AAPG Bulletin, 1987,71:1467~1474.
    [167] Ohmoto H and Rye RO. Isotopes of sulfur and carbon. In barnes H L. Geochemistry of Hydrothermal Ore Diposits. 2nd Edition. New York, Wiley Press, 1979: 509~567.
    [168] O’Neil JR, Clayton RN and Mayeda TK. Oxygen isotope fractionation in divalent metalcarbonates. Journal of Chemical Physics, 1969, 51:5547~5548.
    [169] Ortoleva P J,Dove P,Richter F.1998.Geochemical perspectives on CO2 sequestration[A]. In: US Department of Energy Workshop on “Terrestrial Sequestration of CO2—An Assessment of Research Needs”[C], Wawersik W R and Rudnicki J W , Editors: 20~28.
    [170] Pakdee W, Rattanadecho P. Unsteady effects on natural convective heat transfer through porous media in cavity due to top surface partial convection. Applied Thermal Engineering,2006, available online at www.sciencedirect.com
    [171] Saigal G C, Bjφrlykke K, Larter S. The effects of oil emplacement on diagenetic processes-Examples from the Fulmar reservoir sandstones, Central North Sea. AAPG. Bull., 1992, 76(7):1024~1032.
    [172] Shiraki R, Dun T L. Experimental study on water-rock interactions during CO2- flooding in the Tensleep Formation, Wyoming, USA. Applied Geochemistry, 2000, 15:265~279.
    [173] Smith J W, Milton C. Dawsonite in the Green River Formation of Colorado. Economic Geology, 1966, 61: 1029~1042.
    [174] Smith J W, Gould K W and Rigby D. The stable isotope geochemistry of Australian coals.Organic Geochemistry, 1982, 3:111~131.
    [175] Soong Y, Goodman A L, McCarthy-Jones J R, et al. Experimental and simulation studies on mineral trapping of CO2 with brine. Energy Conversion and Management, 2004, 45: 1845~1859.
    [176] Stankevich E F, Batalin Y V. Distribution and origin of dawsonite. Lithology and Mineral Resources, 1977, 11:359~368.
    [177] Stevenson J S,Stevenson L S. The petrology of dawsonite at the type locality, Montreal. Canadian Mineralogist, 1965, 8:249~252.
    [178] Stevenson J S,Stevenson L S. Contrasting dawsonite occurrences from Mount St-Bruno, Quebec. Canadian Mineralogist, 1978, 16:471~474.
    [179] Stevens S H, Pearce j m, rigg A A j. Natural analogs for geologic storage of CO2: an integrated global research program.In:First National Conference on Carbon Sequestration, U.S. Department of Energy, 2001, 1~12.
    [180] Surdam R C, Boese S W and Crossey L J. The chemistry of secondary porosity[A]. In: McDonald D A, Surdam R C(eds.), Clastic Diagenesis[C]. AAPG Memoir, 1984, 37: 127~149.
    [181] Surdam R C, Crossey L J, Sven Hagen E, et al. Organic-inorganic interactions and sandstone diagenesis. AAPG. Bull. , 1989, 73(1): 1~23.
    [182] Surdam R C, Jiao Z S and MacGowan D B. Redox reactions involving hydrocarbons and mineral oxidants: A mechanism for significant porosity enhancement in sandstones. AAPG. Bull., 1993, 77(9): 1509~1518.
    [183] Wood J R, Heweett T A. Fluid convection and mass transfer in porous sandstones—atheoretical model. Geochim Cosmochim Acta, 1982, 46: 1707~1713.
    [184] Wood J R, Hewett T A. Reservoir diagenesis and convective fluid flow. In: MeCdonald D A, Surdam R C. Clastic Diagenesis. AAPG, 1984, Memoir37: 99~110.
    [185] Worden R H, Burley S D.Sandstone diagenesis: the evolution of sand to stone. In: Burley S D,Worden R H(eds),Sandstone diagenesis: recent and ancient.2003.Blackwell Pub.1~44.
    [186] Worden R H. Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen:A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction.Marine and Petroleum Geology, 2006, 23 : 61~77.
    [187] Wycherleya H, Fleeta A, Shaw H.Some observations on the origins of large volumes of carbon dioxide accumulations in sedimentary basins . Marine and Petroleum Geology,1999,16: 489~494.
    [188] Xie X N, Li S T, Dong W L, et al. Evidence for hot fluid flow along faults near diapiric structure of Yinggehai basin, South China Sea. Marine and Petroleum Geology, 2001, 18(6):715~728.
    [189] Xu T, Apps J A, Pruess K.Numerical simulation to study mineral trapping for CO2 disposal in deep aquifers.Appl. Geochem,2004, 19:917~936.
    [190] Xu T, Apps J A, Pruess K.Mineral sequestration of carbon dioxide in a sandstone–shale system.Chemical Geology, 2005 ,217: 295~318.
    [191] Zerai B, Saylor B Z, Matisoff G.Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio. Applied Geochemistry Geochemistry,2006,21: 223~240.
    [192] Zhang Xiangfeng, Wen Zhaoyin, Gu Zhonghua, et al. Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds. Journal of Solid State Chemistry,2004,177(3):849~855.
    [193] Zwingmann N, Mito S, Sorai M, Ohsumi T. Pre-injection characterization and evaluation of CO2 sequestration potential in the Haizume Formation, Niigata Basin, Japan . Oil & Gas Science and Technology, 2005, 60(2):249~258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700