天山地区现今地壳运动变形及动力学数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大陆动力学是当今固体地球科学研究的前沿领域,其核心问题是大陆构造变形特征及其动力学机制。造山带是大陆变形最强烈、地表形态最明显的构造,因此成为大陆动力学研究的焦点。天山是世界上最活跃的造山带之一,被认为是研究陆内造山运动的天然实验室,开展天山造山带动力学研究有助于加深对陆内造山带形成与演化的认识。本文通过数值模拟的方法对新疆北部天山的地壳运动变形和天山新生代复活造山过程进行了研究,获得了相关结论。
     1、在全面分析天山地质结构、构造特征的基础上构建了研究区三维模型,以最新的地壳运动GPS观测结果作为约束条件对天山的地壳运动变形进行了数值模拟,获得了81°E以东天山地区现今地壳运动的速度场、形变场和应力场,揭示了研究区地壳的构造变形特征。天山现今地壳水平运动的总体方向为NNE向,由西向东呈现往东偏转的趋势,运动速率由南西往北、往东递减。南部和北部的运动差异导致了天山地壳近南北向的汇聚缩短,缩短速率由西向东逐渐减小,由82°E的7.71mm/year减小至88°E的2.42mm/year。地壳最大主应变为近南北向的压应变,应变率数量级为10-8/year,由西向东递减。山体内部的主压应变大于两侧盆地,表明缩短变形主要为山体所吸收。活动断裂带吸收的缩短量是有限的,在构造变形中更多地起着调节两盘运动的作用。这些特征表明天山近南北向的地壳缩短是不均匀但近似连续性的变形。天山地壳现今的构造应力场以近南北向挤压作用为主,主压应力由西向东逐渐减小。综合分析认为造成研究区即81°E以东天山具有东西差异的地壳缩短变形的直接原因是塔里木地块的顺时针旋转式挤压,准噶尔地块的逆时针旋转也被动地起着一定的促进作用,而地幔对流拖曳力的作用可能是微弱的。
     2、采用符合岩石在长期力持续作用下的幂律蠕变本构模型正演模拟了天山自新生代复活起始以来24Ma的造山隆升过程,给出了山体隆升的变形图式和一些基本特征。模拟实验表明,地壳内部介质属性和底部边界条件对山体隆升有重要影响。在水平向北的6.5mm/year的持续推挤作用下,天山经过24Ma、地壳缩短156km后形成现今的形态。地壳的变形以缩短和增厚为特征,厚度由初始模型的40km增加至缩短156km后的56km,这直接导致了山体的隆升。山体在造山演化过程中表现为两侧双峰式隆起、中部形成山间盆地的隆升模式。如果不考虑地表剥蚀与沉积作用,在稳定的推挤作用下天山各段将以各自恒定的速率隆升,南、北天山的隆升速率快于中天山。山体相对软弱的介质属性是其隆升的必要条件,山体内部介质的非均匀性和底边界与上边界的不一致运动共同导致了天山隆升形态的差异。
Continental dynamics is the frontier field of solid earth science research currently. The kernel problem of continental dynamics is the characteristics of continental tectonic deformation and its dynamical mechanism.As the orogenic belts own the strongest tectonic deformation and the most apparent surface configurations, they had become a focus of continental dynamics research. Tianshan is one of the most active orogenic belts, considered to be the nature laboratory for researching intra-continental orogeny. Dynamics research of Tianshan orogenic belt helps to better understand the formation and evolution of intra-continental orogeny. The paper deals with the crustal movement and deformation and the process of revival orogeny of Tianshan through numerical simulation with the following conclusions.
     1、A 3-dimension model of research region was set up in the basis of entirely analysing the geological structural and tectonic characteristics of Tianshan and then a numerical simulation of crustal movement and deformation of Tianshan was carried out basing on the model, using the latest GPS observation results of crustal movement as the constraint condition. The paper acquired the velocity field, strain field and stress field of Tianshan east of 81°E and revealed the characteristics of crustal deformation of research region. The dominant direction of curstal horizontal movement is NNE currently, with a gauche trend toward east from west to east. The speed of crustal movement is descending from SW to north and east. The difference of crustal movement between south and north leads to the crustal convergence and shortening of Tianshan near south-north direction and the speed of shortening descends by degree from west to east, changing from 7.71 mm/year in 82°E to 2.42 mm/year in 88°E.The maximum principal strain is compressive strain near south-north direction and the magnitude fo strain rate is 10-8/year, descending from west to east. The principal compressive strain of the mountain body is larger than the bilateral basins, showing that the shortening deformation is mostly absorbed by the mountain body. The shortening deformation absorbed by active fault zones is limited, mainly playing a role of adjusting the movement of two walls of fault in the process of tectonic deformation. All of these show that the crustal shortening near south-north direction of Tianshan is asymmetric but approximately successional deformation. The crustal tectonic stress field of Tianshan mainly is compressive effect near south-north direction and the principal compressive stress descends by degree from west to east. By comprehensive analysis I think that the direct cause of crustal shortening deformation of Tianshan east of 81°E with differences between east and west is the extrusion of Tarim's clockwise rotation and the Junggar's anticlockwise rotation also passively takes a promotion effect in the same time, but the effect of the drag force of mantle convection may be weak.
     2、The process of orogenic uplift of Tianshan from the beginning of revival at Cenozoic was forward simulated by using the power-rule-creep constitutive model by true of the rock's deformation under the effect of long and persistent force. The deformation pattern and some general characteristics of the uplift of mountain body were presented. Simulation experients show that the interior attribute of crustal medium and the condition of bottom boundary have important influence to the uplift of mountain body. The Tianshan becomes current configuration after 24Ma and 156km of crustal shortening in the persistent extrusion of 6.5mm/year toward north in horizontal direction. The crustal deformation is charactered with shortening and incrassation. The crustal thickness increases to 56km from 40km of original model after 156km of crustal shortening, which is directly responsible for the uplift of mountain body. The uplift model of the mountain body is two-peak uplifting at two sides and intermontane basin forming in middle in the process of orogenic evolution. If not considering the surficial denudation and sedimentation, each part of Tianshan would uplift in a invariable speed respectively under the steady intrusion action but the uplift speed of Southern-and Northern-Tianshan is quicker than Middle-Tianshan. The relative weak medium of mountain body is the necessary condition of uplift. Asymmetric interior mediun of mountain body and inconsistent movement of bottom and upper boundary together result in the difference of uplift configuration of Tianshan.
引文
[1]赵文津..中国大陆动力学研究进展—纪念中国地球物理学会成立60周年[J].地球物理学进展,2007,22(4):1113-1121.
    [2]Che Zicheng, Liu H, Liu L, et al.Formation and Evolution ofthe Middle Tianshan Orogenic Belt[M]. Beijing:Geological Publishing House,1994.
    [3]滕吉文.固体地球物理学概论[M].北京:地震出版社,2003.
    [4]Fu B, Lin A, Kano K,et al.Quatenary folding of the eastern Tian shan,norwest China[J]. Tectonophysics,2003,369:79-101.
    [5]赵俊猛.天山造山带岩石圈结构与动力学[M].北京:地震出版社,2005.
    [6]郑和荣,蔡立国,李铁军.天山南北前陆盆地演化及褶皱-冲断带构造样式[M].北京:地质出版社,2007.
    [7]杨晓平,邓起东,张培震.天山山前主要推覆构造区的地壳缩短[J].地震地质,2008,30(1):111-131.
    [8]Molnar P, Tapponnier P.Cenozoic tectonics of Asia:effects of a continental collision.Science, 1975,189:419-426.
    [9]郭令智,施央申,马瑞士,等.印藏碰撞的两种远距离构造效应[A].现代地质学研究文集(上)[C].南京:南京大学出版社,1992,1-8.
    [10]Lu H F, Howell D G, Jia D,et al.Kalpin transpressin tectonics, northwestern Tarim basin, wesern China[J].International Geol.Reviev.,1994,36:975-981.
    [11]Windley B F, Allen M B,Zhang C,etal.Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, central Asia[J].Geology,1990,18:128-131.
    [12]Avouac J P, Tapponnier P, Bai M,et al.Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of Tarim relative to Dzungaria and Kazakhstan[J].J.Geophy.Res., 1993,98:6755-6804.
    [13]Allen M B, Zhang C, Guo J.Evolution of the Turpan basin, Chinese Central Asia[J].Tectonics, 1990,12(4):889-896.
    [14]舒良树,卢华复,Charvet J,等.天山地区多期构造与新生代盆山耦合[J].地质学报(英文版),摘要,2003,4:589.
    [15]陈书平,汤良杰,余一欣.天山南北前陆盆地新生代变形与天山造山带的波动耦合[J].中国科学(D辑),2008,38,增刊1:55-62.
    [16]刘洁.天山上地幔对流与造山运动数值模拟[博士学位论文].北京:中国地震局地质研究所,2006.
    [17]杜治利,王清晨.中新生代天山地区隆升历史裂变径迹证据[J].地质学报,2007,81(8):1081-1101.
    [18]方世虎,郭召杰,张志诚,等.中新生代天山及其两侧盆地性质与演化[J].北京大学学报(自然科学版),2004,40(6):886-897.
    [19]郭召杰,张志诚,吴朝东,等.中、新生代天山隆升过程及其与准噶尔、阿尔泰山比较研究[J].地质学报,2006,80(1):1-15.
    [20]张培震,邓起东,杨晓平,等.天山的晚新生代构造变形及其地球动力学问题[J].中国地震,1996,12(2):127-140.
    [21]Handrix M S, Dumitru T A,Graham S A.Late Oligocene-early Miocene unroofing in the Chinese Tianshan:An early effect of the India-Asia collision[J].Geology,1994,22:487-490.
    [22]Sobel E R, Dumitru T A.Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision[J].J Geophys Res,1997,102(B3):5043-5063.
    [23]Yin A, Nie S, Craig P, et al.Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J]. Tectonics,1998,17(1):1-27.
    [24]邓起东,冯先岳,张培震,等.天山活动构造[M].北京:地震出版社,2000.
    [25]卢德源,李秋生,高锐,等.横跨天山的人工爆炸地震剖面[J].科学通报,2000,45(9):982-987.
    [26]高锐,肖序常,高弘,等.西昆仑-塔里木-天山岩石圈深地震探测综述[J].地质通报,2002,22(1):11-20.
    [27]Chen Y P, Wang L S, Mi N, et al.Shear wave splitting observations in the Chinese Tianshan orogenic belt [J].Geophys.Res.Lett.,2005,32, L07306, doi:10.1029/2004GL021686.
    [28]米宁,王良书,李华,等.天山和塔里木盆山接合部地壳上地幔速度结构研究[J].科学通报,2005,50(4):363-368.
    [29]郭飚,刘启元,陈九辉,等.中国境内天山地壳上地幔结构的地震层析成像.地球物理学报,200649(6):1693-1700.
    [30]李志伟,胥颐,Steven W R,等.中天山地区的Pn波速度结构与各向异性[J].地球物理学报,2007,50(4):1066-1072.
    [31]Lei J, Zhao D.Teleseismic P-wave tomography and the upper mantle structure of the central Tien Shan orogenic belt [J].Phys.Earth Planet.Int,2007,162:165-185.
    [32]李昱,刘启元,陈九辉.天山地壳上地幔的S波速度结构[J].中国科学(D辑),2007,37(3):344-352.
    [33]赵俊猛,樊吉昌,李植纯,等.库尔勒-吉木萨尔剖面Q值结构及其动力学意义[J].中国科学(D辑),2003,33(3):202-209.
    [34]赵俊猛,李植纯,马宗晋.天山分段性的地球物理学分析[J].地学前缘,2003,10(增):125-131.
    [35]Zhao J M, Liu G, Lu Z, et al.Lithospheric structure and dynamic processes of the Tianshan Orogenic Belt and the Junggar Basin [J].Tectonophysics,2003,376:199-239.
    [36]卢华复,王胜利,贾东,等.塔里木盆地与天山山脉晚新生代盆山耦合机制[J].高校地质学报,2005,11(4):493-503.
    [37]林舸,赵崇斌,张晏华,等.地质构造变形数值模拟研究的原理、方法及相关进展[J].地球科学进展,2005,20(5):549-555.
    [38]郑洪伟,李廷栋,高锐,等.数值模拟在地球动力学中的研究进展[J].地球物理学进展,2006,21(2):360-369.
    [39]赵瑞斌,卢静芳,杨主恩,等.天山构造带新生代构造变形二维有限元模拟[J].新疆地质,2003,21(2):151-156.
    [40]刘洁,刘启元,郭彪,等.中国境内天山上地幔小尺度对流与造山作用[J].中国科学(D辑),2007,37(6):728-735.
    [41]马杏垣.中国岩石圈动力学图[M].北京:地图出版社,1989.
    [42]赖锡安,黄立人,徐菊生,等.中国大陆现今地壳运动[M].北京:地震出版社,2004.
    [43]England P C, Molnar P.Active deformation of Asia:From Kinematics to dynamics[J].Science, 1997,278:647-650.
    [44]England P, Molnar P.The field of crustal velocity in A-sia calculated from Quaternary rates of slip on faults[J].GeophysJInt,1997,130:551-582.
    [45]Royden L H,Burchfiel B C, King R W, et al.Surfacedeformation and lower crustal flow in eastern Tibet[J].Science,1997,276:788-790.
    [46]任金卫,马宗晋.东亚地区现代地壳运动特征与构造变形[J].地学前缘,2003,10(特刊):58-65.
    [47]张培震,甘卫军,沈正康,等.中国大陆现今构造作用的地块运动和连续变形耦合模型[J].地质学报,2005,79(6):748-758.
    [48]沈正康,王敏,甘卫军,等.中国大陆现今构造应变率场及其动力学成因研究[J].地学前缘,2003,10(特刊):93-100.
    [49]刘峡,傅容珊,郑勇,等.中国大陆GPS结果的构造及动力学意义有限元分析[J].大地测量与地球动力学,2007,27(3):6-11.
    [50]刘启元.关于天山陆内造山带动力学学问题[A].中国大陆地球深部结构与动力学研究[C],张中杰主编.北京:科学出版社,2004,792-799.
    [51]赵崇斌,Hobbs B E,Ord A.用计算地球科学研究方法探讨地质现象的动力学机制-以断层中等距成矿分布为例[J].中国科学(D辑),2008,38(5):646-652.
    [52]Turcott D L, Schubert GGeodynamics:Applications of continuum physics to geological problems[M].New York:Cambridge university press,1982.
    [53]傅容珊,黄建华.地球动力学[M].北京:高等教育出版社,2001.
    [54]王良书,李成,刘福田,等.中国东、西部两类盆地岩石圈热流变学结构[J].中国科学(D辑),2000,30(增刊):116-121.
    [55]王良书,刘绍文,李成.岩石圈热—流变结构与大陆动力学[J].地球科学进展,2004,19(3):382-386.
    [56]Kirby S H.Rheology of the lithosphere.Rev Geophys Space Phys,1983,21:1458-1487.
    [57]蒋玉川.弹性力学与有限单元法[M].北京:科学出版社,2006.
    [58]利布特里.大地构造物理学和地球动力学[M].孙坦译.北京:地质出版社,1986.
    [59]Daryl L.Logan.有限单元法基础教程[M].伍义生,吴永礼,等译.北京:电子工业出版社,2003.
    [60]邓凡平.ANSYS10.0有限元分析手册[M].北京:人民邮电出版社,2007.
    [61]王绳祖,张四吕,田勤俭,等.大陆动力学—网状塑性流动与多级构造变形[M].北京:地震出版社,2001.
    [62]刘峡.华北地区现今地壳运动及形变动力学数值模拟[博士学位论文].合肥:中国科学技术大学,2007.
    [63]张培震.天山及其前陆盆地的晚新生代构造变形[J].科学通报,2003,48(24):2499-2500.
    [64]杨主恩,张先康,赵瑞斌,等.天山中段的深浅构造特征[J].地震地质,2005,27(1):11-19.
    [65]赵瑞斌,卢静芳,等.天山深浅构造特征及盆山耦合关系[J].新疆石油地质,2008,29(3):278-282.
    [66]方世虎,宋岩,贾承造,等.天山北缘晚新生代快速变形时间的确定及其成藏意义[J].地学前缘,2007,14(2):205-214.
    [67]舒良树,郭召杰,朱文斌.天山地区碰撞后构造与盆山演化[J].高校地质学报,2004,10(3):393-4004.
    [68]丁国瑜,卢演俦.对我国现代板内运动状况的初步探讨[J].科学通报,1986,18:1424-1415.
    [69]Molnar P,Ghose S.Seismic moments of Major earthquakes and the rate of shortening across the Tien Shan[J].Geophys.Res.Lett.,2000,27:2377-2380.
    [70]Bullen M E,Burbank D W,Garver J I.Building the Northern Tien Shan:Integrated thermal, structure,and topographic constraints[J].J.Geology,2003,111:149-165.
    [71]蒋志浩,张鹏,秘金钟.中国新疆及其天山地区地壳运动特征分析[J].武汉大学学报(信息科学版),2003,28(特刊):142-145.
    [72]Sobel E R, Chen J, Ricard V H.Late Oligocene-Early Milcene initiation of shortening in the Southwestern Chinese Tian Shan:Implications for Neogene shortening rate variations[J].Earth and Planetary Science Letters,2006,247:70-81.
    [73]张培震,邓起东,张国民,等.中国大陆强震活动与活动地块[J].中国科学(D辑),2003,33(增):12-20.
    [74]邵志刚,张国民,李志雄,等.中国大陆活动地块边界带地震活动过程及其趋势研究[J].地震,2008,28(3):33-42.
    [75]张国民,马宏生,王辉,等.中国大陆活动地块边界带与强震活动[J].地球物理学报,2005, 48(3):602-610.
    [76]王琪,丁国渝,乔学军.天山现今地壳快速缩短与南北地块的相对运动[J].科学通报,2000,45(14):1543-1547.
    [77]牛之俊,游新兆,杨少敏.利用GPS分析天山现今地壳形变特征[J].大地测量与地球动力学,2007,27(2):1-9.
    [78]王敏,等.中国大陆地壳运动与活动地块模型[J].中国科学(D辑),2003,33(增):21-33.
    [79]杨少敏,李杰,王琪.GPS研究天山现今变形与断层活动[J].中国科学(D辑),2008,38(7):872-880.
    [80]刘训,肖序常.中国新疆南部(青藏高原北缘)盆山构造格局演化[M].北京:地质出版社,2006.
    [81]姜枚,李海鸥,王亚军,等.青藏高原隆升对新疆天山山脉地壳-上地幔构造的影响[J].地学前缘,2003,13(5):401-407.
    [82]邵学钟,张家茹,范吉会,等.天山造山带地壳结构与构造—乌鲁木齐-库尔勒地震转换波测深剖面[J].地球物理学报,1996,39(3):336-346.
    [83]胥颐,冯先岳,萨次洛夫B H.天山地区的深部速度结构[J].地震地质,1996,18(4):375-381.
    [84]米宁.天山地壳上地幔结构研究—宽频带地震台阵观测和接收函数分析[博士学位论文].南京:南京大学,2005.
    [85]赵俊猛,程宏岗,裴顺平,等.塔里木盆地北缘的深部结构[J].科学通报,2008,53(8):946-955.
    [86]Yang S M, Li J, Wang Q.The deformation pattern and fault rate in Mountains inferred from GPS observations[J].Science in China(series D),2008,51(8):1064-1080.
    [87]王琪,张培震,牛之俊,等.中国大陆现今地壳运动与构造变形[J].中国科学(D辑),2001,31(7):529-536.
    [88]王晓强,李杰,王琪,等.天山现今地壳运动的形变场分析[J].大地测量与地球动力学,2005,25(3):63-68.
    [89]王晓强,李杰,Alexander Z利用GPS形变资料研究天山及邻近地区地壳水平位移与应变特征[J].地震学报,2007,29(1):31-38.
    [90]李杰,方伟,朱治国,等.中部天山地壳活动的GPS初步分析[J].内陆地震,2006,20(3):239-244.
    [91]龙海英,高国英,聂晓红,等.北天山中东段中小地震震源机制解及应力场反演[J].地震,2008,28(1):93-99.
    [92]徐纪人,赵志新,石川有三.中国大陆地壳应力场与构造运动区域特征研究[J].地球物理学报,2008,51(3):770-781.
    [93]Willett S,Beaumont C,Fullsack P.Mechanical model for the tectonics of doubly vergent compressional orogens[J].Geology,1993,21:371-374.
    [94]Ellis S,Beaumont C,Jamieson R A,Quinlan G.Continental collision including a weak zone:the vise model and its application to the Newfoundland Appalachians[J].Canadian Journal of Earth Science,1998,35:1323-1346.
    [95]RanalliG.Rheology of the lithosphere in space and time[A].In:Burg J P, M Ford eds.Orogeny through time[C].Geol.Soc.Spec.Pub.,1997,121:19-37.
    [96]刘绍文,王良书,贾承造,等.中国中西部盆地区岩石圈热-流变学结构及其对前陆盆地成因演化的意义[J].地学前缘,2008,15(3):113-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700