工程影响下的细沙粉沙质岸滩地貌演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以位于江苏吕四侵蚀性细沙粉沙质海岸的茅家港岸段为例研究海岸工程影响下的岸滩地貌变化。通过分析吕四海岸的发育历史和动力环境,采用GIS技术对滩面地形图进行了数字化,形成不同时期的数字高程模型,运用剖面对比法、数字高程模型计算分析等方法,并结合实地地貌调查,定性与定量相结合地分析研究茅家港附近滩面在工程建设前后岸滩地貌变化,同时采用物理模型试验进行验证。在此基础上,结合粒度、磁化率和孢粉变化等辅助手段研究滩面的冲淤变化及其机制,并通过数学计算研究分析突堤之间和离岸堤内滩面的淤积趋势。主要结论如下:
     1.茅家港工程建成后,两突堤之间滩面淤积,航道位置和深度稳定。突堤西侧堤角的滩面以冲蚀为主。突堤东侧堤角的滩面处于淤积状态。口门以外的滩面处于冲淤不断变化的状态,航道处于自然摆动状态。茅家港岸滩在自然条件下和工程影响下都有春夏季节淤积、秋冬季节侵蚀的季节变化特点。1991.11~1992.12,突堤内落淤百分比为62%,平均淤积速率达0.008476m/月,1992.12~1993.09突堤内落淤百分比仅为21.8%,平均淤积速率仅0.004439m/月,到1993年9月,堤内滩面淤积达到平衡状态。
     2.离岸堤工程建造后,离岸堤内的滩面由原来的冲刷状态变为淤积状态。离岸堤内的滩面上越靠近离岸堤的位置淤积效果越好,且由于被淤积而形成了与原始滩面倾向相反的新滩面。
     3.粒度、磁化率和孢粉分布和变化与滩面淤蚀动态的一致性。茅家港突堤西侧滩面,沉积物的粒度祖,磁化率大,水动力增强,滩面侵蚀;突堤之间、突堤东侧的滩面沉积物的粒度细,磁化率小,说明水动力弱,滩面淤积。离岸堤内的滩面柱状图的粒度、孢粉和磁化率的分布和变化都表明:离岸堤建成后,3~4年内滩面的淤积达到了平衡状态。
     4.细沙粉沙质海岸工程建成后,附近滩面冲淤分布与沙质、淤泥质海岸工程建成后的滩面冲淤分布有所不同,形成特殊的淤蚀形态:突堤的上游滩面冲刷、下游滩面淤积;离岸堤所造成的淤积沙嘴是开始紧靠离岸堤的背后,后来淤积沙嘴又从岸向海、从离岸堤向陆同时淤长。
The paper studied changes of beach landform impacted by coastal engineering, by taking example of Maojiagang strentch which lies in Lvsi erosion coast Jiangsu province. We started with analyzing the background of Lvsi coast, applied the GIS technology to make the landform map digitization so as to form the DEM of different period. We applied the method such as the section comparison and DEM calculation and analysis and referred the field survey to study the beach landform change before and after the engineering constructing by using both the qualitative and quantitative methods. At the same time, we applied the physical model to accept it. Based on applying the assistant measure such as the change of grain size, susceptibility and spore powder of the beach sediment, we studied the chance and mechanism of erosion-deposition of the beach surface and used mathematical calculation to analyze the trend of erosion-deposition of the beach surface between the two jetties and inside the offshore breakwaters. We drew the main conclusions as following:1. After the construction was completed, the beach between the two jetties had been filled up step by step. The position of sea-route and the depth is steady. The beach on the west of jetty is on the condition of erosion and the beach on the east of jetty is on the condition of deposition. The beach out of the jetty is on the natural condition of erosion-deposition. The sea-route is in a state of natural sway. The natural change of the bank nearby Maojiagang has the characteristic of seasonal change: the sand surface is filled up in spring and summer and is flushed in fall and winter. The sediment of jetty was in the proportion of 62 percent between Nov. in 1991 and Dec. in 1992, and the average rate of sediment was 0.008476m /month. Between Dec. 1992 and Sep. 1993 the proportion was only 21.8 percent, and the average rate was just 0.004439m / month. The beach surface inside the jetty had got a balance of erosion and sediment until September 1993.2. After the construction of offshore breakwater had been completed, the state of the beach surface outside the offshore breakwater turned from flush to sediment. Nearer the distance to the offshore breakwater is. effects of surface sediment inside the offshore breakwater is the better. and formed the new surface that has course incline with initial surface due to deposition.3. The distributing and change of granularity. susceptibility and spore powder distribution accord with the change of surface sediment dynamic erosion-deposition. With the distance from surface to beach increasing, the granularity of deposition is thicker and the susceptibility augment, the granularity of the sediment inside the jetty is less than the outside and the susceptibility is less than the outside. It reflects that the dynamic condition inside the jetty is weaker than the outside. The granularity of the histogram section and the distributing and change of susceptibility and spore powder inside the offshore breakwater show a 3 or 4 gyration, it indicates that the beach surface sediment has got a balance condition until 3 to 4 years after the offshore breakwater was completed.4. The distribution of the beach surface nearby the engineering after the completion of silty coast differs from the distribution that after the completion of sandy and muddy coast, it formed a special configuration of erosion-deposition: Upriver of the jetty has been flushed and the downriver has been filled up after the silty coastal engineering was completed. At the beginning, the sediment headland caused by offshore breakwater was closed to the offshore bank and thus then extended both from land to sea and from sea to land.
引文
[1] Archer, A. W, et al. Analysis of modern equatorial tidal periodicities as a test of information encoded in ancient tidal rhythmites. In: Clastie Tidal Sedimentology, D.G.Smith, G.E.Reinson, B.A.Zaitlin and R.A.Rahmani (eds.)[J].Canadian Society of Petroleum Geologists, Memoir, 1990.16: 189-196.
    [2] Bagnold RA. Beach Formation by Waves: Somg Model Experiments in a Wave Tank[J]. Inst. Civil Engineering, 1940. (1)
    [3] Bagnold RA. Motion of Wave in Shallow Water Interaction between Waves and Sand Bottom. Proc. Roy. Soc., Seca, 1946.87
    [4] Barnes, Trevor J.Placing ideas: genius loci, heterotopia and geography's quantitative revolution, Progress in Human Geography.2004, 28(5):565-596
    [5] Blott, Simon J; Pye, Kenneth. Morphological and Sedimentological Changes on Artificially Nourished Beach, Lincolnshire, UK. Winter 2004.20(1): 214-234
    [6] Bodge K R. Representing equilibrium beach profile with an exponential expression[J]. Coastal.Res, 1992, (8): 47~55.
    [7] Brock, John C.; Krabill, William B.; Sallenger, Asbury H. Barrier Island Morphodynamic Classification Based on Lidar Metrics for North Assateague Island, Maryland, Journal of Coastal Research, 2004, 20(2): 489-500.
    [8] Byrnes, et al. Physical Biological Effects of Sand Mining Offshore Alabama, U.S.A[J]. Journal of Coastal Research, Winter2004, 20(1): 6-25
    [9] Collins, M.B. Est. Coastal Mar[J]. Sci., 1976, 4: 46-57.
    [10] Dally W R, Dean R G. Wave height variation across beaches of arbitrary profile[J]. Geol. Res., 1985,90(C6): 11917~11927.
    [11] Dean R G. Equilibrim beach profile: Characteristics and application[J].Coastal.Res, 1991, (7): 53~84.
    [12] Dollar, Evan S. Fluvial geomorphology[J]. Progress in Physical Geography. 2004, 28(3): 405-471
    [13] Finkl, Charles W, Leaky Valves in Littoral Sediment Budgets: Loss of Nearshore Sand to Deep Offshore Zone via Chutes in Barrier Reef Systems, Southeast Coast of Flnrida, USA[J]. Spring2004, 20(2): 605-612
    [14] Finkl, Charles W. Coastal Classification: Systematic Approaches to Consider in the Development of a Comprehensive Scheme[J]. Journal of Coastal Research, Winter2004, 20(1): 166-214
    [15] Finkl, Charles W. et al. Coupling Geological Concepts with Historical Data Sets in a MIS Framework to Prospect for Beach -Compatible Sands on the Inner Continental Shelf: Experience on Eastern Texas Gulf Coast(J].Journal of Coastal Research, Spring 2004 ,20(2)
    [16] Hallermeier R J. A profile zonation for seasonal sand beachs from wave ciimate[J].Coastal Eng., 1981, (4): 253~277.
    [17] Hitoshi Tanaka and Nobuo Shuto, Sand Movement due to Wave-Current Combined Motion[J]. Coastal Engineering in Japan, 1984,27:179-191
    [18] Inman D L, Elwany H S, Jenkins S A. Shorerise and bar-berm profile on ocean beach[J]. Geol. Res., 1993,98(C10): 18 181-18 199.
    [19] Ip K 1. Victoria Harbou, Western Harbour and North Lantau Water. In: Coastal Infrastucture Development in Hong Kong[R]. Civil Engineering office, Civil Engineering Department, Hong Kong Government, 1996.33-66
    [20] Ishihara T and Sawaragi T. Fundamental Studies of Sand Drift[J]. Coastal Engineering in Japan 1962,5:122-135
    [21] Jonsson IG. Wave Boundary Layers and Friction Factuies[J]. Proceeding 10th Conference Coastal Engineering, 1967.127-148
    [22] Kamphuis JW. Alongshore Sedinent Tansport Rate Distributions Proc[J]. Coastal Sediments'91 Seattle ASCE, 1991.170-183
    [23] Komar P D and Miller M C. Sediment Threshold under Oscillorory Waves, Proceeding 14th Conferende Coasral Engineering, 1975.756-775
    [24] Komar P D, McDougal W G The analysis of exponential beach profiles[J]. Coastal Res. 1994, 10(1) : 59~69.
    [25] Kyung Duck Suh. Review of transformation of wave spectra due to depth and current[J]. The journal of Korea Society of Coastal and Ocean Engineering, 1992.4(4) :225-230
    [26] Larson M, Kraus N C, Wise R A. Equilibrium beach profiles under breaking and non-breaking waves[J.]. Coastal Engineering, 1999, (36): 59~85.
    [27] Lee G, Nicholls R J, Birkmeier W Aet al. A conceptual fairweather-storm model of beach nearshore profile evolution at Duck, North Carolina, U.S.A[J]. Coastal.Res.1995, 11(4): 1157~1166.
    [28] Leo C Van Ran and Aart Kroon. Sediment Transport by Currents and Waves[J]. Coastal Engineering, 1992.2613-2628
    [29] Madsen O S and Grant W D. Quantitative Description of Sediment Transport by Waves[J]. Proceeding of the 15th International Conference on Coastal Engineering, 1976.127-184
    [30] Madsen O S and Grant W D. Sediment Transport in the Coastal Environment[J]. Coastal
     Engineering, 1976.36-53
    [31] Madsen O S. Mechanics of cohesionless sediment transport in coastal waters[C]. Proceedings of Coastal Sediments 91, ASCE, 15~27.
    [32] Madsen O S. Sediment transport on the shelf[C]. Sediment Transport Workshop DRP TA1, 8-9 June, Coastal Engineering Research Center, Vicksburg, MS. 1993.
    [33] Manohar M. Mechanjics of Bottom sediment Movement due to Wave Action, Tech. Men. 75 U.S. Beach Erosion Board, 1995.
    [34] McDougal W G, Hudspeth M K. Longshore sediment transport on on non-planar beaches[J]. Coastal Engineering, 1983, 7: 119—131.
    [35] Mcdougal W G, Hudspeth M K. Wave serup/setdown and longshore current on non-planar beaches[J]. Coastal Engineering, 1983,7: 103—117.
    [36] Mu oz-Perez J J, Tejedor L, Medina R. Equilibrium beach profile model for reef-protect beaches[J]. Coastal Res., 1999,15(4): 950—957.
    [37] Nairn, Rob. et al A Biological and Physical Monitoring Program to Evaluate Long-term Impacts from Sand Dredging Operations in the United States Outer Shelf[J], Journal of Coastal Research, Winter2004,20(1): 126-138.
    [38] Neumeier, Urs: Ciavola, Paolo. Flow Resistance and Associated Sedimentary in a Spartina maritime Salt-Marsh[J]. Journal of Coastal Research, 2004,20(2):435-448
    [39] D.GSmith,GE.Reinson, B.A.Zaitlin and R.A.Rahmani (eds.).On mud flats in the macrotidal Cobequid Bay-Salmon River estuary, Bay of Fundy, Canada[J]. In: Clastic Tidal Sedimentology, Canadian Society of Petroleum Geologists, 1990, Memoir 16 : 137-160.
    [40] Park Y.A. et a!., Tidal lamination and facies development in the macrotidal flats of Namyang Bay, west coast of Korea[J]. Spec. Publs. Sediment, 1995.24:183-191.
    [41] Perlier G, Hansen E A, Villarel C, Deigaard R and Fredspe J. Sediment Transport over Pipple in Wave and Current[J]. Coastal Engineering, 1994.2043-2057
    [42] Reineck H.E. Layered sediments of tidal flats, beaches, and shelf bottoms of the North, Sea[J]. In: Estuaries(H Lauff,ed.), 1967,190-206.
    [43] Robert B N and Howard N S. Deterministe Profile Modeling of Nearshore Processes Part 2, Sedment Transport and Beach Profile Development[J]. Coastal Engineering, 1993,19:57-96
    [44] Ronald L. Martino and Dewey D. Sanderson. Fourier and autocorrelation analysis of estuarine tidal rhythmites, lower breathitt formation(Pennsylvanian), eastern Kentucky, USA[J]. Journal of Sedimentary Petrology, 1993, 63 (1): 105-119.
    [45] Shinohara K, Tsubaki T, Yoshitaka M and AgemoriC. Sand Transport along a Model Sandy Beach by Wave Action[J]. Coastal Engineering in Japan, 1985.1
    [46] Shore Protection Manul. Coastal Egingerring Research center, U.S. Army Corps of
     Engineers Vicksburg, 1984
    [47] Short, Andrew D; Trembanis, Arthur C. Decadal Scale Patterms in Beach Oscillstion and Rolation Narrabeen Beach, Australia-Time Series, PCA and Wavelet Analysis [J]. Journal of Coastal Research, 2004, 20(2): 523-533.
    [48] Stephenson, Wayne J. et al, Coastal geomorphology into the twenty-first century [J]. Journal of Coastal Research, Dec2003. 27(4): 607-624.
    [49] Sunamura T. Quantitative predictions of beachface slopes [J]. Gelolgcal Society of American Bulletin, 1984, (95): 242~261
    [50] Tessier, B., et al. Comparison of ancient rhythmites (Carboniferous of Kansas and Indiana, USA ) with modern analogues (the Bay of Mont-Saint-Michel, France) [J]. Spec. Publs. Ass. Sediment. 1995.24: 259-271
    [51] Thom, Bruce. Geography, planning and the law: a coastal perspedtive [J]. Australian Geographer, Mar 2004. 35(1): 3-17.
    [52] Uwe Hentschke and Doris Milkert. Power spectrum analyses of storm layers in marine silty sediments: a tool for a Paleoclimatic reconstruction? [J]. Journal of Coastal Research, 1996. 12(4): 898-906.
    [53] Walden A. T. et al.. An Alternative approach to the Joint Probability Method for Extreme High Sea Level Computations [J]. Coastal Engineering, 1982, 6(1):71-82.
    [54] Walsh, K. J. E. et al, Using sea Level Rise Projections for Urban Planning in Australia[J]. Journal of Coastal Research, Spring2004,20(2): 586-599.
    [55] Wang P, Davis R A. A beach profile for a barred coast case study from Sand Key. West-central Florida [J]. Coastal Res., 1998, 14(3): 981~991.
    [56] Wang, X.Y, et al. Grain-size characteristics of the extant tidal fiat sediments along the Jiangsu coast, China[J]. Sedimentary Geology, 1997. 112: 105-122.
    [57] Williams, G.E.. Upper Proterozoic tidal rhythmites, South Australia:sedimentary, features,deposition, and implications for the earth's paleorotation[J]. In: Clastie Tidal Sedimentology, D.G.Smith, G.E.Reinson, B.A.Zaitlin and R.A.Rahmani (eds.).Canadian Society of Petroleum Geologists, 1990, Memoir 16: 161-178.
    [58] 曹祖德,侯志强,孔令双.粉沙质海岸开敞航道回淤计算的统计概化模型[J].水道港口,2002,23(4):253-258.
    [59] 曹祖德,焦桂英,赵冲久.粉沙质海岸泥沙运动和淤积分析计算[J].海洋工程,2004,22(1):59-65.
    [60] 曹祖德,焦桂英.粉沙质海岸泥沙运动推悬比的确定[J].水道港口,2003,13(1):12-15.
    [61] 曹祖德,孔令双,李炎保.粉沙质海岸的工程泥沙问题[J].水道港口,2004,25增:26-30.
    [62] 曹祖德,杨树森,杨华.粉沙质海岸的界定及其泥沙运动特点[J].水运工 程,2003,352(5):1-4.
    [63] 曹祖德,孔令双,焦桂英.波、流共同作用下的泥沙起动[J].海洋学报,2003(3):113-119
    [64] 常瑞芳.海岸工程环境[M].青岛:青岛海洋大学出版社,1997..
    [65] 陈才俊.江苏淤长型泥质潮滩的剖面发育[J].海洋与湖沼.1991,22(4):360-367.
    [66] 陈才俊.围滩造田与淤泥质潮滩的发育[J].海洋通报,1990,9:3.
    [67] 陈昌明、汪寿松.潮汐沉积作用与响应模式[J].地质科学.1988,(4):357-366.
    [68] 陈吉余.海塘——中国海岸变迁和海塘工程[M].北京:人民出版社,2000,11-27
    [69] 陈吉余,王宝灿,刘苍字,海岸地貌,中国自然地理(地貌)[M].北京:科学出版社,1980,313-349.
    [70] 陈士荫,顾家龙,吴宋仁。海岸动力学[M].北京:人民交通出版社,1988
    [71] 陈卫跃.潮滩泥沙输移及沉积动力环境——以杭州湾北岸、长江口南岸部分潮滩为例[J].海洋学报,1991,13(6):813-821.
    [72] 冯金良.人类工程活动对秦皇岛海滩侵蚀及淤积的影响[J].海岸工程,1997,(3):42-46
    [73] 贺松林主编.海岸工程与环境概论[M].北京:海洋出版社,2003
    [74] 韩其为.泥沙起动规律及起动流速[J].泥沙研究,1982(2):11-26
    [75] 胡世雄,王珂.现代地貌学的发展与思考[J].地学前缘(中国地质大学,北京),2000(增):67-78
    [76] 黄西和、王根发.古代潮汐沉积物的新判据——潮汐周期层序[J].沉积学报,1987,5(2):39-44.
    [77] 金德生主编.地貌过程实验模拟研究若干问题,地貌过程与环境[M].北京:地震出版社,1993
    [78] 金德生主编.地貌试验与模拟[M].北京:地震出版社,1995
    [79] 金庆祥等.应用经验特征函数分析杭州湾北岸金汇港泥质潮滩随时间的波动[J].海洋学报,1988,10(3):327-333.
    [80] 柯马尔 P D,邱建立等译.海滩过程与沉积作用[M].北京:海洋出版社,1985:219~246.
    [81] 孔令双,曹祖德,李炎保.粉沙质海岸建港的若干泥沙问题[J].中国港湾建设,2004,3:24-27.
    [82] 孔令双.曹祖德,焦桂英等.波、流共存时的床面剪切力和泥沙运动[J].水动力学研究与进展,2003(1):93-97
    [83] 李从先等.淤泥质海岸潮间浅滩的形成和演变[J].山东海洋学院学报,1965,2:21-31.
    [84] 李铁松、李从先.潮坪沉积与事件[J].科学通报,1993,38(19):1778-1781.
    [85] 李炎.杭州湾南岸潮滩的~(210)Pb分布及其沉积学意义[J].东海海洋,1993,11(1):34-43.
    [86] 李炎等.浙江象山大目涂淤泥质潮滩发育的周期性[J].海洋学报,1987,9(6):725-734.
    [87] 李志林,朱庆.数字高程模型[M].武汉:武汉测绘科技大学出版社,2000
    [88] 梁必骐等.中国自然灾害及其影响的研究[J].自然灾害学报,1995,4(1).
    [89] 凌申.历史时期江苏古海塘的修筑及演变[M].中国历史地理论丛,2002(4):45-54
    [90] 刘家驹.淤泥质海岸和港池淤积计算[J],全国水运工程标准技术委员会系列文献(1990)
    [91] 刘家驹,喻国华.淤泥质海岸保滩促淤计算及预报[J].海洋工程,1990,8(2):51-59
    [92] 刘家驹,喻国华.海岸工程泥沙的研究和应用[J].水利水运科学研究,1995,No.3
    [93] 刘家驹.海岸泥沙运动与岸滩演变[R].南京水利科学院报告,1997
    [94] 刘杏玲,赵焕庭,郑德廷,欧兴进,陈欣树.深圳湾的演变与开发利用[J].热带海洋,1988,(1):48-55.
    [95] 陆培东,杨健,丁家洪.海南省东水港建港工程地貌研究[J].南京师大学报(自然科学版),1996(2):77-84
    [96] 罗刚,杨希宏.粉沙质海岸港口口门位置的选择[J].中国港湾建设,2003,3:10-13.
    [97] 罗章仁.香港填海造地及其影响分析[J].地理学报.1997,52:220~227
    [98] 潘少明,施晓冬,王建业等,围海造地工程对香港维多利亚港现代沉积作用的影响[J].沉积学报,2000(1):22-28
    [99] 钱宁,万兆惠.泥沙运动力学[M].科学出版社,1983
    [100] 任美锷、张忍顺、杨巨海.江苏王港地区淤泥质潮滩的沉积作用[J].海洋通报,1984,3(1):40-52.
    [101] 任美锷.中国淤泥质潮滩沉积研究的若干问题[J].热带海洋,1985,4(2):6-13.
    [102] 森黔溯.粉沙质与淤泥质浅滩在风浪和水流作用下的挟沙能力[J].港工技术,1996,1:8-14.
    [103] 邵虚生、严钦尚.上海潮坪沉积[J].地理学报,1982,37(3):241-249.
    [104] 时钟等.中国淤泥质潮滩沉积研究的进展[J].地球科学进展,1996,11(6):555-561.
    [105] 宋立松.钱塘江河口围垦回淤过程预测探讨[J].泥沙研究,1999,(3):74-79.
    [106] 孙连成.塘沽围海造陆工程对周边泥沙环境影响的研究[J].水运工程,2003,(3):1-5
    [107] 孙林云,潘军宁,邢复,刘家驹.砂质海岸突堤式建筑物下游岸线变形数学模型[J].海洋学报,2001,(5):121-129
    [108] 孙林云,刘家驹.沙质海岸突堤式建筑物上游岸线演变计算及预报[C].第七届全国海岸工程学术讨论会论文集.北京:海洋出版社,1993.690~702.
    [109] 汤国安,陈正江,赵牡丹等.Arc View地理信息系统空间分析方法[M].北京:科学出版社,2002
    [110] 汤国安,赵牡丹.地理信息系统[M].北京:科学出版社,2000
    [111] 王成环.工程动态效应对粉沙质泥沙运动的影响[J].港工技术,1996,3:10-15.
    [112] 王建,刘泽纯等.磁化率与粒度、矿物的关系及其古环境意义[J].地理学报,1996,51 (2):155-163.
    [113] 王建,闾国年等.江苏岸外潮流沙脊群形成的过程与机制[J].南京师大学报,1998,21(3):95-108.
    [114] 王建,肖家仪,柏春广等.江苏中部潮滩沉积的季节性判别[J].海洋地质与第四纪地质,2002,20(1):31-34.
    [115] 王建,徐永辉,孙爱梅等.江苏中部潮汐层理所记录的环境信息研究[J].第四纪研究,1999,(6).
    [116] 王建主编.现代自然地理学[M].北京:高等教育出版社,2001,22-27,71-73.
    [117] 王开发等.长江三角洲表层沉积孢粉、藻类组合[J].地理学报,1982,37(3):261-271.
    [118] 王绍成.河流动力学.人民交通出版社,1991
    [119] 王永吉、苟淑名.江苏北部沿海第四纪海相地层中的孢粉分析[J].海洋与湖沼,1983,14(1):35-43.
    [120] 王艳红,张忍顺等,淤泥质海岸的形成过程及其机制,海洋工程,2003.5
    [121] 王运洪.波浪水流共同作用下的底沙的起动[J].海洋科学,1983(3)
    [122] 吴宋仁主编.海岸动力学[M].北京:人民交通出版社,2000,160-174.
    [123] 吴作基,J Gray.美国西北部克拉其亚湖相层纹泥沉积的孢粉学证据[J].海洋与湖沼,1987,18(2):181-187.
    [124] 徐宏明,张庆河.粉沙质海岸泥沙特性实验研究[J].海洋学报,2000,3:42-49.
    [125] 徐家声.孢粉在苏北沿海辐射状沙脊群地区沉积研究中的作用[J].沉积学报.1987,5(4):147-157.
    [126] 徐家声等.黄海大气中的孢粉及其对海底沉积物中孢粉组合的影响[J].植物学报,1984,36(9):720-726.
    [127] 徐敏.波流共同作用下的泥沙起动和岸滩变形(南京师范大学博士论文)[D],1999年
    [128] 徐敏.侵蚀性细沙粉沙质海岸平衡剖面的塑造(南京师范大学硕士论文).[D],1996年
    [129] 徐敏.侵蚀性细沙粉沙质海岸平衡剖面的塑造[C],第八届全国海岸工程学术会议
    [130] 徐孝彬.茅家港工程的工程地貌学分析(硕士论文)[D],1997年.
    [131] 徐永辉.潮汐层理成因机制与潮滩沉积序列中的风暴潮沉积事件研究——以江苏东台海岸潮滩沉积为例(硕士论文)[D],1998年.
    [132] 徐元,王宝灿.淤泥质潮滩表层沉积物稳定性时空变化的探讨——以长江口南边滩东海农场潮滩为例[J].海洋学报,1996,18(6):50-60.
    [133] 严恺主编.海岸工程[M].北京:海洋出版社,2002,206-236
    [134] 阎俊岳.中国近海气候[M].北京:科学出版社.1993年:159-170.
    [135] 杨华,麦苗.粉沙质海岸建港的新模式[J].水道港口,2004,25(1):7-10.
    [136] 杨世伦.长江三角洲潮滩季节性冲淤循环的多因子分析[J].地理学报,1997,52(2):123-130.
    [137] 虞志英,劳治声,金庆祥等.淤泥质海岸工程建设对近岸地形和环境影响[M].北京:海洋出版社,2003,1-153
    [138] 喻国华,陆培东.江苏吕四小庙洪淹没性潮汐汉道的稳定性[J].地理学报,1996(2):127-134
    [139] 张国栋.苏北弶港现代潮沟沉积研究[J].海洋学报,1984,6(2):225-233.
    [140] 张国栋.苏北弶港现代潮坪沉积[J].沉积学报,1984,2(2):39-51.
    [141] 张茂恒,王建.盐城上冈全新世有孔虫组合的环境意义[C].中国地理学会地貌与第四纪专业委员会编《地貌.环境.发展——1999年嶂石岩会议文集》.北京:中国环境科学出版社,1999:182-186.
    [142] 张铭.海温对台风影响的数值实验[J].科学通报,1985,30(18):1400-1402
    [143] 张忍顺.潮滩沉积动力学研究概况[J].黄渤海海洋,1987,5(2):71-78.
    [144] 张忍顺.苏北废黄河三角洲及滨海平原的成陆过程.地理学报,1984,39(2):173~184
    [145] 张勇等.波浪作用下淤泥质海滩剖面侵蚀过程的计算模式—以江苏北部淤泥质海岸为例[J].海洋工程,1993,11(4):74-83.
    [146] 赵冲久,刘富强,曹祖德.粉沙质海岸泥沙运动特点的实验研究[J].水道港口,2002,23(4):259-261.
    [147] 赵冲久,秦崇仁,杨华等.波流共同作用下粉沙质悬移质运动规律的研究[J].水道港口..2003,24(3):101-108.
    [148] 赵子丹.波浪作用下的泥沙起动[J].海洋学报,1983.1
    [149] 中国水利学会泥沙专业委员会主编.泥沙手册[M],北京:中国环境出版社,1989
    [150] 钟石兰、祝幼华、王建等.江苏盐城上冈全新世颗石藻及其环境控制[J].微体古生物学报,2001,18(2):149-155.
    [151] 钟兆站.中国海岸带自然灾害与环境评估[J].地理科学进展,1997,16(1):46-48.
    [152] 周益人.波浪作用下的泥沙起动[J].水利水运科学研究,1998(4):338-346
    [153] 周益人.粉沙质泥沙沉沙池设计方案的试验研究[J].水利水运科学研究,1998,2:139-148.
    [154] 朱大奎,李海宇,潘少明,尤坤元.深圳湾海底沉积层的研究[J].地理学报,1999,54(3):224-230.
    [155] 朱大奎,柯贤坤,高抒.江苏海岸潮滩沉积的研究[J].黄渤海海洋,1986,4(3):19-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700