TSM盆地模拟资源分级评价技术及其在苏北溱潼凹陷中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TSM盆地模拟资源评价系统是以朱夏院士3T(环境)-4S(作用)-4M(响应)盆地研究系统思想为指导,从盆地原型到圈闭的系统网络按埋藏、热、生烃和运聚等四罗软件运行系统综合的数值模拟。构造-热体制的变化,为盆地提供了原型控制油气P(压力)、V(体积)、T(温度)动态变化的边界条件,使得系统合理地进行生烃量、排烃量直至圈闭资源量的计算。通过理论建模—实例校验—盆地模拟的工作程序,初步建立了盆地动态成藏系统网络整合的方法;通过在苏北盆地溱潼凹陷的具体应用研究,取得了一系列成果。
     一、TSM盆地模拟是一个适用的资源分级评价系统
     1、研究建立了以活动论构造历史观和盆地原型及其并列迭加为特色的油气盆地资源分级评价理论方法体系。
     强调从盆地整体出发进行盆地油气资源的分级评价,就是说无论在勘探工作的哪个阶段,都应该从盆地整体到局部进行分析评价,都有盆地、区带和圈闭的资源评价问题;其次,以活动论构造历史观为指导,强调应根据具体的地质情况,以盆地分析为前导,对所评价的地区进行盆地原型及其并列迭加分析,据此进行不同级别的油气资源评价;第三,各个级别的资源评价都应当考虑从油气盆地地质作用以及响应的各个方面因素,反映系统整合的效应,同时各有所侧重。在研究过程中,深入剖析具有较高勘探程度的苏北溱潼凹陷,通过综合地质作用和油气响应等各方面因素,得到各个区带的模拟资源量及其演化情况,得到了不同假设条件下的比较,得到重点局部构造的油气资源评价分析,其结果可以为油气资源的分级评价起重要的作用,在现有的资料基础上提供下一步勘探部署的建议。该方法的成功实施已充分显示出其作为一个盆地分析和油气资源评价的有力工具,其“思考”的系统性、定量性和动态的演化观念是人工无法比拟的,并随着勘探程度不断提高,模型方法的不断更新,模拟可以实现“评价与再评价”。
     2、初步建立了以埋藏史、热史、生烃史和运聚史等四史为核心的原型地质作用与油气响应关系的系统整合模拟—TSM盆地模拟资源分级评价技术。
     该系统强调了地质概念模型研究和不同构造-热体制下原型盆地的并列迭加关系分析是模拟实施的重要前提。方法具有检验地质概念模型、揭示盆地演化过程的功能,最终以预测油气资源的数量和分布为目的,并随着勘探进程进行滚动评价,达到指导勘查的目的。从效果、用途等方面看有以下特点:在模型系统方面:①正确的盆地研究理论指导,强调了地质调查是模拟运行的前提。②明确反映了不同构造-热体制与油气系统演化之间作用-响应的确定性关系。③摸拟结果系统、动念、定量,提供了合理预测油气的依据。在软件系统方面:①系统模块化,从设计至编程均为自主开发,拥有自主的核心技术。②软件系统适应中国复杂结构盆地的情况,可视不同地质情况“并列”或“迭加”的调整模块系统;从而可以通过单项模拟的“组装”实现盆地大系统的、动态的综合。③系统处于发展之中,模型库的不断扩充,使得方法系统不断完善,系统具有很强的扩展能力。④不断跟踪国内外发展,模块具有先进性,可与国际先进水平相比。⑤软件系统涵盖了从埋藏史、热史、生烃史和运聚史等油气地质研究的各项内容,是一个综合的、互动的系统。⑥通过在各种不同勘探程度盆地的实际应用,取得良好的效果;可直接服务于油气评价,是一个有较强实用性的资源评价系统。针对苏北溱潼凹陷典型实例,建立了断陷、拗陷和剥蚀、物质充填和热传导等地质作用模型,建立了热降解生烃、临界饱和度排烃以及运移路径等一系列油气响应模拟模型;实现了二维的模拟,建立了较为成熟的断-拗原型迭加油气评价系统。勘探应用表明,TSM系统是一套能够揭示盆地演化史和进行油气选区评价及远景区带定量评价的分析和模拟方法;是一套高效、可信且低成本的盆地资源评价方法,可能是一个减小勘探风险的重要工具。在勘探评价初期,使用有限的地质资料,TSM系统可以用于油气资源潜力分析和选区评价;当有更多资料时,TSM系统可以定量评价有利区带的油气远景储量;从而在不同勘探阶段实现了对不同级别资源的综合评价。
     二、在溱潼凹陷的评价中所取得的新进展
     通过对苏北溱潼凹陷的应用,根据不同勘探程度,相应进行了盆地、区带和圈闭油气资源的评价,从而对油气盆地资源分级评价理论和系列技术进行了实用检验。应用表明,针对不同勘探程度和评价目标,油气盆地分级评价技术均能检验地质概念模型的正确性、揭示油气成藏的动态过程、进行合理的资源分级评价,从而提供勘探决策,降低勘探风险。论文取得主要进展有:
     (1)系统、定量、动态地描述和分析了溱潼凹陷晚白垩世-古新世断陷、渐-始新世断陷和晚第三纪-第四纪拗陷的发育及迭加改造过程。计算了吴堡及三垛运动的不整合面的剥蚀量,恢复了沉积间断过程。分析反映两期断陷有其不同风格,首先,两期断陷的受力方向不同,沉降中心亦有所偏差,古新世时期沉降、沉积的重点在淤溪、戴南镇等中西部一线。渐—始新世断陷期凹陷的沉降、沉积受北东向断裂控制,其沉降重点在主断裂附近,以溱潼镇、时堰、大凡庄等中东部一线为最。其次,晚白垩世-古新世断陷期拉张量和沉降幅度都大于渐-始新世断陷期。凹陷除了南北方向可以划分断阶带、深凹带和斜坡带之外,在东西向上也具有不同的构造发展特征。
     (2)计算表明,溱潼凹陷主要烃源岩为泰州组及阜二段,排烃高峰期为23.2Ma,其次为阜三、阜四段。戴南组基本无烃排出。凹陷的总生烃量为12.4271×10~8t,排烃量为6.2260×10~8t。从平面分布上看,泰州组的烃源岩在溱潼次凹和港口—俞垛次凹生、排烃能力最强,时埝次凹次之,内斜坡亦有一定生烃能力,阜二段烃源岩在港口、俞垛、溱潼、时埝次凹生、排烃量最大,而阜四段烃源岩生、排烃量最大在溱潼、戴南、时埝一线,港口、俞垛一线次之。
     (3)依据深凹部位烃源岩排烃势能最大脊线和构造面貌,共将凹陷划分为南部断阶带、内斜坡带、枢纽带和外斜坡带等4个区带,11个区块。从运聚计算分析,内斜坡带、断阶带是油气运聚的最有利地区。资源量主要集中在泰州组、阜一段、阜三段和戴南组,而阜三段(E_f~3)是凹陷油气资源最富集的层位,资源量约248×10~6t,约占凹陷资源量的40%以上。结合目前勘探成果分析,内斜坡带(下溪、港口、叶甸、边城、戴南等区块)的阜宁组是下一步勘探的重点目的层位;对于中构造层而言戴南组(E_(?))应以内斜坡带为主要目的工区,三垛组(E_s)应以断阶带为主要目的工区。
     (4)在区带资源量定量评价的基础上,根据主要控油断层的发育与分布、构造圈闭的发育状况等进行分析,动态地再现了油气在储层中的聚集。并且典型模拟评价了斜坡带上的帅垛、顾庄、朱家圩、下溪等四个局部构造,尝试性地计算了帅垛构造阜三段油气运聚量为0.608×10~6t,顾庄构造阜三段油气运聚量为0.345×10~6t;从而对各区带、各局部圈闭的油气资源量进行了定量预测。
TSM basin modeling for resource evaluation system is directed by the thoughts of basin research of 3T (environments) - 4S (actions) - 4M (responses) proposed by Academician Zhu Xia. which is simulated in a synthetic software composed of burial. thermal, hvdrocarbon generation and migration history. The modeling targets are from basinal prototypes to traps. The 'should be so' changes of tectonic - thermal system provided dynamic boundary conditions for the changes of pressure (P), volume (V) and temperature (T) controlling hydrocarbon in a protobasin, which make it is possible to reasonably, calculate amounts of hydrocarbon generation, migration and even the resource of a trap. Through theoretical model, practical adjustment and basin modeling, a dynamic modeling system for hydrocarbon accumulation is constructed. Some good results are gained alter it is applied to the study, of Qingtong depression in northern. Jiangsu Basin.
     1. TSM basin modeling system is a suitable tool for hierarchy evaluation of petroleum resource
     1.1 Theoretical system
     It is emphasized that hierarchy evaluation of petroleum resource in a basin should take the basin as a whole, i.e. it should be analyzed and assessed from entirety to part of the basin at any stages of petroleum exploration. There are different assessment objects in a basin, zone or trap. Secondary, based on mobilism of tectonic history. basin prototype and its superimposition and juxtapositon should be analyzed, and different level of resource is evaluated in accordance with different geological conditions. Third, all factors of geological activity and its response in a basin should be considered in different levels of evaluation of petroleum resource, and the whole effect should be reflected with emphasis of some important aspects. Qingtong depression of the northern Jiangsu Basin with higher level of exploration is studied in detail. After integration of geological actions and their responses in the basin, the simulated resource of oil zones is indicated, the results are compared with various geological conditions, and petroleum resource in principle local structures is analyzed. The results may provide important foundation for hierarchy evaluation of hydrocarbon resource and can give out suggestion for future exploration without more data available. The method is a powerful tool for basin analysis and resource assessment. Its systemticness, quantitativeness and dynamicness are far beyond the hulnan's ability. With the increasing level of exploration and the continuously improvement of modeling method, "assessment and re-assessment" of simulation can be reached.
     1.2 TSM basin modeling technique for hierarchy evaluation of petroleum resource
     It is emphasized that study of geoIogical concept model and analysis of basinal superimposition and juxtaposition under different tectonic and thermal system are the important basis for basin modeling. The geological concept model can be tested and the basin evolution process can be revealed by the method. And its purpose is to predict amount and distribution of petroleum resource. It may perform real time assessment with exploration progress and conduct the exploration. The characteristics of the modeling system in terms of its result and function is as followings: a) With correct theory of basin research, it is emphasized that geological study is the prerequisite for modeling operation, b) A definite 'action - response' relationship between the different tectonic - thermal system and the evolution of petroleum svstem is indicated, c) Modeling results are systematic, dynamic and quantitative, and provide reasonable prediction of petroleum distribution. In terms of the software, there are following characters: a) It consisted of modules which are independent in design and development, and we own the core technique, b) The software is suitable for complex basin structure of China. The module may be adjusted according to different 'juxtaposition' or 'superimposition' of basinal prototypes, thus dynamically fulfill integration of modeling system, c) There is strong expanding ability of the system during expansion of module warehouse and development of method system, d) The software covers various aspects of petroleum geology such as burial, thermal, hydrocarbon generating and migrating histories. It is a integrated and mutual system. e) After practical application in basins with different levels of exploration, the rnethod may directly be applied to evaluation of petroleum resource and good results are achieved. Taking Qingtong depression of the northern Jiangsu Basin as an example. geological models of fault-depression, depression, erosion, sediment filling and thermal conduction are designed, a series of modeling models for hydrocarbon responses such as hydrocarbon generation, expulsion and migration pathway are constructed, so a relative well-considered petroleum evaluation system with prototype superimposition of fault depression and depression is developed. The exploration practice has showed that TSM system may reveal basin evolution history, carry out selected-area assessment, and quantitatively appraise prospective oil zone. It is a high effective, reliable and low cost evaluation system of basin resource, and it may be an important tool for reducing exploration risk. In the early stage of exploration, TSM system can be used to assess the potential hydrocarbon resource by limited geological data. As soon as more data is collected, the system may quantitatively predict prospective reserve for the favourable zone, Therefore, synthetic evaluation of petroleum resource in different stages of exploration is fulfilled.
     2. Advances in evaluation of Qingtong depression
     On basis of degree of exploration in Qingtong depression, petroleum resource in basinal, zonal and trap levels is carried out, so the hierarchy evaluation and serial techniques of petroleum resource are practically tested. The results showed that. for different exploration degree and different evaluating objects, the hierarchy evaluation technique of petroleum basin can test validity of geological concept model, reveal dynamic course of hydrocarbon accumulation, and reasonably assess resource in different levels. Thus. the decision-making can be improved and exploration risk may be lowered. Main advances of the study are as followings.
     a) The development, superimposition and modification of Late Cretaceous - Paleocene fault depression, Oligocene - Eocene fault depression and Neocene - Quaternary depression in Qingtong depression are described and analyzed systematically, quantitatively and dynamically. Erosion amount of unconformities formed during Wubao and Sanduo movements is calculated, and depositional hiatus is restored. It indicates that there are different styles for the two fault depressions. First. the two fault depressions have different stress directions, and the subsidence centers are little different. The subsidence and deposition center during Paleocene is in Yuxi and Dainan areas, the central west part of the depression. Subsidence and deposition are controlled by northeastern trend fault during Oligocene - Eocene, and subsidence is around the fault and Qingtong, Shiyan and Dafangzhuang areas, the central east part of the depression, are the center. Secondary, extension amount and subsidence range in Late Cretaceous - Paleocene fault depression period are larger than those in Oligocene - Eocene period. Step fault block, deep depression and slope can be divided along south - north direction in the depression, and there also are different structural characteristics in east - west direction.
     b) Calculation result showed that main source rocks are Taizhou formation and member Fu-2 with hydrocarbon expulsion peak at 23.2 Ma. Member Fu-3 and Fu-4 may be the minor source rocks. No hydrocarbon is expulsed from Dainan formation. Total amount of hydrocarbon generated in the depression is 12.4271*10~8t, and expulsed hydrocarbon is 6.2260*10~8t. In plane, hydrocarbon generation and expulsion of source rocks of Taizhou formation are the strongest in Qingtong, Gangkou - Yuduo sags. Shinian sag is placed the second, and inner slope has some ability of hydrocarbon generation. And those of member Fu-2 are concentrated in Gangkou. Yuduo, Qingtong and Shinian sags. For source rocks of member Fu-4, hydrocarbon generation and expulsion are mainly in Qingtong, Dainan and Shinian areas, with minor in Gangkou and Yudou areas.
     c) According to the largest crest line of hydrocarbon expulsion potential of source rocks and structural pattern in the deep part of the depression, the depression can be divided into 4 zones called southern step fault block, inner slope, hinge belt and outer slope, which can further be divided into 11 blocks. On basis of calculation of hydrocarbon migration and accumulation, inner slope and step fault block are the most favourable location for hydrocarbon accumulation. Reserve is mainly concentrated in Taizhou formation, member Fu-1 and Fu-2 and Dainan formation, and member Fu-3 (Ef~3) is the richest reservoir with reserve of about 248*10~6t that owns 40% of the total reserve in the depression. In accordance with present result of exploration, Funing formation in the inner slope (Xiaxi, Gangkou, Yedian, Biancheng and Dainan areas) is the future target for exploration. In terms of the middle structural horizon, Dainan formation (Ed) is the target in inner slope and Sanduo fonnation (Es) is the target in step fault block.
     d) On basis of quantitative evaluation of zonal resource amount, combining with analysis of development and distribution of main controlling faults and structural traps. hydrocarbon accumulation in the reservoirs is dynamically reproduced. Four local structures named Shuaiduo, Guzhuang, Zhujiawei and Xiaxi are simulated and assessed. The calculated accumulation amount of member Fu-3 in Shuaiduo structure is 0.608*10~6t, and in Guzhuang structure is 0.345*10~6t. Thus, hydrocarbon resource in every block and every local trap is predicted quantitatively.
引文
陈发景,田世澄主编,压实与油气运移.北京:中国地质出版社,1989
    陈发景等.中国中、新生代含油气盆地构造和动力学背景.现代地质,1992,6(3):317-327
    陈荣书等.岩浆活动对有机质成熟作用的影响初探——以冀中葛渔城—文安地区为例.石油勘探与开发,1989(1):7-139
    崔秀琴等.苏北盆地溱潼凹陷茅山地区三维地震资料综合解释研究报告(GR-97-05-04).中国新星石油公司华东石油局,1999
    方美琪.计算机模拟.中国人民大学出版社,1989
    费富安,郭迪孝.苏北溱潼凹陷下第三系生油量计算报告.1979
    冯勇,石广仁等.有限体积法及其在盆地模拟中的应用.西南石油学院,2001,23(5):12-15
    韩玉笈,王捷,毛景标.盆地模拟方法及其应用.第三届全国数学地质学术会议文献,1986
    金之钧,张金川.油气资源评价方法的基本原则.石油学报,2002,23(1):19-24
    李明诚.石油与天然气运移.石油工业出版社,1986
    李明诚.碎屑岩系中天然气运移的特征及其定量研究.石油勘探与开发,1992,19(4):1-11,21
    李述元.化学动力学在盆地模拟生烃评价中的应用.石油大学出版社,2000
    李晓东.盆地模拟及在松南地区的应用.勘探地球物理进展,2002,25(4):41-45
    林畅松,张燕梅.拉伸盆地模拟理论基础和新进展.地学前缘,1995,2(3):79-88
    潘钟祥.石油地质学.地质出版社,1986
    钱基等.江苏探区油气资源评价研究.中国石油化工股份有限公司江苏油田分公司,2000
    石广仁.油气盆地数值模拟方法.石油工业出版社,1994
    石广仁等.沉积盆地综合动态模拟系统(一、二).石油物探,1988,27(3):1-15,27(4):29-46
    石广仁等.盆地模拟技术新进展(一、二).石油勘探与开发,1997,24(3):38-40,24(4):33-37
    石广仁等.一维盆地模拟系统BAS1.石油勘探与开发,1989,16(6):1-11
    孙贤恺.江苏地区新生代沉积盆地油气资源预测报告.地矿部华东石油地质局[内部],1983
    孙岩,施泽进,舒良树,沈修志.层滑—倾滑断裂构造与油气地质研究.大学出版社,1991
    陶一川编著.石油地质流体力学分析基础.武汉:中国地质大学出版社,1993
    陶一川等.不同温压条件下流体动态模拟研究.“八五”国家重点科技攻关项目成果报告(85-102-01-01-01),1994
    汪本善等.油气运移研究—泌阳盆地剖析.北京:石油工业出版社,1994
    王捷等.胜利探区油气资源评价研究.中国石油化工股份有限公司胜利油田分公司,2000
    王良书,施央中.油气盆地地热研究.南京大学出版社,1989
    王铁冠,钟宁宁,侯读杰等.低成熟油气形成机理与分布.北京:石油工业出版社,1995
    王有孝等.异常地热对沉积有机质生烃过程的影响—以辉绿岩侵入体为例.石油与天然气地质,1990,11(1):73-77
    魏洪.超级盆地综合模拟系统.公安大学学报(自然科学版)2001,4:34-37
    邬冬茹.盆地模拟技术在洪泽凹陷的应用.石油实验地质,2003,25(1):87-92
    吴聿元.苏北盆地新生代地层绝对年龄初步划分方案.华东油气勘查,1992,10(4):16-19
    吴跃兴等.气源岩评价方法及应用研究.地矿部石油地质中心实验室,1989
    肖国林,周才凡.油气资源补充评价方法探讨.青岛海洋大学学报,2002,32(3):434-440
    徐晨光,张金功.盆地与油气成藏模拟软件的发展趋势分析.西安石油学院学报(自科版),2001,16(3):17-20
    徐春华,徐佑德,邱连贵,许世红.油气资源评价的现状与发展趋势.海洋石油,2001,4:1-5
    徐旭辉,江兴歌,朱建辉等.TSM盆地模拟—在苏北溱潼凹陷的应用.北京:地质出版社,1997
    徐旭辉,江兴歌等.巴丹吉林盆地麻木乌苏凹陷盆地模拟与资源前景分析.石油实验地质,2002,24(5):393-402
    许红,马惠福,蒲庆南,梁若冰,郑军.油气资源评价基本概念与定量评价方法.海洋地质动态,2001,17(10):4-7
    杨文宽.岩浆余热对地温和有机质影响的定量估算.石油实验地质,1982,4(3):191-199
    张功成,蔡希源,周章保.裂陷盆地分析原理和方法.石油工业出版社,1996
    张庆春等.盆地模拟技术的发展现状与未来展望.石油实验地质,2001,23(3):312-317
    张湘宁,任宏斌,张学文.对外合作油气资源评价方法探讨.石油学报,2003,24(1):9-14
    张渝昌,卫自立,许薇龄,陶瑞明,陈瑞庚.苏北—南黄海盆地的构造演化国中新生代沉积盆地.石油工业出版社,1987
    张渝昌,魏武,江兴歌等.沉积盆地油气评价系统的动态数学模拟方法.“七五”部控项目研究专题[内部],1989
    张渝昌,魏武,江兴歌等.苏北盐城凹陷勘探评价中盆地确定性动态数学模拟的应用.“七五”部控项目研究专题[内部],1989
    张渝昌,张文成.国外油气盆地研究方法的某些新动向.当代地质科学技术进展,中国地质大学出版社,1988.30-34
    张渝昌.从盆地演化看江苏油气远景.石油实验地质,1980,2(3):1-9
    张渝昌.关于盆地油气动态成藏系统研究的理论问题.《朱夏油气地质理论应用研讨文集》,地质出版社,2001.207-220
    张渝昌.盆地综合和模拟找油的探索.《朱夏学术思想研讨文集》,石油工业出版社,1992.110-121
    张渝昌.中国油气盆地的运动体制:原型的并列与迭加.张炳熹主编:中国大陆岩石圈组成、结构、演化与环境系列丛书(4),中国地质大学出版社,1999
    张渝昌等.中国含油气盆地原型分析.南京大学出版社,1997
    周荔青.极状辉绿岩体异常增温对有机质热影响的定量估算方法—以苏北盆地溱潼凹陷为例.华东油气勘查,1997,15(3):1-11
    周玉琦等.江苏省苏北溱潼凹陷油气滚动勘探开发项目“七五”期间阶段报告.地矿部华东石油地质局[内部],1991
    朱夏,陈焕疆,孙肇才,张渝昌.中国中新生代构造与含油气盆地.地质学报,1983,57(3):235-242
    朱夏,徐旺等.中国中新生代沉积盆地.石油工业出版社,1990
    朱夏.活动论构造历史观.石油实验地质,199l,13(3):201-209
    朱夏.论古全球构造与古生代油气盆地.石油与天然气地质,1983,4(1):
    朱夏.论中国含油气盆地构造.石油工业出版社,1986
    朱夏.我国中新生界含油气盆地的大地构造特征及有关问题.中国大地构造问题,科学出版社,1965.117-140
    Allen P A, Allen J R. Basin Analysis - Principles and Applications. Blackwell Scientific Publications, Oxford, London, 1990
    Chemend A I, et al. New results from physical modeling of arc-continent collision in Taiwan: evolutionary model. Tectonophysics, 2001, 333: 159-178
    Cloos E. Experimental analysis of Gulf Coast fracture patterns. AAPG, 1968, 52:420-444
    Davison I. Listric normal fault profiles: calculation using bed length balance and fault displacement. JSG, 1986, 8:209-210
    Dickinson W R. Basin geodynamics, Basin Researches. 1993, 5(4): 195-196
    Ellis P G, McClay K G. Listric extensional fault system--results of analogue model experiments. Basin Research, 1988, (1):47-60
    Geiser J, Geiser P A,. New applications of computer-based section construction: strain analysis, local balancing, and subsurface fault prediction. The Mountain Geologist, 1988, 25:47-60
    Gibbs A D. Balanced cross-section construction from seismic sections in areas of extensional tectonics. J Struct Geol, 1983, 5(2): 153-160
    Guidish T M, ST CG, Kendall C, Lerche I, Toth D J, Yarzab R F. Basin evaluation using burial history calculation: an overview. AAPG, 1985, 69(1):92-105
    Harbaugh J W. Computer simulation in geology. Reprint of the edition published by Wiley Interscience. New York, 1981
    Harland W B, Armstrong R L, Cox A V, Craig L E, Smith A G, smith D G. A geologic time Scale. Cambridge University Press, 1989
    Henry P H. Analysis of sonic well logs applied to erosion estimates in the Bighorn Basin. Wyoming. AAPG, 1996(5), 80: 630-647
    Hindle A D. Petroleum migration pathways and charge concentration: a three-dimensional model. AAPG, 1997, 81(9): 1451-1481
    Houseman G, England P C. A dynamical model of lithosphere extension and sedimentary basin formation. J geophys Res, 1986, 91:719-729
    
    Kinji M. Compaction and fluid migration. Elsevier Applied Science Publishers, 1987
    Kinji M. Compaction and fluid migration. New York: Elsevier Scientific Publishing Company, 1978
    
    Kinji M. Geological models of petroleum entrapment. Elsevier Applied Science Publishers, 1986
    Klemme H D. Basin classification in: Geological principals of the world oil occurrence, Univ of Alberta, 1974
    Kumar N. Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada basin: discussion. AAPG, 1979,63(5): 812-814
    Kusznir N J, Marsden G, Egan S S. A flexural-cantilever simple-shear/pure-shear model of continental lithosphere extension: applications to the Jeanne d' Arc Basin, Grand Banks and Viking Graben, North Sea. The Geometry of Normal Faults, Geological Society Special Publication, 1991,56: 41-60
    Lallemand S, et al. New insights on 3-D plates interaction near Taiwan from tomography and tectonic implication. Tectonophysics, 2001, 335: 229-253
    Letouzey J, Kimura M. Okinawa trough genesis: structure and evolution of a backarc basin developed in a continent. Marine and Petroleum Geology, 1985, 2: 111-129
    Letouzey J, Kimura M. The Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics, 1986, 125: 209-230
    Lopatin N V. Temperature and geologic time as factors in coalification: Akademiya Nauk SSSR Izvestiya. Seriya Geologicheslcaya. No.3:95-106. English translation (1972) by N H Bostick, Illinois State Geological Survey, 1971
    Magara K. Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada Basin. AAPG, 1976, 60: 554-566
    Mckenzie D. Some remarks on the development of sedimentary basins. Earth and Planetary Sci Letters, 1978, 40(1): 25-32
    
    Mitra S. Geometry and kinematic evolution of inversion. AAPG, 1993, 77(7): 159-191
    Nakayama K, Van Siclen D C. Simulation model for petroleum exploration and its applications. AAPG, 1981,65(5):964
    Nanns A G. Structural restoration of seismic and geologic sections in extensional regimes. AAPG, 1991,75(2): 278-293
    Perrodon A, Masse P. Subsidence, sedimentation and petroleum system. Jour Petro Geol, 1984, 7(1): 5-26
    
    Pratt, Wallace E. Towards A Philosophy of Oil-finding. AAPG Bull, 1952,36 (12):2231-2236
    Richard H. Groshong Jr. Half-graben structures: balanced models of extensional fault-bend folds. Geol Soc Am, 1989. 101(1): 96-105
    Richard P. Experiments on faulting in a two-lager cover sequence overlying a reactivated basement fault with oblique-slip. J Struct Geol, 1991, 13(4):459-469
    Royden L, Keen C E. Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth and Planet Sci Letters, 1980,51(2): 343-361
    
    Shelton J W.. Listnc normal faults: an illustrated summary. AAPG, 1984, 68(7): 801-815
    Stallman R W. Computation of groundwater, velocity from temperature data. Methods of collecting and interpreting ground water data. Bentall R(ed), US Geol Survey Water Supply Paper, 1963,1544( II): 36-46
    
    Tissot B P and Welte D H. Petroleum formation and occurrence. New York: Springer-Verlag, 1984
    Treagus S H. The Mohr diagram for tliree-dimensional reciprocal stretch vs rotation. J Struct Geol, 1990, 12(3): 383-395
    Varga R J. Models of extension at oceanic spreading centers: evidence from the Solea graben, Troodos ophiolite, Cyprus. J Struct Geol, 1991, 13(5):517-537
    Waltham D. Finite difference modelling of hangingwall deformation. J Struct Geol, 1989, 11(4):433-438
    Waltham D. Finite-difference modelling of sandbox analogues, compaction and detachment free formation. J Struct Geol, 1990, 12(3): 375-381
    
    Wernicke B. Models of extensional tectonics. J Struct Geol, 1982, 4(2): 105-115
    White N J, Jackson J A, Mckenzie D P. The relationship between the geometry of normal faults and that of the sedimentary layers in their hanging walls. JSG, 1986, 8(8) :897-909
    Wilcox R E, Harding T P, Seely D R. Basic wrench tectonics, AAPG, 1973, 57(1):74-96
    William F, Dula. Jr. Geometric models of listric normal faults and rollover folds. AAPG, 1991, 75(10):1609-1625
    Williams G, Vann I. The geometry of listric normal faults and deformation in their hanging walls. J Struct Geol, 1987, 9(7): 789-795
    Yoshii T. Upper mantle structure beneath the North Pacific and the marginal seas. J Phys Earth, 1973,21:313-328
    Yukler M A, Comford A C, Welte D H. One-dimension model to simulate geologic, hydrodynamic and thermodynamic development of a sedimentary basin. Geol Rundschau, 1978, 67: 960-979
    Yukler M A. How essential is quantitative basin modelling in petroleum exploration? In: Proceedings of the 7th Biannual Petroleum Congress of Turkey. Turkish Association of Petroleum Geologists,1987.392-404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700