三峡库区泥沙沉降对浮游生物的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游生物在水体生态系统物质循环和能量流动中扮演着重要的角色。迄今,国内外对浮游生物的研究多集中在数量、生态特征以及评价水质等方面,关于江河泥沙沉降对浮游生物的影响的研究并不多见。因此,研究泥沙沉降对水体中浮游生物的影响具有十分重要的意义。本实验通过2006年11月到2007年11月4次对三峡库区重庆朝天门到秭归太平溪江段的水质、浮游生物、泥沙含量现状的调查,了解三峡库区朝天门到太平溪江段水质、浮游生物、泥沙含量的时空变化,通过对这些数据的分析,找出泥沙沉降和浮游生物之间的相互关系,为更好的保护三峡水库的水环境提供科学依据。
     1研究水域的泥沙变化规律
     三峡库区朝天门到秭归江段泥沙沉降非常明显。其中朝天门到云阳江段泥沙沉降迅速。到云阳后泥沙沉降速度趋于平缓,保持在一定范围。泥沙的沉降比例说明,在洪水期水中泥沙的粒径相比枯水期要大,且大粒径泥沙比例大。这正如河流中水体泥沙含量的特点:水体泥沙含量大小随季节发生变化,降雨季节泥沙含量大,干旱季节泥沙含量小。
     2研究水域泥沙沉降对水质指标变化的影响
     三峡库区朝天门到秭归江段,水中悬浮泥沙沉降在枯水期与DP的相关性不显著,在洪水期的影响有待进一步研究;NH_4~+-N、NO_2~--N、NO_3~--N、T、DO、pH和电导率等水体水质指标四次采样变化趋势大体一致,与水中悬浮泥沙含量相关性不显著。
     3研究水域泥沙沉降对浮游植物的影响
     对浮游植物种类组成的调查结果表明,四次采样各采样点的浮游植物都十分丰富。浮游植物种类组成显示,整个研究期间共发现7门58属183种,与蓝藻门、硅藻门和绿藻门为主。四次采样浮游植物种类组成都有同样一个趋势:藻类种类由多到少,出现藻类的门类由少到多,生物量也逐渐增大。各采样点的藻类大多以硅藻、绿藻和蓝藻为主,从上游到下游黄藻、隐藻、裸藻和甲藻逐渐增多。在泥沙含量低的枯水期的三次采样结果显示浮游植物优势种从硅藻逐渐向绿藻或蓝藻转变,但泥沙含量多且沉降明显的洪水期采样结果则显示,除万州、石柱和巫山外,各采样点的浮游植物优势种都是硅藻。在三峡库区朝天门到秭归江段浮游植物年均生物量从上游到下游逐渐增大,浮游植物密度和生物量的变化趋势趋于一致。朝天门江段到秭归江段的浮游植物的Shannon-Weaver多样性指数呈波浪式变化,整体有下降趋势。
     4研究水域泥沙沉降对浮游动物的影响
     从本次实验的结果来看,四次采样浮游动物种类组成都有同一个趋势:种类由少到多,生物量也逐渐增大,特别是桡足类在种类和数量上都增加明显,各采样点的浮游动物以原生动物和轮虫为主。浮游动物的种类组成变化和浮游植物的种类组成变化刚好相反。泥沙沉降对浮游动物的种类有重要影响,随着泥沙的逐渐沉降,浮游动物的种类逐渐增加。随着泥沙的逐渐沉降,浮游动物生物量变化相对激烈,尤其是枝角类、桡足类和无节幼体,水中浮游动物生物量将逐渐增加。
     泥沙沉降一方面通过增加透明度而有利于浮游生物生长,另一方面,又可能通过带动营养物质沉降而不利于浮游生物生长。本实验的结果表明:三峡库区朝天门到秭归段泥沙沉降有利于浮游生物的生长。
Plankton plays an important role in the material cycle of the water ecosystem and the flowing of energy. So far at home and abroad, most of the studies about plankton have been focused on the quantity, the ecological characteristics,the evaluation of the water quality, etc. Only a few studies had been about the impact of the sediment deposition on plankton. Therefore, it was significant to study the impact of the sediment deposition on plankton. During November 2006 and November 2007 we had investigated the water characteristics, plankton and the sediment's content of the Three Gorges reservoir between Chaotianmen and Tai ping xi river four times, and learnt their changed in time and space. After analysing the data gained, we found out the mutual ralationship between the sediment deposition and plankton, which can provide a scientific basis for better protection of the water environment in the Three Gorges Reservior area.
     1 the law of the sediment's changed in the waters studied
     The sediment deposition was very obvious from Chaotianmen to Zigui river. The sediment between chaotianmen and yunyang river depositted very fast. After the sediment move to the Yunyang, the speed tended to slow down and maintain a certain range. From the deposition of sediment, we can conclude the size of sediment was larger in the flood period than in the dry season. It was the same as the feature of the sediment's content in the water. The quantity of the sediment changed as the seasons changes;the sediment content was high in rainfall season but low in dry season.
     2 on the waters of sediment deposition on the impact of sediment deposition on the changes of water's index in waters studied
     Because the instruments in the experiment were inadequate, we could not get sufficient data about the impact of the suspended sediment's deposition on the PO_4~3-P, NH_4~--N, NO_2~--N in the water of the Three Gorges Reservoir between Chaotianmen and Zigui river, which needs further research; the diversification trend of the NO_3~-- N, T, DO, pH and electrical conductivity, and other indicators of water quality sampled the four times was nearly the same.
     3 the impact of the sediment deposition on phytoplankton in the waters studied
     The survey of phytoplankton's species composition showed that at the four sampling situses the phytoplankton was very rich. During the study period, the total of the phytoplankton species discovered was seven phylum,58 category and 183 kinds. Most of them belong to Cyanophyta, Bacillariophyta and Chlorophyta. The composition of the phytoplankton's species sampled in four times appeares the same trend-algae's species are from less to more, but the categories of species are from less to more, and the biomass was also gradually increasing. At each sampling situs the most were Cyanophyta, Bacillariophyta and Chlorophyta. Along the direction of the current, Xanthophyta、Cryptophyta、Euglenophyta and Pyrrophyta gradually increase. The three sampling results in the dry season with low sediment content showed that the dominant species of phytoplankton transforme gradually from Bacillariophyta to Chlorophyta or Cyanophyta, but the sampling results in the flooding period with high sediment content showed that the dominant specy of phytoplankton at each sampling situs is Bacillariophyta except Wanzhou,Shizhuand Wushan. From Chaotianmen to the Three Gorges Reservoir area in Zigui river the average annual biomass of phytoplankton was gradually increasing along the current direction, and the diversification tendence of the phytoplankton's density and biomass becomes in a line. From Chaotianmen to Zigui,the Shannon-Weaver diversity index of phytoplankton changes undeely.
     4 the impact of sediment deposition on zooplankton in the waters studied
     According to the results of the experiment, we had learnt that the species composition of zooplankton sampled had the same tendence-the species was from less to more, and the biomass was also gradually increasing. Particularly Copepoda had increased significantly in the type and quantity. The main of zooplankton at each sampling situs were protozoa and rotifers. The species composition of the zooplankton changed Contrarily to the phytoplankton .Sediment deposition had important influence on the types of zooplankton. The types of zooplankton gradually increased with the gradual deposition of sediment. The biomass of zooplankton changed relatively intensely, especially Cladocera、Copepoda and Young animal, and the biomass of the zooplankton will gradually increase.
     On the one hand was conducive to the growth of plankton and by increasing the transparency. On the other hand, it may lead the nutrients depositing so as to induce the detriment of plankton's growth. The results of the experiment showed that the sediment deposition from Chaotianmen to Zigui river of the Three Gorges Reservoir area was conducive to the growth of plankton.
引文
[1]王里奥,林建伟,黄川,等.三峡库区生活垃圾总磷的分布特征和溶出规律研究[J].生态环境,2004,13(4):581-584
    [2]许川,舒为群,曹佳,等.三峡库区消落带富营养化及其危害预测和防治[J].长江流域资源与环境,2005,4(14):440-444
    [3]江时强,李志晖.三峡水位降至149米(http://news.xinhuanet.com)
    [4]柳地.用科学发展观破解三峡水库管理难题—三峡水库管理思考和探索.中国三峡水库管理网:htlp://www.3g.gov.cn/skgl/er.Htm
    [5]何用,李义天.泥沙污染水质模型研究综述[J].水资源保护,2004,5:5-10
    [6]官永红,汤永明,刘会平.新疆红山嘴—级水电站水轮机抗泥沙磨损研究[J].水电站机电技术,2006,29(4):29-32
    [7]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社.2003.
    [8]万远扬,金中武,黄仁勇.泥沙模型研究述评与前景展望[J].南水北调与水利科技,2006,4(1):48-51
    [9]王兆印.泥沙研究的发展趋势和新课题[J].地理学报,1998,53(3):245-255.
    [10]赵杰,吴永跃,郝立彦.柳河泥沙的危害及治理措施[J].安徽农业科学,2006,34(12):2817-2818
    [11]王尚毅.论挟沙明流中泥沙的有效悬浮功概念兼论区分造床质与非造床质的标准问题[J].科学通报,1979,24(9):11-17
    [12]Josuke KA:日本的水库淤积及泥沙管理.http://www.icold—cigb.org.cn/newsview.asp
    [13]张智,王利利,曾晓岚,吕平毓.泥沙沉降对长江水体富营养化相关因素的影响初探[J].生态环境,2006,15(3):457-460
    [14]Vito Vanonied.Sedimentation Engineering[M].Asce Task Commitlee.1975
    [15]V.A.范诺尼主编,黄河水利委员会水利科学研究所、长江水利水电科学研究院等译:《泥沙工程》[M].北京:水利出版社,1981
    [16]沙玉清.泥沙运动学引论[M].第二版,陕西:陕西科学技术出版社,1996.
    [17]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [18]Stokes G G.On the effect of the internal friction of fluids in the motion of pendulums[J].Trans.Cam.Phil.Soc.1851,9(2):8-106.
    [19]Oseen C W.Ueber die Stokes'sche Formel,und uber eine verwandte Aufgabe in der Hydrodynamik[J].Ark.Math.Astronom.Fys.1910,6(2):154-160.
    [20]Kaplun S.Lagerstrom P A.Asymptotic expansions of Navier—Stokes solutions for small Reynolds numbers lJJ.J.Math.Mech.1957,6(3):585-593.
    [21]Proudman I,Pearson J R A.Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder[J].J.Fluid Mech.1957,2(2):237-262.
    [22]Rubey S.Setting Velocities of ravel,Sand and Silt Particles[J].Amer.J.Sci.1933,25(148):325-338.
    [23]武汉水利电力学院.河流动力学[M].北京:中国工业出版社,1961.
    [24]孙阳,王里奥,袁辉.三峡水库氮磷污染贡献率估算[J].重庆大学学报:自然科学版,2004,27(10):138-141
    [25]窦国仁.泥沙运动理论[R].第二篇,南京:南京水利科学研究所,1963.
    [26]景可.长江上游泥沙输移比初探[J].泥沙研究,2002(1):53-59
    [27]魏国远,刘娟,郭炜.三峡水利枢纽坝区泥沙问题研究[J].长江科学院院报,2001,18(5),23-27
    [28]陈显维,许全喜,陈泽方.三峡水库蓄水以来进出库水沙特性分析[J].人民长江,2006,37(8):1-3
    [29]张代钧,许丹宇,任宏洋,等.长江三峡水库水污染控制若干问题[J].长江流域资源与环境,2005,14(5):605-610
    [30]马娜,寇健,陈玲,等.三峡库区万州段长江水中泥沙量对其水质的影响分析[J].四川环境,2004,23(1):67-69
    [31]万远扬,余明辉.泥沙研究对比性分析与展望[J].人民黄河,2005(8):18-19.
    [32]王晓青,吕平毓,胡长霜.三峡库区悬移质泥沙对TP、TN等的吸附影响[J].人民长江,2006,37(7):15-17
    [33]孙成渤.水生生物学[M].北京:中国农业出版社,2004
    [34]吴琼等.长江口九段沙附近水体浮游植物的种类组成与数量分布[J].上海师范大学学报,2007,36(1):54-59
    [35]韦杜峰,王肇鼎,练健生.大鹏澳水域秋季浮游植物优势种的演替及其与春季的比较[J].热带海洋学报,2004,23(5):10-16
    [36]雷光英,汪官余,姚维志.宝圣湖浮游植物的分级分布研究[J].重庆水产,2005(3):31-35
    [37]祝云龙,李辉信.氮磷对滩塘养殖水体及浮游植物的影响[J].农业科学,2004,(5):92-95
    [38]Pantulu V.R.Floating cage culture of fish in the lower Mekong River Basin in Advances in aquaculture[M].T.VRPilIay and W.A.Dill Ceds FishNews Books Ltd.,Farnham,Surrey.1979Pages 423-427
    [39]何青等.长江口及其邻近水域冬季浮游植物群集[J].应用生态学报,2007,18(11):2559-2566
    [40]Fukami K,Muriyuki N,Morio Y,etal.Distribution of heterotrophic nanoflagellates and their importance as the bacterial consumer in a eutrophic eoastal seawater[J].Journal of Oceanography,1996,52:399-407,
    [41]Kirchman D L,Keil R G,Simon M,etal.Biomass and production of beterot ropic bacterioplankton in the oceanic subarctic pacific[J].Deep—Sea Research 1,1993,40(3):967-988
    [42]胡勇军,等.长春南湖水生生态系统的初级生产者—浮游植物[J].东北师大学报自然科学版,2001,33(2):80-83
    [43]黄邦钦,洪华生.微型浮游植物在环境科学研究中的应用[J].福建环境,1995,12(4):18-19
    [44]苏洁.黑龙江浮游动物群落结构特征[J].水产学报,2005,18(4):18-23
    [45]罗冬莲,黄美珍.福建深泸湾浮游桡足类的分布[J].台湾海峡,2002,21(4):23-26
    [46]王真良.小长山岛周围海域浮游动物群落结构的初步研究[J].大连水产学院学报,2003,18(4):296-300
    [47]王家楫,伍卓田,戈楸生.武昌东湖轮虫种类与数量季节变动的初步观察[J].水生生物学集刊,1965,5(2):183-201
    [48]Evans M S.Lake Huron Crustacean and Rotifer zooplankton,factors affecting community structure with an evaluation of water quality status[J].Great Lake Research Diviaion Special Publ,No 98,1988
    [49]Bu—Olayan.A H,Al—Hassan R.Thomas B Vet al.Impact of trace metals and nutrients levels on phytoplankton from the Kuwait coast[J].Environment International,2001,26:199-203
    [50]陈受忠.武昌东湖桡足类数量的周年资料[J].水生生物学集刊,1965,5(2):202-219
    [51]陈伟民,秦伯强.太湖梅梁湾冬末春初浮游动物时空变化及其环境意义[J].湖泊科学,1998,10(4):10-16
    [52]李共国,胡天云,吴洁.杭州西溪河浮游动物生态研究[J].生态学杂志,2001,20(6):29-31
    [53]林景宏,戴燕玉,张金标,等.夏季楚科奇海浮游动物的生态特征[J].极地研究,2001,13(3):108-116
    [54]郭长城,王国祥,喻国华.天然泥沙对富营养化水体中磷的吸附特性研究[J].中国给水排水,2006,22(9):10-13
    [55]牛明颖,王伟,王静.黄河水沙对水环境的影响[J].黄河水利职业技术学院学报 2003,15(4):10-12
    [56]王晓青,吕平毓,胡长霜.三峡库区悬移质泥沙对TP、TN等的吸附影响[J].人民长江,2006,37(7):15-17
    [57]林桂花,韩博平.鹤地水库浮游生物与富营养化特征分析[J].生态科学,2002,21(3): 208-212
    [58]陆子川,罗宏德.富含泥沙水样总氮总磷测定的干扰因素探讨[J].甘肃环境研究与监测,2000,13(4):250-251
    [59]朱铁群,李文亮,李丹丹.黄河泥沙对水中细菌吸附作用研究[J].华北水利水电学院学报,2006,27(3):89-91
    [60]钱宁等.泥沙运动力学[M].科学出版社,1982.
    [61]张智,王利利等.泥沙沉降对长江水体富营养化相关因素的影响初探[J].生态环境,2006,15(3):457-460
    [62]Kirk K L.Suspended clay and the population dynamics of plankonic rotifer and cladcerans[J].Ecology,1990,71(5):1741-1755
    [63]Grobbelaar J U.Phytoplankton productivity in tubid waters[J].Plank Res,1985,7:653-663
    [64]Kirk K L.Inorganic particles alter comp.Metition in grazing plankton:the role of selective feeding[J].Ecology,1991,72(3):915-923
    [65]Kirk K L.Suspended clay reduces Daphinia feeding rate:Behavioural mechanisms.[J].Freshwater Biology,1991,25(2):357-365
    [66]Hart R C..Zooplankton abundance community structure and dynamics in relation to inorganic turbidity,and their implications for a potential fishery in subtropical Lake Le Roux,South Africa[J].Freshwater Biology,1986,16:351-371
    [67]Hart R C.Population dynamics and production of five crustacean zooplankters in a subtropical reservior during years of contrasting turbidity[J].Freshwater Biology,1987,18:287-318
    [68]刘瑞秋.三峡大坝截流前后长江中上游江段水化学特性的初步调查[J].水生生物学学报,2000,24(5):446-447
    [69]王伟,王静,牛明颖.黄河水沙对水环境的影响[J].黄河水利职业技术学院学报,2003,15(4):10-12
    [70]欧伏平,张建明,等.含泥沙水样总磷测定方法的研究[J].环境工程,2001,19(6):
    55-56
    [71]郭长城,等.河流泥沙对污染河水中污染物的吸附特性研究[J].生态环境,2006,15(6):1151-1155
    [72]张远,郑炳辉,刘亮,等.三峡水库蓄水后氮、磷营养盐特征分析[J].水资源保护,2005,21(6):23-26.
    [73]张绝民,何志辉.内陆水域渔业自然资源调查手册[M].北京:农业出版社,1984.
    [74]胡鸿钧,李尧英,魏印心,等.中国淡水藻类[M].上海:上海科学技术出版社,1979
    [75]周凤霞,陈剑虹.淡水微型生物图谱[M].北京:化学工业出版社,2005
    [76]刘瑞秋.三峡大坝截流前后长江中上游江段水化学特性的初步调查[J].水生生物学学报,2000,24(5):446-447
    [77]董双林,赵文.养殖水域生态学[M].北京:中国农业出版社,2004
    [78]张远,郑炳辉,刘亮,等.三峡水库蓄水后氮、磷营养盐特征分析[J].水资源保护.2005,21(6):23-26.
    [79]Sournia A.Phytoplankton Manual.Monographs on Oceanographic Methodogy(6)[M].Pairs:Unesco,1978,337
    [80]梁文裕,王俊,王志山,等.宁夏鹤泉湖浮游植物现状及水质评价[J].宁夏大学学报(自然科学版),2001,22(4):426-429

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700