华南岬间海湾沙质海岸平衡形态与侵蚀机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙质海岸正遭受着侵蚀后退过程,此类海岸演变趋势和侵蚀机制已逐渐引起了人们的关注。岬间海湾是华南沿海广泛分布的一种地貌形态。本文就华南岬间海湾沙质海岸为研究对象,以现场实测资料为基础,采用多种研究方法,按不同时空尺度,探讨了华南岬间海湾沙质海岸的侵蚀演变机制与平面平衡形态规律。
     研究的目的在于探索海洋动力和近岸地形的变化规律,不同尺度动力与地形的相互作用模式,并且给出这样的模式一个物理解释。根据对控制过程的认识,从地形动力学与岸线形态规律出发,探求稳定的海滩状态与平衡岸线形态。
     波浪是沙质海岸的主要驱动力,了解岬间海湾沙质海岸近岸波浪场波要素时空分布特征是海滩侵蚀演变研究与岬湾形态规律机制分析的基础与前提。对粤东靖海湾波浪近岸传播变形进行了数值模拟并分析了近岸波浪场波要素分布特征。反映了岬间海湾破波波高存在自切线段指向遮蔽段递减的沿岸变化梯度。海滩前滨是海陆相互作用最直接的区域,其冲流蚀积过程是与横向输沙机制相联系的中、小空间尺度和时间尺度的海滩过程,是海滩蚀积规律最直接的反映。根据粤东后江湾实测海滩前滨剖面,选用了入射波频带波高、长重力波频带波高、垂岸流分量等7个动力因子,采用典型相关分析方法,分析了前滨海滩过程的四个作用模式,讨论了各模式的控制因子及其作用机制。同时,海滩前滨由于冲流作用是海滩最活跃的区域,冲流带海滩高频振动分析显示出滩面存在多个频段的周期振动。通过分析冲流带高频振动的影响动力因子,讨论了潮水位对海滩的影响机制与波能流对海滩变化的重要影响。
     从海滩地形动力学出发,以靖海湾海滩状态分析为例,讨论了华南岬间海湾海滩状态的空间差异与时间变化。
     台风大浪是影响海岸侵蚀的重要的因子。以粤西水东湾海滩对8616号台风的响应为例,探讨了台风大浪对岬间海湾沙质海岸侵蚀的影响。结果表明台风对海岸侵蚀影响是显著的,由于岬间海湾的海滩状态与形态特点,不同位置的海滩侵蚀受影响程度有所不同——耗散性海滩侵蚀较小,反射性海滩侵蚀较大,海湾切线段侵蚀较小,遮蔽段侵蚀较大。
     海平面上升是影响海岸侵蚀另一重要因子。应用奇异谱(SSA)分析方法,分析并讨论了华南相对海平面的变化趋势。以后江湾与水东湾为例,分别采用2.0mm/a与2.5mm/a两个预案,应用Everts剖面积分法预测了海岸对海平面上升的响应,表明微小幅度的海平面上升可造成大幅度的岸线退缩和大面积海滩被淹没。分析表明海平面上升也对水位极值分布推算有着显著的影响,而水位极值分布对海岸安全工程设计具有非常重要地意义。应用海门站31年的最高潮水位资料,求作了P-Ⅲ型和Gumbel型极值水位频率曲线,比较分析了海平面上升对极值水位推算的影响,表明由于海平面上升,导致多年一遇高水位增高。
     沿岸输沙是与长时间尺度的海岸侵蚀演变过程相联系的。常浪情况下,横向输沙只是把泥沙在近岸区来回搬运,从较长时间看并不引起海岸的侵蚀。沙质海岸的长期岸滩演变主要是由沿岸输沙所造成的。分析了波浪的沿岸输沙机理及沿岸输沙影响海岸侵蚀的作用机制,并以后江湾拟建拦沙堤为工程背景,根据沿岸输沙机理,建立了岬间海湾岸线演变的一线模型,预报拦沙堤建成之后的岸线变化,讨论了海岸工程建筑对沿岸输沙及岸线蚀积变形的影响。岸线变形动态模式(如一线模式)模拟更大的空间尺度和时间尺度岸线演变会产生较大的误差,而海湾平衡形态规律为研究更大时空尺度岸线的稳定性提供了有效的方法。
     当前的海湾岸线形态模型都是用特定的数学函数(如对数螺线函数,双曲线函数,抛物线函数)去拟合岸线。海湾演变问题是一个复杂的非线性动力系统问题,海湾平衡形态并非简单的数学函数关系能够描述的。考虑到BP神经网络具有处理复杂非线性函数的能力,以华南岬间海湾为学习样本,建立一个基于BP神经网络的岬间海湾平衡形态模型。针对当前海湾平衡形态模型定义主波向与下岬角所存在的不足之处,从入射波折射绕射机理上解释了静态平衡形态的形成及其影响因素,重新合理定义了主波向与“下岬角”并提出了其具体算法。
     应用模型对华南31个主要岬间海湾的稳定性进行了判定,并讨论了模型在海岸防护工程上的应用。
Sandy coasts are suffering from erosion, which gradually is attracting people’s attention to. The headland bays are a ubiquitous morphologic form in the south of China. Headland sandy bays in South China as studying object, based on field measured date, adopted various means, according to different scales of temporal and spatial, erosion mechanisms and equilibrium shapes of headland sandy bays in South China were studied in this paper.
     The main objectives of the analysis were to probe into the variety rule of sea dynamics and morphology, the interaction patterns of dynamics and morphology in various scales of temporal and spatial, and provide such patterns a physical interpretation, based on the understanding of morphordynamics processes, seek the stable beach states and the form of static equilibrium shoreline.
     Waves are primary dynamics of sandy coasts. To understand the distributing characteristics of wave factors in nearshore is precondition of studying beach erosions and equilibrium shoreline shapes. The wave fields of Jinghai Bay were numerically simulated and wave distribution characteristics were analyzed. The results showed that the broken wave heights tended to ascend from shadow zone to tangent zone in headland bay coasts.
     Foreshores are the firsthand interaction area of lands and seas. The morphodynamic processes in the foreshore, which are intermediate or small scales relating cross-shore sediment transport, straightly reflect erosion-deposition mechanism of beach. Based on the measured data of beach profiles and waves in houjiang Bay, selected seven factors of dynamics, adopted canonical correlation analysis, four patterns of foreshore governing processes was explained, and the governing factors of each pattern were discussed. On the other hand, foreshores are the most drastic area of beach. The analysis of high-frequency beach oscillation in the swash zone indicated that beach face oscillation had several different frequency periods. Mechanisms which tide level effect beach and important effect of energy flux in the variation were discussed.
     Based on Morphodynamics, through analysis of beach state of jinghai Bay, It was discussed that beach state diversity of headland sandy bay in South China in temporal and spatial.
     Storm is an important factor of effecting coast erosion. Taken shuidong Bay as an example, response of shuidong Bay to 8616 typhoon was analyzed. The result showed that the effect of storm in coast was obvious, because of difference of beach state and shape, degree of erosion was different to the beach in different location of bay: degree of erosion was greater reflective beach than dissipative beach and tangent zone than shadow zone.
     Effect of sea level rise in erosion of coast is other important factor. Applied singular spectrum analysis, trend of sea level change was analyzed and discussed. Taken houjiang Bay and shuidong Bay as examples, adopted two project of 2.0mm/a and 2.5mm/a, applied Everts integral method, response of coast to sea level rise was forecasted. The result showed that a litter rise of sea level could make shoreline retreat large. Effect of sea level rise in calculation of extreme level distributing is obvious too. Applied extreme high level date of 31years in haimen station, frequency curve of P-Ⅲand Gumbel were calculated. Through comparing and analyzing, the result showed that sea level rise caused extreme high level become higher.
     Longshore sediment transport is relational with coastal erosion processes of large temporal scale. Under normal waves condition, cross-shore sediment transport only takes sediment inside-and-outside, and can’t cause coast erode in a long period. Sandy coast erosion is caused by longshore sediment in a long period. Mechanisms of longshore sediment transport and effect of longshore sediment transport in coast erosion were analyzed. Taken groynes being built as background, based on mechanism of longshore sediment transport, one-line model of headland bay was built. Change of shoreline was forecasted applying the model, and the effect of structure near shore to shoreline changing was discussed.
     The shoreline evolvement model as one-line model will bring great deviation, when simulating shoreline evolvement of larger temporal and spatial scale. However, equilibrium shapes rule of bay offers availability means for shoreline stability assessment of large temporal and spatial scale.
     Shoreline shapes model of nowadays all applied specifically function, such as logarithmic spiral, parabolic, hyperbolic and so on, to simulate shoreline. Problems of bay evolvement are complex and nonlinear, consequently, simple function can’t describe the shape of equilibrium bay. Considered the back propagation artificial neural networks have the capability to deal with complex nonlinear problem, taken headland bay in the south of china as sample, a back propagation artificial neural networks model concerning equilibrium shapes of headland bay was built. In addition, definiens of front orientation and downcoast tip for shape model of nowadays was not reasonable. Through analyzing forming mechanism of static equilibrium shape, front orientation and downcoast were defined reasonably and the calculating means were provided.
     At last, applied the model to estimate the stability of 31 headland bays in South China, and discussed the application of coast-defend engineering
引文
1 赵焕庭,张乔民,宋朝景等. 华南海岸和南海诸岛地貌与环境. 北京:科学出版社,1999.
    2 陈欣树. 广东和海南岛沙质海岸地貌及其开发利用. 热带海洋,1989,8(1):43-51.
    3 吴宋仁. 海岸动力学. 北京:人民交通出版社,1999.
    4 许志峰.论珠江三角洲港口群发展策略.商业经济.2005,7:103-106.
    5 Stoddart D R. Geomophology of the Solomon Islands coral reefs. Philosophical Transactions of the Royal Society.1969, B255:355-382.
    6 John B S. and Sugden D E. Raised marine features and phases of glaciation in the South Shetland Islands. British Antarctic Survey Bulletin 24:45-111.
    7 Emery K O, Tracey J I, Ladd, H S. Geology of Bikini and nearby atolls. United States Geological Survey Professional Paper. 1954, p259.
    8 West R C, Psuty N P, Thom B G. The Tabasco lowlands of southeastern Mexico. Coastal Studies series 27. Baton Rouge: Louisiana State University Press. 1969, p193.
    9 Twidale C R. A reconnaissance survey of the coastline of the Leichhardt Gilbert area of north-west Queensland. Australian Geographer. 1956, 6:14-20.
    10 Russell R J. Geomorphology of the Rhone Delta. Annais of the Association of American Geographers. 1942, 32:149-254.
    11 Davies J L. Wave refraction and the evolution of shoreline curve. Geographical Studies. 1958, 5(2):1-14.
    12 Shepard F P, Inman D. Nearshore water circulation related to bottom topography an wave refraction. Transaction of the American Geophysical Union. 1950, 31:196-212.
    13 Dolan R. Beach changes on the Outer Banks of North Carolina. Annalsof the Association of American Geographers. 1966, 56:690-711.
    14 Harrison W, Krumbein W C. Interaction of the beach-ocean-atmosphere system at Virginia Beach, Virginia. United States Army Coastal Engineering Research Center, Technical Memorandum 1964 7:p102.
    15 Harrison W. Prediction of beach changes. Progress in geography. 1970, 2:208-235.
    16 King C A M. The relationship between wave incidence, wind direction, and beach changes at Marsden Bay, Co Durham. Transaction of the Institute of British Geographers. 1953, 19:13-23.
    17 Inman D L, Gayman W R, Cox D C. Littral sedimentary processes on Kauai, a sub-tropical high island. Pacific Science. 1963, 17:106-130.
    18 Longuet-Higgins M S, Stewart R W. Radiation stress in water waves, a physical discussion with applications. Deep Sea Research. 1964, 11:529-562.
    19 Bowen A J. Rip currents 1: theoretical investigations. Journal of Geophysical Research. 1969, 74:5467-5478
    20 Noda E K. Wave induced nearshore circulation. Journal of Geophysical Research. 1974, 79:4097-4106.
    21 Komar P D. Beach processes and sedimentation. Englewood Cliffs, New Jersey: Prentice-Hall. 1976.
    22 Wright L D, Thom B G. Coastal depositional landforms: a morphodynamic approach. Physical Geography. 1977, 1:413-459.
    23 Wright L D, Short A D. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology, 1984, 56:93-118.
    24 Lippman T C, Holman R A. the spatial and temporal variability of sand bar morphology. Geophysical Research. 1990, 95:11575-11590.
    25 Shepard F P. Beach cycles in Southern California. U.S. Army Corps of Engrs., Beach Erosion Board Tech Memo. 1950b, no.20:p26.
    26 Scott, Theodore. Sand movement by waves. U.S. Army Corps of Engrs.,Beach Erosion Board Tech Memo. 1954, no.48:p37.
    27 Kemp P H. The relationship between wave action and beach profile characteristics. Proc. 7th Conf. On Coast. Eng., 1961, 7:262-277.
    28 Iwagake Y, Noda H. Laboratory study of scale effects in two-dimensional beach processes. Proc. 8th Conf. On Coast. Eng., 8:192-210.
    29 Duncan J R. The effects of water table and tidal cycle on swash-backwash sediment distribution and beach profile development. Marine Geology. 1964, 2:186-197.
    30 Strahler A N. Tidal cycle of changes on an equilibrium beach. J. Geology. 1966, 74:247-268.
    31 King C A M. The relationship between wave incidence, wind direction, and beach changes at Marsden Bay, Co. Durham. Trans. Inst. Brit. Geography. 19:13-23.
    32 Dean R G. Equilibrium beach profile: Characteristics and application. J. Coastal. Res. 1991, 7:53~84.
    33 Larson M.,Kraus N.C. SBEACH:Numerical model to simulate storm-induced beach chang.1989,Army Coros of Engr, Waterway Experiment,Technical Report CERC-89-9
    34 Bodge K.R.Representng equilibrium beach profile with an exponential expression, J.Coastal.Res.1992,(8):47~55.
    35 Lee P. Z., The submarine equilibrium profile: a physical model. J. Coastal Res.1994,10(1):1~17.
    36 Larson M, Kraus N C. SBEACH: numerical model for simulating Storm-induced Beach Change-Report 1:Empirical Foundation and Model Development. Technical Report CERC-89-9, U. S. Army Corps of Engineers. Coastal Engineering Research Center, Waterway Experiments Station, Vicksburg, Mississipi. 1989.
    37 谷汉斌,孙精石等. 近岸波浪数学模型的发展. 水道港口. 2004, 2:78-83.
    38 Kriebel D L, Dean R G. Numerical simulation of time-dependent beach an dune erosion. Coastal Engineering, 1985, 9:221-245.
    39 Larson M. Quantification of beach profile change. Report No. 1008, Department of Water Resources an Engineering, University of Lund, Lund, Sweden.
    40 Chiu T Y, Dean R G. Additional comparisons between computed and measured erosion by hurricanes. Tech. Report, Beaches and Shore Resource Center, Florida State University, Tallahassee, FL. 1986.
    41 Zheng J, Dean R G. Numerical models and intercomparisons of beach profile evolution. Coastal Engineering. 1997, 30:169-201.
    42 Hanson, H., Kraus, N. C., Numerical simulation of shoreline change at Lorain, Ohio, J. of Waterway, Port, Coastal an Ocean Eng., 1991, 117(1):1-8.
    43 Leont’yev I O. Short-term shoreline changes due to cross-shore structures: a one-line numerical model. Coastal Engineering. 1997, 31:59-75.
    44 Todd L, Walton J, et al. Modeling of three beach fill projects. Ocean Engineering. 2005, 32:557-569.
    45 Bakker W T. The dynamics of a coast with a groyne system. Proceeding of 9th costal engineering conference. American society of civil engineers. 1969, 492-517.
    46 Perlin M, Dena R G. A numerical model to simulate sediment transport in the vicinity of coastal structure. Misecellaneous Report No. 83-10 U.S. army engineer waterways experiment station. Coastal engineering research center, 1983, 119.
    47 Bender C J, Dean R G. Potential shoreline changes induced by three-dimensional bathymetric anomalies with gradual transitions in depth. Coastal Engineering. 2004, 51: 1143-1161.
    48 陈子燊. 中国海岸侵蚀问题. 资源、环境、区域开发研究. 全国首届青年地理工作者学术讨论会论文集. 科学出版社. 1988:41-46.
    49 夏东兴,王文海,武桂秋等。中国海岸侵蚀述要。地理学报,1993,48(5):468~476.
    50 季子修。中国海岸侵蚀特点及侵蚀加剧原因分析。自然灾害学报,1996,5(2):65-75.
    51 陈子燊,弧形?逗L驳孛捕蕴ǚ绱罄说南煊μ卣鳎蒲ūǎ?995,23:2168-2170.
    52 陈子燊,岬间篗迥嗌吃硕魇朴氩芰鞣植嫉募窘诒浠裕Q笸ūǎ?1999,3:41-48.
    53 陈子燊,篖财拭媸笨毡浠谭治觯Q笸ūǎ?000,2:42-46.
    54 陈子燊等,岬间篖菜椴ù匦慰焖俦浠牡匦味谭治觯Q罂?学,2000,1:40-43.
    55 王文介等. 华南沿海海滩状态和演变. 热带海洋,1996,15(4).
    56 庄克琳,庄振业,李广雪.海岸侵蚀的解析模式.海洋地质与第四纪地质.1998.18(2):97-101.
    57 张我华,蔡袁强,吴昌灿. 岸滩侵蚀的环境工程观念. 安全与环境学报. 2002.6:8-12.
    58 李志龙,陈子燊,戴志军. 粤东汕尾岬间海滩体积短期变化分析. 中大学报. 2004,2:112-116.
    59 李志龙,陈子燊,李志强,冯砚青. 冲流带海滩高频振动探讨. 海洋通报. 2005,2:20-25.
    60 Yasso W E. Plan geometry of headland bay beaches. Geology,73. 1965. 702-714.
    61 Silester R , Ho S K. Coastal Stabilization: Innovative Concepts. Englewood Cliffs, New Jersey: Prentice Hall,1993,578.
    62 Silvester R, Hsu J R C. Coastal Stabilization. Singapore. World Scientific,1997 578.
    63 Shinohara K, Tsubaki T, Model study on the change of shoreline of sandy beach by the offshore breakwater. Proceedings of the tenthInternational Conference on Coastal Engineering, ASCE, 1966, 550–563.
    64 McCormick M E. Equilibrium shoreline response to breakwater. Journal of Waterway, Ports, Coastal, and Ocean Engineering, ASCE, 1993, 119 (6): 657–670.
    65 Hsu J R C, Silvester R, Xia Y M. Static equilibrium bays: New relationships. Journal of Waterway, Port, Coastal and Ocean Engineering. 1989, 285-298.
    66 Ming D. Chiew Y M. Shoreline changes behind detached breakwater. Journal of Waterway, Ports, Coastal and Ocean Engineering, ASCE 2000, 126 (2), 63–70.
    67 Mauricio Gonz á lez, Raul Mendina. On the application of static equilibrium bay formulations to natural and man-made beaches. Coastal Engineering, 2001, 209-225.
    68 Hsu T W, Jan C D, Wen C C. Modified McCormicks model for equilibrium shorelines behind a detached breakwater. Ocean Engineering, 2003, 30:1887-1897.
    69 夏益民,平衡沙质海岸平面曲线形态规律,南京水利科学研究院河港研究所,1988.
    70 夏益民,海岸稳定工程措施研究,海洋工程,1991,vol(9),45-58
    71 夏益民,岬头控制法与平横海岸平面曲线形态规律,河海大学学报,1994,11:21-32
    72 王文介. 华南螺线海湾岸滩的地貌沉积特征和海岸演变问题. `97 海岸海洋资源与环境学术研讨会论文集,1997.
    73 常瑞芳. 波浪对稳定海湾形成过程的实验. 青岛海洋大学学报, 1994, 专辑:62-68.
    1 王文介,黄金森等. 华南沿海和近海现代沉积. 北京:科学出版社. 1991.
    2 中国科学院南海海洋研究所地质室. 华南沿海第四纪地质. 北京:科学出版社 1978.
    3 广东省海岸带和海涂资源综合调查大队、广东省海岸带和海涂资源综合调查领导小组办公室. 广东省海岸带和海涂资源综合调查报告. 北京:海洋出版社. 1987.
    4 赵焕庭,张乔民等. 华南海岸和南海诸岛地貌与环境. 北京:科学出版社. 1999.
    5 王文介. 粤东锯齿状海岸弧形沙质湾滩的发育. 热带海洋. 1985,5:19-25.
    6 陈史坚. 南海自然地理特征. 广东教育学院学报. 1982,(1):61-68.
    7 罗会邦,贺海晏. 珠江三角洲局地强风暴. 广州:中山大学出版社,1993.
    8 季子修. 中国海岸侵蚀特点及侵蚀加剧原因分析. 自然灾害学报,1996,5(2):65-75.
    9 夏东兴,王文海,武桂秋等. 中国海岸侵蚀述要. 地理学报,1993,48(5):468-476.
    10 盛静芬,朱大奎. 海岸侵蚀和岸线管理的初步研究. 海洋通报,2002,21(4):50-57.
    11 黄巧华,吴小根. 海南岛的海岸侵蚀. 海洋科学,1997,(6):50-52.
    12 丘世均. 中国海平面变化. 海洋出版社,1986,205-212.
    13 中国海洋学报,1991 年 3 月 6 日.
    14 南京大学海岸与海岛开发国家试点试验室. 石梅湾海洋旅游勘测研究报告. 1994.
    15 王颖,朱大奎. 南京大学学报(自然科学版地理专辑),1990,(11):1-11.
    16 黄少敏,罗章仁. 海南岛沙质海岸侵蚀的初步研究. 广州大学学报,2003, 2(5):449-454.
    1 李孟国,王正林,蒋德才. 近岸波浪传播变形数学模型的研究与进展. 海洋工程,2002,20(4),43-57.
    2 黄虎.海岸波浪场模型研究进展. 力学进展,2001,31(4),592-610.
    3 谷汉斌,孙精石,郑宝友. 近岸波浪数学模型的发展. 水道港口,2004,25(2):78-83.
    4 Eckart C. The propagation of gravity waves from deep to shallow water. National Bureau of Standards. Circular, 1952, 20:165-173
    5 Berkhoff J C W. Computation of combined refraction-diffraction. In: Proc 13th Int Conf on Coast Engineering, New York; Asce, 1972. 471-490
    6 Mei C C, Tuck E O. Forward scattering by thin bodies. SIAM J. Appl. Math., 1980, 39:178-191.
    7 Kirby J T. Propagation of weakly-nonlinear surface water waves in regions with varying depth an current. ONR Tech. Rept. 14, Res. CE-83-37, Department of Civil Engineering, University of Delaware ,Newark, 1983.
    8 Kirby J T, Dalrymple R A, The propagation of weakly nonlinear waves in the presence of varying depth and current, Proc. XXth Congress I.A.H.R., Moscow,1983
    9 Booji N. Gravity Waves on Water with Non-uniform Depth and Current. Doctoral dissertation, Technical University of Delft, The Netherlands, 1981, 130-131.
    10 Kirby J T. A note in linear surface wave-current interaction. J. Geophys. Res., 1984, 89:745-747.
    11 Kirby J T. Higher-order approximation in the parabolic equation method for water waves. J. Geophys. Res., 1986a, 91:933-952.
    12 Kirby J T. Rational approximation in the parabolic equation method for water waves. Coastal Engineering, 1986b, 10:355-378.
    13 Booji N. A note on the accuracy of the mild-slope equation. Coastal Engineering, 1983, 7:191-203.
    14 Hedges T S. An empirical modification to linear wave theory. Proc. Inst. Civ. Eng., 1976, 61:575-579.
    15 Kirby J T, Dalrymple R A. An approximate model for nonlinear dispersion in monochromatic wave propagation models. Coast. Eng., 1986b, 9:545-561.
    16 Dalrymple R A, Kirby J T, Hwang P A. Wave diffraction due to areas of energy dissipation. J. Waterway Pot, Coastal and Ocean Div. ASCE, 1984, 110:67-79.
    17 Phillips O M. The Dynamics of the Upper Ocean. Cambridge University Prees, 1966.
    18 Dean R G, Dalrymple R A. Water Wave Mechanics for Engineers and Scientists. Englewood Cliffs: Prentice-Hall, 1984.
    19 Liu P L, Dalrymple R A. The damping of gravity water waves due to percolation. Coastal Engineering, 1984.
    20 Kirby J T, Dalrymple R A. Modeling waves in surfzones and around islands. J. Waterway, Port, Coast. and Ocean Eng., Coast. Eng., 1986b, 112:78-93.
    21 Kirby J T, Dalrymple R A. A parabolic equation for the combined refraction-diffraction of Stokes waves by mildly varying topography. J. Fluid Mech., 1983, 136:543-566.
    22 文圣常,余宙文. 海浪理论与计算原理. 科学出版社,1984,525-526
    23 吴宋仁,海岸动力学.北京:人民交通出版社.2000:49~50.
    1 王文海译. 海滩地貌及其变化. 海岸工程, 1995, (3):43-56.
    2 Komar P D. Beach processes and sedimentation. Englewood Cliffs, New Jersey: Prentice-Hall. 1976.
    3 Larson M, Capobianco M, Hanson H. Relationship between beach profiles and waves at Duck, North Carolina, determined by canonical correlation analysis. Marine Geology, 2000,(163):275-288.
    4 冯砚青,陈子燊.长重力波运动与近岸过程研究综述.海洋通报, 2005, 24(1):77-83
    5 魏凤英. 现代气候统计诊断预测技术. 北京:气象出版社,1999
    6 施能、孙立平、申建北。典型相关方法及其在天气分析和预报中的应用。南京气象学院学报。1984,2-4
    7 毛恒青、李小泉。典型相关方法在短期气候预测中应用的试验研究。气候通讯,1996-2
    8 Nicholls,N. The use of canonical correlation to study teleconnections. Mon. Wea. Rev. 1987,115(27)
    9 Wijnberg, K.M., and Terwindt, J.H.J., 1995. Extracting decadal morphological behaviour from high-resolution, long-term bathymetric surveys along the Holland coast using eigenfunction analysis. Marine Geology, 126: 301-330.
    10 Elfrink B, Baldock T. Hydrodynamics and sediment transport in the swash zone: a review and perspectives. Costal Engineering, 2002, (45): 149-167.
    11 Kobayashi N. Numerical modeling of wave run-up on coastal structures and beaches. Mar. Technol. Soc., 1999, (3):33-37.
    12 McArdle S, Mclachlan A. Sand beach ecology: swash features relevantto the macrofauna. Coastal research, 1992, (2): 398-407.
    13 Larson M, Kubota S, Erikson L. Swash-zone sediment transport and foreshore evolution: field experiments and mathematical modeling. Marine Geology, 2004, (212): 61-79.
    14 Karunarathna H, Chadwick A, Lawrence J. Numerical experiments of swash oscillations on steep and gentle beaches. Coastal Engineering, 2005, (52): 497-511.
    15 Masselink G, Evans D, Hughes M G, Russell P. Suspended sediment transport in she swash zone of a dissipative beach. Marine Geology, 2005, (216): 169-189.
    16 王世一. 数字信号处理[M],北京:北京理工大学出版社,1997.
    17 夏益民. 沙质海岸波浪动床模型设计——毛里塔尼亚友谊港下游冲刷实验模型. 海洋工程,1994,(8):42-53.
    18 陈上及,马继瑞. 海洋数据处理分析方法及其应用.北京:海洋出版社,1991.
    19 Li L, Barry D A, Pattiaratchi C B, Masselink G. BeachWin: modeling grounderwater effects on swash sediment transport and beach profile change. Environmental Modelling & software . 2002,17:313-320.
    20 Emery K O, Forster J F. Water tables in marine beaches. 1948, Mar.Res.,7,no.3:644-54.
    21 Guza R T, Inman D L. Edge waves and beach cusps. Journal of Geophysical Research, 1975, (80):2997-3012.
    22 Wright L D, Thom B G. Coastal depositional landforms: a morphodynamic approach. Physical Geography. 1977, 1:413-459.
    23 Wright L D and Short A D.Morphodynamic variability of surf zones and beaches. Mar. Geol,1984, (56): 93-118.
    24 王文介,杨雪舞. 华南沿海海滩状态和演变. 热带海洋学报,1996,(11):9-16.
    1 季子修. 中国海岸侵蚀特点及侵蚀加剧原因分析. 自然灾害学报,1996,(5):65-75.
    2 夏东兴,王文海等. 中国海岸侵蚀述要. 地理学报,1993,(5):468-475.
    3 Larson M, Kraus N C. SBEACH: Numerical Model for Simulating Strom-induced Beach Change, Report 1: Empirical Formulation and Model Development. Vicksburg: U. S. Army Engineer Waterways Experiment Station, 1989.
    4 Lee Guan-hong. Storm-driven variability of the beach-nearshore profile at Duck, North Carolina, USA, 1981-1991. Marine Geology, 1998(148): 163-177.
    5 Leont’yev I O. Numerical modeling of beach erosion during storm event. Coastal Engineering, 1996, (29):187-200.
    6 Regnauld H. Impacts of storms and evolution of the coastline in western France. Marine Geology 2004, (210): 325-337.
    7 倪孟书. 福建岸滩动态变化. 台湾海峡,1988,(2):103-111.
    8 蔡爱智. 海滩循环与海岸工程. 海洋工程,1989,(3):57-63.
    9 王文海. 山东 9216 号强热带风暴期间的海岸侵蚀灾害. 海洋地质与第四纪地质,1994,(4):71-77
    10 蔡峰,苏贤泽,杨顺良等. 厦门岛海滩剖面对 9914 号台风大浪波动力的快速响应. 海洋工程,2002,(2):85-90.
    11 蔡峰,苏贤泽,夏东兴. 热带气旋前进方向两侧海滩风暴响应差异研究. 海洋科学进展,2004,(4):436-445.
    12 陈子燊. 弧形海岸海滩地貌对台风大浪的响应特征. 科学通报,1995,(12):2168-2170.
    13 陈子燊. 台风影响下海滩内碎波带的波动特征. 中山大学学报(自然科学版),1999,(2):90-94.
    14 季子修等. 海平面上升对长江三角洲和苏北滨海平原海岸侵蚀的可能影响.地理学报,1993,6:516-525.
    15 陈子燊. 中国海岸侵蚀问题. 资源、环境、区域开发研究. 全国首届青年地理工作者学术讨论会论文集. 科学出版社. 1988:41-46.
    16 王颖、吴小根. 海平面上升与海滩侵蚀. 地理学报,1995,2:119-127.
    17 黄镇国等. 广东海平面变化及其影响与对策. 广州:广东科技出版社,2000.
    18 Ghil M, Vautard R. Inter decadal oscillation and the warming trend in global temperature time series. Nature, 1991, (350):324-327
    19 吴洪宝,段安民. 兰州气温变化长期倾向和振荡的检测及预报试验. 南京气象学院学报,1998,(12):629-635.
    20 任美锷,张忍顺. 最近80多年来中国的相对海平面变化. 海洋学报,1993,15(5):87-97.
    21 中国人民共和国交通部,《港口工程技术规范》第二篇第一册《海港水文》,人民交通出版社,1978.
    22 陈上及,马继瑞. 海洋数据处理分析方法及其应用.北京:海洋出版社.
    23 于宜法,俞聿修 海平面长期变化对推算多年一遇的极值水位的影响.海洋学报,2003,(5):1-7.
    24 IPCC. Climate Change; Impacts, Adaptations and Mitigation of Climate Change: Scientific and Technical Analysis. Contribution of Working Group Ⅱ to the Second Assessment Report of the International Panel on Climate Change. In: Watson R T, Zinyowera M C, Moss R H eds. Cambrige University Press, Cambrige, United Kingdom and New York, NY, USA, 1996, 880. Bijlsma L. Chapter 9.Coastal Zones. And Small Island, 289-323.
    25 IPPC. The regional impacts of climate change : An assessment of vulnerability. Contribution of Working Group Ⅱ to Second Assessment Report of the International Panel on Climate Change. In: Watson R T, Zinyowera M C, Moss R H eds. Cambrige University Press, Cambrige, United Kingdom and New York, USA, 1998, 517. Yoshino M and Su J L. Chapter 10. Temperate Asia, 355-407.
    26 XIA D X, WANG W H, WU G Q, CUI J R, LI F L. Coastal erosion in China.Acta Geographica Sinica, 1993, 48:468-476.
    27 李从先,王平,范代读,邓兵. 布容法则及其在中国海岸上的应用. 海洋地质,2000,1:87-91.
    28 P. D. 柯马尔,邱建立邓译. 海滩过程与沉积作用. 北京:海洋出版社,1985.
    29 Dean R G. Equilibrium beach profile :Characteristics and application. J. Coastal. Res. ,1991, 7:53-84.
    30 Larson M, Kraus N C, Wise R A. Equilibrium beach profile under breaking and non-breaking waves. Coastal Engineering, 1999, 36:59-85.
    31 Bodge K R. Representing of equilibrium beach profile with an exponential expression. J. Coastal Res., 1992,(8):47-55.
    32 Lee P Z. The submarine equilibrium profile: a physical model. J. Coastal Res., 1994,(1):1-17.
    33 Bruun P. Coastal development and coastal protection. Engineering Progress at the University of Florida, 1995,(9):309.
    34 Bruun p. Sea-level rise as a cause of shore erosion. Journal Waterways and Harbours Division, American Society Civil Engineers, 1962, 88: 117-130.
    35 Bruun P. The Bruun Rule of erosion by sea-level rise: A discussion of large-scale two-and-three-dimensional us-ages. Journal of Coastal Research, 1988, 4: 627-648.
    36 SCOR Working Group 89. The response of beach to sea level change: a review of predictive models. Journal of Coastal Research, 1991, 7: 895-912.
    37 Everts C H. Sea level rise effects on shoreline position. Journal of Waterway Port Coastal and Ocean Engineering, 1985, 111: 985-999.
    38 陈坚,谢在团. 未来海平面上升对厦门海滩侵蚀的测算. 台湾海峡, 1998,4:391-394.
    39 Jeffrey H L,Asbury H, Mark E H, Bruce E J. Accelerated relativesea-level rise and rapid coastal erosion: testing a causal relationship for the Louisiana barrier islands. Marine geology, 1997, 9:347-365.
    40 Komar.P.D. and McDougal W.G..The analysis of exponential beach profiles. J. Coastal Res.1994,10(1):59~69
    41 Sunamura T. Quantitative predictions of beachface slopes. Gelolgcal Society of American Bulletin. 1984,(95):242~245
    42 孙林云、刘家驹. 沙质海岸突堤式建筑物上游岸线演变计算及预报.第七届全国海岸工程学术讨论会论文集.北京:海洋出版社,1993. 690-702.
    43 李志强. 波控岬间海湾近岸地形动力过程研究——以后江湾为例. 中山大学博士学位论文. 2005.
    44 赵焕庭 张乔民等. 华南海岸和南海诸岛地貌与环境. 北京:科学出版社, 1999.
    45 Warrick R A, Oerlemans H. Sea level rise, climate change-the IPCC scientific assessment. New York: Cambrige University Press,1990,275-282.
    46 王文介. 粤东锯齿状海岸弧形沙质湾滩的发育. 热带地理,1985. 4(2):42-49.
    47 陆国琦,李永兴,胡长宵等. 海南岛松涛水库泥沙淤积研究. 海南资源环境与空间发展研究. 海口:海南人民出版社.
    48 黄少敏,罗章仁. 海南岛沙质海岸侵蚀的初步研究. 广州大学学报,2003, 2(5):449-454.
    1 杨世伦. 海岸环境和地貌过程导论. 2003,北京:海洋出版社.146-147.
    2 陈士荫,顾家龙,吴宋仁. 海岸动力学(第二版). 人民交通出版社,1995.
    3 吴宋仁. 海岸动力学(第三版). 人民交通出版社,2000.
    4 中华人民共和国交通部. 港口工程技术规范(1987)上卷,第三篇. 海港水文, 北京:人民交通出版社,1988
    5 Hanson, H., Kraus, N. C., Numerical simulation of shoreline change at Lorain, Ohio, J. of Waterway, Port, Coastal an Ocean Eng., 1991, 117(1):1-8.
    6 Pelnard-Considere, R., Essai de theoric de I’evolution des formes de rivage en plages de sable et de galets. In:4th Journees de I’Hydraulique. les Engrgies de la Mer, Question 3, Rept., No.1, 1956, 289-298.
    7 Guza, R. T., Thornton, E. B., Waves set-up on a natural beach. Journal of Geophysical Research, 1981, 4133-4137.
    8 孙林云、刘家驹. 沙质海岸突堤式建筑物上游岸线演变计算及预报.第七届全国海岸工程学术讨论会论文集.北京:海洋出版社,1993. 690-702.
    9 Kraus, N. C., Estimate of breaking wave height behing structures, J. waterway Port. Coast. And Oc. Engrg., ASCE, 110(2), 276-282.
    10 Goda, Y., Takayama, T., and Suzuki, Y., Diffraction Diagrams for Directional Random Waves, Proceedings of the 16th Coastal Engineering Conference, ASCE, Vol.1, 1978, 628-650.
    11 陈子燊、李春初等.汕尾电厂煤码头工程海岸动力地貌调查研究.海岸动力地貌学研究及其在华南港口建设中的应用.中山大学出版社.
    12 李孟国,赵冲久,曹祖德.汕尾电厂煤港工程泥沙问题研究.海岸工程,1994.3,13(1),1-9.
    13 Komar, P.D., and Inman, D. L., longshore sand transport on beaches, J. Geophys. Res., ASCE, 1970, 70(30):5914-5927.
    14 Kraus, N. C., Isobe, M., Igarashi, H., Sasaki, T., and Horikawa, K., field experiments on longshore sand transport in the surf zone, Proc. 18th Coastal Engrg. Conference, ASCE, 1982, 969-988.
    15 Szmytkiewicz, M., Biegowski, J., et al., Coastline changes nearby harbour structures: comparative analysis of one-line models versus field data, Coastal Engineering, 2000, 119-139.
    16 赵冲久,李孟国,曹祖德.广东汕尾后江湾海岸泥沙运动及港口防波堤布置的研究.港口工程,1995.3,10-14.
    1 Halligan G H. Sand movement on the New South Wales coast. Proc. Limnology Soc. New South Wales, 1906, 619-640.
    2 Silvester R. Stabilization of sedimentary coastlines. Nature, 1960,467-469.
    3 Yasso W E. Plan geometry of headland bay beaches. Geology,73. 1965. 702-714.
    4 Silvester R, Ho S K. Use of crenulate shaped bays to stabilize coasts. Proc, 13th Inter. Conf. Coastal Eng., ASCE, 1972, 1394-1406.
    5 Rea C C, Komar P D. Computer simulation models of hooked beach shoreline configuration. Sedimentary Petrology, 1975, 866-872.
    6 Silverster R, Tsuchiya Y, Shibano T. Zeta bays, pocket beaches and headland control. Proc,17th Inter. Conf. Coastal Eng., ASCE, 1980, 1306-1319.
    7 Silvester R. Coastal Engineering, Ⅱ. Elsevier scientific publishing company, 1974, 71-83.
    8 吴宋仁. 海岸动力学(第三版). 人民交通出版社,2000.
    9 Hsu J R C , Uda T. Silvester R. Shoreline protection methods Japanese experience. Handbook of Coastal Engineering,New York: McGraw-Hill, 2000, 9.1-9.77.
    10 Johnson D W. Shore processes an shoreline development. New York: Jone Wiley & Sons, 1919.584.
    11 Davies J L. Wave refraction and the evolution of shoreline curves. Geor.Stud.,1958,1-4.
    12 Davies J L. Beach alignment in shouthern Australia. Aust.Geogr., 1960,42-44.
    13 Jenning J N. The influence of wave action on coastal outline in plan. Austral.Geogr.,1955,36-44.
    14 Le Blond P H. On the formation of spiral beaches. Proc. 13th Inter. Conf. Coastal Eng. 1972,1331-1345.
    15 Le Blond P H. An explanation of the logarithmic spiral plan shape of headland-bay beaches. J.Sedi. Petrol., 1979, 1093-1100.
    16 Hsu J R C, Silvester R, Xia Y M. Static equilibrium bays: New relationships. Journal of Waterway, Port, Coastal and Ocean Engineering. 1989, 285-298.
    17 夏益民,平衡沙质海岸平面曲线形态规律,南京水利科学研究院河港研究所,1988.
    18 Dai Z J, Li C C, Zhang Q L, Fractal analysis of shoreline patterns for crenulate-bay beaches, Southern China, Estuarine, Coastal and Shelf Science, 2004, 65-71.
    19 夏益民,海岸稳定工程措施研究,海洋工程,1991,vol(9),45-58.
    20 夏益民,岬头控制法与平衡海岸平面曲线形态规律,河海大学学报,1994,11:21-32.
    21 Hsu J R C, Evans C. Parabolic bay shapes and application. Proc. Instn. Civil Engrs., Part 2. London: Thomas Telford, 1989, (87): 557-570.
    22 Silester R , Ho S K. Coastal Stabilization: Innovative Concepts. Englewood Cliffs, New Jersey: Prentice Hall,1993,578.
    23 Silvester R, Hsu J R C. Coastal Stabilization. Singapore. World Scientific,1997 578.
    24 Mauricio Gonz á lez, Raul Mendina. On the application of static equilibrium bay formulations to natural and man-made beaches. Coastal Engineering, 2001, 209-225.
    25 Shinohara K, Tsubaki T, Model study on the change of shoreline of sandy beach by the offshore breakwater. Proceedings of the tenth International Conference on Coastal Engineering, ASCE, 1966, 550–563.
    26 Rosen D S, Vajada M, Sedimentlogical influences of detached breakwaters. Proceedings of the Eighteen Conference on Coastal Engineering, ASCE,(3), 1982, 130-1940.
    27 Mimura N, Shimizu T, Horikawa K, Laboratory study on the influence of detached breakwater on coastal change. Proc., Coast. Struct., ASCE, Reston, VA 83, 1983, 740–752.
    28 Hsu J R C, Silvester R. Accretion behind single offshore breakwater. Journal of Waterway, Ports, Coastal and Ocean Engineering, ASCE. 1990, 116 (3): 362–379.
    29 McCormick M E. Equilibrium shoreline response to breakwater. Journal of Waterway, Ports, Coastal, and Ocean Engineering, ASCE, 1993, 119 (6): 657–670.
    30 Ming D. Chiew Y M. Shoreline changes behind detached breakwater. Journal of Waterway, Ports, Coastal and Ocean Engineering, ASCE, 2000, 126 (2): 63–70.
    31 Hsu T W, Jan C D, Wen C C. Modified McCormicks model for equilibrium shorelines behind a detached breakwater. Ocean Engineering, 2003, 30:1887-1897.
    32 常瑞芳. 波浪对稳定海湾形成过程的实验. 青岛海洋大学学报, 1994, 专辑:62-68.
    33 王文介. 华南螺线海湾岸滩的地貌沉积特征和海岸演变问题. `97 海岸海洋资源与环境学术研讨会论文集,1997.
    34 飞思科技产品研发中心.MATLAB 6.5 辅助神经网络分析设计.北京:电子工业出版社.2003。
    35 薛鸿超,顾家龙,任汝述. 海岸动力学. 北京:人民交通出版社.1980.
    36 Hanson, H., Kraus, N. C., Numerical simulation of shoreline change at Lorain, Ohio[J], J. of Waterway, Port, Coastal an Ocean Eng., 1991, 117(1):1-8.
    37 Mauricio Gonz á lez, Raul Mendina. On the application of static equilibrium bay formulations to natural and man-made beaches[J]. Coastal Engineering, 2001, 209-225.
    38 陈士荫等. 海岸线建筑物附近的岸线变形计算. 海洋工程,1983,(2):61-68.
    39 顾家龙等. 沙质海岸防波堤附近岸线变形预测. 河海大学学报,1987,15(4):81-91.
    40 刘家驹,喻国华. 海岸工程泥沙的研究和应用. 水利水运研究,1995,(3):221-233.
    41 夏益民. 沙质海岸动床模型设计——毛里塔尼亚友谊港下游冲刷试验模型. 1994,(3):42-53.
    42 夏益民. 海岸稳定工程措施与研究. 海洋工程,1991,9(4):45-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700