基于星载微波遥感数据的南极冰盖信息提取与变化监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南极冰盖的物质平衡和海平面变化是全球变化研究的一个重要内容。南极的地理环境和恶劣的自然条件给科学家赴现场考察带来了重重困难。微波遥感技术是监测整个南极冰盖变化的最佳手段。微波传感器具有全天时和全天候的观测能力,可以获取极地冰盖表面和次表面的详细信息。国内目前在极地遥感研究方面所做工作甚少,本文工作属国内首次较为系统的尝试。
     合成孔径雷达干涉测量是测量南极地区数字高程模型和冰流的有效工具。目前的研究重点主要在西南极沿岸冰架地区,东南极内陆冰盖地区涉足很少。
     散射计和辐射计数据具有较大的空间覆盖和快速重访率,这使其成为联系监测南极冰盖的极好工具。对长期积累的散射计和辐射计数据开展时序分析可以研究南极冰盖的变化趋势与异常。
     本论文开展了利用干涉雷达技术在南极内陆冰盖地区提取数字高程模型和测量复杂冰流的研究,另利用大尺度的微波散射计和辐射计数据开展了冰盖冰架地区的变化监测研究。
     主要研究内容包括:
     (1)格罗夫山地区数字高程模型提取
     利用星载雷达干涉技术提取东南极内陆格罗夫山地区的数字高程模型,与GPS现场测量结果进行对比,取得了较好的精度。深入分析内陆冰盖地区重复轨道INSAR测量地形的精度和可行性。
     (2)冰盖地区干涉去相干研究及应用
     通过处理多种时相与空间基线的L波段和C波段干涉SAR数据,从干涉结果研究南极冰盖干涉各去相干源的影响特性。蓝冰区的相干性通常较好。冰盖地区临界基线短于平常值,空间垂直基线对干涉去相干影响大,L波段雷达干涉在保持相干性方面具有独特的优势。
     (3)差分干涉雷达技术冰流测量模型研究与应用
     研究差分干涉测量消除地形相位的方法以及雷达视线向位移与真实冰流位移之间的关系,详细阐述单向和升降轨双向观测测量冰流的模型及计算方案,并结合多组雷达数据采用多种方案在格罗夫山地区开展研究试验,其中基于JERS-1和ERS-1/2 SAR的四路差分干涉处理获得了很好的结果。论文还就冰流测量的误差来源进行了深入的分析。
     (4)基于缠绕相位的冰流参数计算
     提出基于缠绕相位的冰流参数计算模型,使得研究人员无需进行相位解缠即可获得冰流应变率等重要参数信息,提高了局部相位梯度大、相位解缠难度大
    
    的干涉图的可用性。
     (5)基于ENviSAY-ASAR的干涉处理研究
     利用格罗夫山地区最新的ENVISAI二ASAR数据进行干涉处理研究,生成干
    涉条纹,条纹中的冰流模式与前述ERS一1/2和JERS一1的结果基本一致。
     (6)基于星载微波散射计和辐射计数据的冰盖特性及变化监测研究
     结合微波与冰雪相互作用的理论,研究了南极冰盖的微波散射、辐射特征与
    地形、温度等的关系。通过比较同季sAAS与NSCAT观测数据,发现Ku波段
    不同观测方向对冰面微地形取向的敏感性。选取8个典型冰盖和冰架试验区,利
    用ESCAT和SSMI历史数据(1992一2000)进行后向散射与亮温变化的时间序列
    研究,得出南极大陆周围冰架与南极半岛地区处于融化加剧状态的初步结论。
Mass balance of Antarctic ice sheet and mean sea level are the factors in global change study. The atrocious geographical and natural conditions in Antarctica make it quite difficult for the scientists to carry out more and frequent field expeditions. Microwave satellite remote sensing is a practical way of monitoring long-term changes in the properties of the entire Antarctic ice sheet. Data acquired from microwave instruments can be acquired day and night in all weather conditions and provides detailed information on the surface and subsurface of polar glaciers and ice sheets.
    Synthetic Aperture Radar(SAR) is proved to be an effective tool to generate high-accuracy digital elevation model (DEM) generation and to measure ice flow on Antarctic glaciers. Presently, most research is concentrated on the coastal ice shelves of WAIS (West Antarctic Ice Sheet), very few work has been done for in-land glaciers in East Antarctica.
    Scatterometer and radiometer image data have a greater spatial and more frequent coverage, albeit at a lower spatial resolution, making these instruments ideal for monitoring the Antarctic ice sheet. The long-term continuous scatterometer and radiometer image data are best for time series analysis to study the trend and abnormity of Antarctic ice sheet.
    The dissertation investigates application of SAR interferometry in Antarctic inland glacier for DEM and complex ice flow measurement, also large-scale scatterometer and radiometer data for ice sheet monitoring.
    Main research topics and initiatives in this dissertation include:
    (1) DEM generation in Grove Mountains
    Digital elevation model (DEM) of Grove Mountain in East Antarctica is generated by means of SAR Interferometry (InSAR), as is validated partly using the pre-existed GPS DEM mapped in 2000. It is proved to be accurate. The error source and feasibility of INSAR DEM construction on inland ice sheet is well analyzed.
    (2) Research and application of interferometric decorrelation on Antarctic ice sheet.
    
    
    
    
    The impact of several decorrelation factors on interferometric correlation is studied through interferometric experiments with multiple SAR image pairs (different baseline, L-band and C-band). The critical baseline here is much shorter than the normal length. The long spatial perpendicular baseline is a main deccorelation factor. Also are found that high correlation can always be seen in blue ice region and L-band interferometry is preponderant in keeping fine correlation within long interval.
    (3) Modeling and Applications of DINSAR ice flow measurements
    Different topographic phase removal methods in differential SAR interferometry, the relations between radar look-of-sight displacement and actual ice motion are studied. The models of derive actual ice displacement from single-direction and bi-directional (ascending and descending flight) INSAR measurements are described in detail. Multi-source L-band (JERS-1) and C-band (ERS-1/2, ENVISAT) SAR data are used for ice motion measurements in Grove Mountain. The 4-pass differential interferometric combination of JERS/ERS gets good result. The possible error sources are given and discussed in detail.
    (4) Study of deriving ice flow parameters from wrapped interferometric phase The calculation models of deriving ice flow parameters from wrapped
    interferometric phase are given. Thus we could get the ice flow information regardless of the interferometic phase is unwrapped or not, which widens the usability of high-gradient and failing-to-unwrap interferogram.
    (5) Research of SAR interferometry based on ENVISAT-ASAR data
    The latest ENVISAT-ASAR SLC data are put to interferometric experiment, which produced high-quality interferogram. The pattern of ice flow fringes presented is coincident with the former ones in ERS and JERS interferograms.
    (6) Ice sheet monitoring with space-borne microwave scatterometer and radiometer data.
    Starting from the theory of interaction between microwave and snow, the behavior characteristics of microwave scattering and radiation of fim layers
引文
1.程彦杰,陆龙骅,卞林根,东南极格罗夫山地区夏季的天气特征,极地研究,1999,Vol.11.No.4:291-300
    2.丁士俊,彭文均,南极格罗夫山地形图测绘,测绘通报,2001,No.3:17-18
    3.Elachi C.,遥感的物理学和技术概论,气象出版社,北京,1995
    4.郭华东,雷达对地观测理论与应用,科学出版社,北京,2000
    5.国家南极考察委员会,南极科学考察论文集,科学出版社,北京,1988
    6.琚宜太,刘小汉,格罗夫山地区陨石回收,极地研究,2000,Vol.12,No.2:137-142
    7.李新武,极化干涉SAR信息提取方法及其应用研究,中国科学院博士论文,北京,2002.
    8.李震,秦翔,董庆,雷达高度计探测东南极地区冰面变化,冰川冻土,2003,Vol.25,No.3:268-271
    9.廖明生,林晖,雷达干涉测量—原理与信号处理基础,测绘出版社,北京,2003
    10.刘小汉,赵越,刘晓春等,东南极格罗夫山地质特征—冈瓦纳最终缝合带的新证据.中国科学,2002a,Vol.32,No.6:457-468
    11.刘小汉,琚宜太,格罗夫山:我国新发现的一个陨石富集区,极地研究,2002b,Vol.14,No.4:243-247
    12.彭文钧,丁士俊,测绘格罗夫山,地图,2003:40-45
    13.秦大河,任贾文,康世昌,中国南极冰川学研究10年回顾与展望,冰川冻土,1998,20(3):227~232
    14.秦大河,发展中的我国南极冰川学研究,冰川冻土,1999,10(3):250~255
    15.秦大河,任贾文主编,南极冰川学,科学出版社,北京,2001.
    16.秦翔,中国第3次南极Grove山地区科学考察中的冰雪考察,冰川冻十,2003,25(4):477-478
    17.舒宁,微波遥感原理,武汉大学出版社,2000
    18.孙家捅,刘继琳,南极中山站以南地区冰面高程信息的提取,武汉测绘科技大学学报,1996,Vol.21,No.1:54-58
    19.孙家捅,遥感方法探测南极Grove山地陨石分布,遥感信息,2001a,Vol.27:
    20.孙家捅,格罗夫山无地面控制卫星数字卫星影像数字制图和地貌、蓝冰及陨石分布分析.极地研究,2001b,Vol.13,No.1:21-31,
    21.孙家捅,霍东民,孙朝辉,极记录冰川和达尔克冰川流速的遥感监测研究,极地研究,2001c,Vol.13,No.2:117-128
    22.任贾文,1995,东南极Lambert冰川流域路线考察,冰川冻土,1995,17(4):303~307
    23.任贾文,秦大河,南极冰盖表面积累速率与物质平衡,冰川冻土,1996,18(增刊):83~89
    24.任贾文,南极中山站-Dome A断面1100km内陆考察圆满成功,冰川冻土,1999,21(2)
    25.任贾文,Ian Allison,效存德,秦大河,东南极冰盖Lambert冰川流域的物质平衡研究,中国科学,2002,32(2):134-140
    26.王超,张红,刘智,星载合成孔径雷达干涉测量,科学出版社,2002
    27.王道德,林杨挺,戴诚达,陈永亨,南极陨石与沙漠陨石的对比研究,极地研究,1999,Vol.11.No.2:125-127
    28.王清华,宁津生,卫星测高技术及其在南北两极的应用,极地研究,2000,Vol.12,No.4:275-284
    
    
    29.王清华,鄂栋臣,陈春明,中山站至A冰穹考察及沿线GPS复测结果分析,武汉大学学报信息科学版,2001,Vol.26,No.3:200-204
    30.王清华,东南极Lambert冰川—Amery冰架系统冰川运动学研究,武汉大学博士论文,武汉,2002
    31.王晓军,秦大河,刘琛等,南极纳尔逊冰貌的雪层及其成冰作用研究,南极研究,1990,2(2):13~21
    32.效存德,秦大河,南极冰盖冰下湖群——冰川学家和生物科学家共同的兴趣,冰川冻土.2001,23(1):99~102
    33.效存德,秦大河,冰冻圈关键地区雪冰化学的时空分布及环境指示意义,冰川冻土,2002,24(5):492~499
    34.效存德,秦大河,冰芯和台站记录的近50a来东南极冰盖边缘地区气候变化格局,冰川冻土,2003,25(1):1~10
    35.肖国超,朱彩英主编,雷达摄影测量,地震出版社,北京,2001
    36.阎福礼,多源遥感数据地表特征时空变化信息提取及地学应用,南京大学博士论文,南京,2003
    37.岳焕印,基于小波变换的干涉SAR数据处理方法研究,中国科学院博士论文,北京,2002
    38.袁孝康,星载合成孔径雷达导论,国防工业出版社,北京,2003
    39.张钧屏,方艾里,万志龙等,对地观测与对空监视,科学出版社,2001
    40.张明军,效存德,南极冰盖边缘近250年来气温变化的地域分布特征,地理学报,2003,58(1):83-89
    41.周秀骥,陆龙骅主编,南极与全球气候环境相互作用和影响的研究,气象出版社,北京,1996
    42.朱述龙,张占睦,遥感图像获取与分析,科学出版社,2000
    43. Abdalati W. and Steffen K., Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data, J. Climate, 1997, Vol.10, No.2:165-175
    44. Adam N., First Cross Interferogram using Envisat ASAR and ERS-2 SAR Radar Data, http://www.dlr.de/caf/aktuelles/archiv/bilderarchiv/envisat/cross_interferogramm/_cross_interferogramm/cross_interferogramm_en.htm, 2003
    45. Alley R., J. Bolzan, and I. Whillans, Polar firn densification and grain growth, Ann. Glaciol., 1982, Vol.3:7-11
    46. Anja Poetzsch, R Dietrich, et al. Tides in the subglacial Lake Vostok, East Antarctica, in Proceedings of the 'Fringe 2003' Workshop, Italy, Dec, 2003
    47. Bamber, J.L., and C.R. Bentley. A comparison of satellite-altimetry and ice-thickness measurements of the Ross Ice Shelf, Antarctica. Ann. Glaciol., 1994, Vol.20:357-364
    48. Bert K., Delft Object-oriented Radar Interferometric Software User's manual and technical documentation V3.8, 141p, DEOS, Delft University of Technology, 2003
    49. Brisset, L., and F. Remy. Antarctic topography and kilometer-scale roughness derived from ERS-1 altimetry. Ann. Glaciol., 1996, Vol. 23:374-381
    50. Bindschadler, R. A., K. C. Jezek, and J. Crawford, Glaciological investigations using the synthetic aperture radar imaging system, Ann. Glaciol., 1987, Vol.9:11-19
    51. Bindschadler, R. A., and P, L. Vomberger, AVHRR imagery reveals Antarctic ice dynamics, Eos Trans. AGU, 1990, Vol.71, No.23:741-742
    52. Bindschadler, R. A., M. A. Fahnestock, A. Sigmund, and I. Joughin, Improving ice-sheet
    
    topography by combining satellite radar altimetry and SAR interferometry, Eos Trans. AGU, 1996a, Vol.77, No.17, Spring Meet. Suppl.: S259-S260
    53. Bindschadler, R. A., P. L. Vornberger, D. D. Blankenship, T. A. Scambos, and R. Jacobel, Surface velocity and mass balance of ice streams D and E, West Antarctica, J. Glaciol., 1996b, Vol.42, 461-475
    54. Bindschadler, R.. Monitoring ice sheet behaviour from space. Rev. Geophys., 1998, Vol.36, No.1: 79-104
    55. Bingham A.W., Drinkwater M. R., Recent change in the properties of the Antarctic ice sheet, IEEE Trans. Geosci. Remote Sens., 2000, Vol.38, No.4:1810-1820
    56. Braun, M. Rau, F., Saurer, H. and Goβmann, H.. The development of radar glacier zones on the King George Island ice cap, Antarctica, during the austral summer 1996/97 as observed in ERS-2 SAR data. Ann. Glaciol., 2000, Vol.31
    57. Cassidy W., Harvey R., Schutt J., Delisle G., Yanai. K., The meteorite collection sites of Antarctica. Meteoritics, 1992, Vol.27, 490-525
    58. Christoph Reigber, Ye Xia, Hermann Kaufinann, Franz-Heinrich Massmann, Impact of Precise Orbits on SAR Interferometry, Proceedings of the 'Fringe 96' Workshop on ERS SAR Interferometry, 1996.
    59. Dan J.W., Analysis of ERS Tandem SAR Coherence From Glaciers, Valleys, anf Fjord Ice on Svalhard, IEEE Trans. Geosci. Remote Sens., 2001, Vol.39, No.9:2029-2039
    60. Davis, C.H., and D.M. Segura.. An algorithm for time series analysis of ice sheet surface elevations from satellite altimetry. IEEE Trans. Geosci. Remote Sens., 2001, Vol.39, No.1: 202-206
    61. Drewry D.J, Antarctic: glaciological and geographical folio, Scott Polar Research Institute, University of Cambridge, England, 1983
    62. Drinkwater M., LIMEX '87 ice surface characteristics: Implications for C-band SAR backscatter signatures, IEEE Trans. Geosci. Remote Sens., 1989, Vol.27:501-513
    63. Drinkwater, M. R., D. G. Long, and D. S. Early, Enhanced resolution ERS-1 seatterometer imaging of Southern Ocean sea ice, ESA Journal, 1993, Vol.17, No.4: 307-322
    64. Drinkwater, M. R., and C. C. Lin, Introduction to the special section on emerging scatterometer applications, IEEE Trans. Geosci. Remote Sens., 2000a, Vol.38, No.4: 1763-1764
    65. Drinkwater, M. R., and X. Liu, Seasonal to interannual variability in Antarctic sea-ice surface melt, IEEE Trans. Geosci. Remote Sens., 2000b, Vol.38, No.4:1827-1842
    66. Drinkwater, M.R., D.G. Long, and A.W. Bingham, Greenland Snow Accumulation Estimates from Scatterometer Data, J. Geophys. Res., PARCA Special Issue, 2001, Vol. 106, No. D24:33935-33950
    67. ESA, ASAR Product Handbook, 2002
    68. ESA, First Cross Interferogram using ENVISAT ASAR and ERS-2 SAR Radar Data, available on-line at: http://envisat.esa.int/applications/la/, 2003
    69. Fricker, H.A., G.B. Hyland, and N.W. Young. Digital Elevation Models for the Lambert Glacier-Amery Ice Shelf system, East Antarctica, from ERS-1 satellite radar altimetry, J. Glaciol., 2000, Vol.46, No. 155:553-570
    70. Froger J. L., et al., ASAR Interferometry at Piton de la Fournaise, preliminary results,
    
    http://eopi.esa.int/esa/, 2003
    71. Fung A., Microwave scattering and emission models and their applications, Artech House, 573 p. 1994
    72. Gabriel A. K., R. M. Goldstein and H A Zebker, Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res., 1989, Vol.94, No.B7: 9183-9191
    73. Gabriel F. C., P. W. Fieguth, Probabilistic Cost Functions for Network Flow Phase Unwrapping, IEEE Trans. Geosci. Rem. Sens., 2000, Vol.38, No.5:2192-2201
    74. Gatelli F., A.M. Guameri, F. Parizzi, P. Pasquali, C. Prati, and F. Rocca, The wavenumber shift in SAR interferometry. IEEE Trans. Geosci. Rein. Sens., 1994, Vol.32, No.4: 855-865
    75. Goldstein R M, H. A. Zebker, and C. L. Werner, Satellite radar interferometry: Two-dimensional phase unwrapping, Radio Science, 1988e, Vol.23, 713-720
    76. Goldstein R. M., H. Engelhardt, B. Kamb, and R M Frolich, Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream, Science, 1993, Vol.262, 1525-1530
    77. Goldstein R.M., L.W. Charles. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett., 1998, Vol.25, No.21:4035-4038
    78. Graham L. C., Synthetic Interferometer Radar for Topographic Mapping, Proceedings of IEEE, 1974, Vol.62, 763-768
    79. Gary Johnston, Paul Digney. Antarctic Geodesy Summer 2000-2001, Australian Surveying and Land Information Group, 2001
    80. Gray, A.L., et al, InSAR Results from the RADARSAT Antarctic Mapping Mission Data: Estimation of Glacier Motion using a Simple Registration Procedure, IGARSS 98, Seattle, Washington, July 6-10,1998
    81. Gray, L., M. Karim, S. Naomi, Speckle Tracking for 2-Dimensional Ice Motion Studies in Polar Regions: Influence of the Ionosphere. Proceedings of the Fringe99 meeting, Liege, Belgium, Nov. 10-12, 1999
    82. Hanssen R. F., Radar Interferometry -- Data Interpretation and Error Analysis, Kluwer Academic Publishers, 2001
    83. Hanssen R. F., T. M. Weckwerth, H. A. Zebker, R. Klees, High-Resolution Water Vapor Mapping from Interferometric Radar Measurement, Science, 1999, Vol. 283, 1297-1299
    84. Helmut Rott and Andreas Siegel, Glaciological Studies in the Alps and in Antarctica Using ERS Interferometric SAR, Proceedings of the 'Fringe 96' Workshop on ERS SAR Interferometry, 1996
    85. Hoen E. W., H. A. Zebker, Penetration Depths Inferred from Interferometric Volume Decorrelation Observed over the Greenland Ice Sheet, IEEE Trans. Geosci. Remote Sens. 2000, Vol. 38, No. 6:2571-2583
    86. Hoen E. W., A correlation-based approach to modeling interferometric radar observations of the Greenland Ice sheet, Unpublished Ph.D. Thesis, Stanford University, USA, 2001
    87. Jezek K.C., RADARSAT-1 Antarctic Mapping Project: change-detection and surface velocity campaign, Ann. GlacioL, 2002, Vol.34, 263-258
    88. Jan-Gunnar Winther, Martin Norman Jespersen and Glen E. Liston, Blue-ice areas in
    
    Antarctica derived from NOAA AVHRR satellite data, J. Glaciol., 2001, Vol.47, 325-334
    89. Joughin. I, Estimation of Ice-Sheet Topography and Motion Using Interferometric Synthetic Aperture Radar, Unpublished Ph.D. Thesis. University of Washington, 1995.
    90. Joughin, I., S. Tulaczyk, M. Fahnestock, and R. Kwok, A mini-surge on the Ryder Glacier, Greenland, observed by satellite radar interferometry, Science, 1996a, Vol.274, 228-230
    91. Joughin, I., D. Winebrenner, M. Fahnestock, R. Kwok, and W. Krabill, Measurement of ice-sheet topography using satellite radar interferometry, J. Glaciol., 1996b, Vol.42, No.140:10-22
    92. Joughin, I., R. Kwok and M. Fahnestock, Estimation of Ice-Sheet Motion Using Satellite Radar Interferometry - Method and Error Analysis with Application to Humboldt Glacier, Greenland, J. Glaciol., 1996c, Vol. 42, No.142:564-575
    93. Joughin I. R., R. Kwok, and M. A. Fahnestock, Interferometric estimation of three-dimensional ice-flow using ascending and descending passes, IEEE Trans. Geosci. Remote Sens., 1998, Vol. 36, 25-37
    94. Joughin I., L. Gray, R. Bindschadler, S. Price, D. Morse, C. Hulbe, K. Mattar, C. Werner, Tributaries of West Antarctic Ice Streams Revealed by RADARSAT Interferometry, Science, 1999, Vol. 286, 283-285
    95. Karim.E.M, Paris.W.V, Dirk.G, L.Gray, Ian.G, Melinda.B, Validation of Alpine Glacier Velocity Measurements using ERS Tandem-Mission SAR Data, IEEE Trans. Geosci. Remote Sens., 1998, Vol.36, No.3:974-984
    96. Kwok R., Mark A.F, Ice Sheet Motion and Topography from Radar Interferometry. IEEE Trans. Geosci. Remote Sens., 1996, Vol.34, No. 1: 189-200
    97. Laurence C. S., Melting of small Arctic ice caps observed from ERS scatterometer time series, Geophys. Res. Lett., 2003, Vol.30, No.20
    98. Liu, H., et al, Development of Antarctic digital elevation model by integrating cartographic and remotely sensed data: A GIS-based approach, J. Geophs. Res., 1999, Vol. 104, No.B10:23199-23215
    99. Long, D. G., P. J. Hardin, and P. T. Whiting, Resolution enhancement of spaceborne scatterometer data, IEEE Trans. Geosci. Remote Sens., 1993, Vol.32, No.3:700-715
    100. Long, D. G., and M. R. Drinkwater, Cryosphere applications of NSCAT data, IEEE Trans. Geosci. Remote Sens., 1999, Vol.37, No.3:1671-1684
    101. Long, D. G., and M. R. Drinkwater, Azimuth variation in microwave scatterometer and radiometer data over Antarctica, IEEE Trans. Geosci. Remote Sens., 2000, Vol.38, No.4: 1857-1870
    102. Long, D.G., M.R. Drinkwater, B. Holt, S. Saatchi, and C. Bertoia, Global Ice and Land Climate Studies Using Scatterometer Image Data, EOS Trans, AGU, 2001, Vol.82, No.43
    103. Lythe, M., D.G. Vaughan and BEDMAP Consortium. BEDMAP: a new ice thichness and subglacial topography model of Antarctica. J. Geophys. Res., 2001, Vol.106, No.B6: 11335-11351
    104. Manson, R., R. Coleman, P.J.Morgan, and M.A. King. Ice velocities of the Lambert Glacier from static GPS observations. Earth, Planets and Space, 2000, Vol.52, No. 11: 1031-1036
    
    
    105. Massonnet D, M. Rossi, C. Carmona, et al., The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 1993, Vol. 34:138-142
    106. Massonnet D, M Feigl, M. Rossi and E Adragna, Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature, 1994, Vol.369:227-230
    107. McIntyre, N.F. The topography and flow of the Antarctic ice sheet. Unpublished Ph.D. Thesis, University of Cambridge, UK, 1983
    108. Molar J.J., Reeh N., Madsen S. Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature, 1998:273-276
    109. Mote T. and Anderson M., Variations in snowpack melt on the Greenland ice sheet based on passive microwave-measurements, J. Glaciol., 1995, Vol. 41:51-60
    110. NASA/JPL, ASTER User Handbook Version 2, 2001
    111. NASA/JPL, http://www.ipl.nasa.gov/, 2002
    112. National Snow and Ice Data Center. DMSP F13 SSM/I Brightness Temperature Grids for the Polar Regions, Vol.1. Digital data available from nsidc@kryos.colorado.edu. Boulder, Colorado: NSIDC Distributed Active Archive Center, University of Colorado at Boulder.
    113. Norman A.L., Morse D.L.and Blankenship D.D., Remote identification of blue ice areas using RADARSAT imagery, 4th International Symposium on Remote Sensing in Glaciology College Park, Maryland, U.S.A., 4-8 June 2001
    114. NSIDC, http://www.nsidc.org/, 2003
    115. Paterson, W.S.B.著,张祥松,丁亚梅译,冰川物理学,科学出版社,北京,1987
    116. Paterson, W.S.B, The Physics of Glaciers (Third Edition), Elsevier Science, 1994
    117. Partingon, K.C. Studies of the Ice Sheets by Satellite Altimetry. Unpublished Ph.D. thesis, University College London, London, UK, 1988
    118. Partington, K.C., J.K. Ridley, C.G. Rapley and H.J. Zwally. Observations of the surface properties of the ice sheets by satellite radar altimetry. J. Glaciol., 1989, Vol.35, No. 120: 267-275
    119. Partington, K. C. Discrimination of glacier facies using multi-temporal SAR data. J. Glaciol., 1998, Vol.44, No.146:42-53
    120. Phillips, H.A. Application of ERS satellite radar altimetry in the Lambert Glacier-Amery Ice Shelf system, East Antarctica. Unpublished Ph.D. thesis, University of Tasmania, Hobart, Tasmania, Australia, 1999
    121. Prati C., Colesanti C., Ferretti A., Rocca F., Generation of DEM with sub-metric vertical accuracy from 30' ERS-ENVISAT pairs, in Proceedings of the 'Fringe 2003' Workshop, Italy, Dec, 2003
    122. Ran, F., M. Braun, M. Friedrich, F. Weber and H. Goβmann. Radar glacier zones and its boundaries as indicators of glacier mass balance and climatic variability. Proc. of the EARSeL Workshop of the Special Interest Group 'Remote Sensing of Land Ice and Snow', Dresden 16-17 June, 2000
    123. Reigber C., Y. Xia, H. Kaufmann, L. Timmen, J. Bodechtel, Impact of Precise Orbits on SAR Interferometry, in Proceedings of the 'Fringe 96' Workshop on ERS SAR Interferometry, 1996
    124. Remund, Q., and D. G. Long, Sea-ice extent mapping using Ku-band scatterometer data, J. Geophys. Res., 1999, Vol.104(C4), No.11: 515-11,527
    
    
    125. Remund, Q. P., D. G. Long, and M. R. Drinkwater, An iterative approach to multisensor sea ice classification, IEEE Trans. Geosci. Remote Sens., 2000, Vol.38, No.4:1843-1556
    126. Ridley, J., W. Cudlip, N. McIntyre and C.Rapley. The topography and surface characteristics of the Larsen Ice Shelf, Antarctica, using satellite altimetry. J. Glaciol., 1989, Vol.35, No.121:299-310
    127. Ridley, J.K., S. Laxon, C.G. Rapley, and D. Mantripp. Antarctica ice sheet topography mapped with the ERS-1 radar altimeter. Int. J. Remote Sens., 1993, Vol. 14, No.9: 1649-1650
    128. Ridley J., Surface melting on Antarctic peninsula ice shelves detected by passive microwave sensors, Geophys. Res. Lett., 1993, Vol.20, No. 23:2639-2642
    129. Rignot E., Glacier Ice Motion in Antarctica using ERS-1/2 InSAR: 10 years of study, in Proceedings of the 'Fringe 2003' Workshop, Italy, Dec, 2003
    130. Rott, H., K. Sturm and H. Miller, Active and passive microwave signatures of Antarctic firn by means of field measurements and satellite data. Ann. Glaciol., 1993, Vol. 17: 337-343
    131. Sandford A.S. Concentrating Antarctic meteorites on blue ice fields—The Frontier Mountain meteorite trap. Meteoritics & Planetary Science, 2002, Vol.37:No.2
    132. Scambos, T. A., M. J. Dutkiewicz, J. C. Wilson, and R. A. Bindschadler, Application of image cross-correlation to the measurement of glacier velocity using satellite image data, Remote Sens. Environ., 1992, Vol.42:177-186
    133. Scambos, T. A., and R. A. Bindschadler, Complex ice stream flow revealed by sequential satellite imagery, Ann. Glaciol., 1993, Vol.17:177-182
    134. Scharroo R. and Visser P., Precise orbit determination and gravity field improvement for the ERS satellites. J. Geophys. Res.,1998, Vol.103, No.C4:8113-8127
    135. Scan C.Solomon, et al, Plan for Living on a Restless Planet Sets NASA's Solid Earth Agenda, EOS Trans, AGU, 2003, Vol.84, No.45:485-491
    136. Sheng, Y., et al., A high temporal-resolution dataset of ERS scatterometer radar backscatter for research in Arctic and sub-Arctic regions, Polar Record, 2002, Vol.38, No.205:121-126
    137. Shi J. and J. Dozier, Inferring snow wetness using C-band data from SIR-C's polarimetric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens., 1995, Vol.33, No.4:905-914
    138. Shi J. and J. Dozier, Estimation of Snow Water Equivalence Using SIR-C/X-SAR, Part Ⅰ: Inferring snow density and subsurface properties, IEEE Trans. Geosci. Remote Sens., 2000a, Vol. 38, No. 6:2465-2474
    139. Shi J. and J. Dozier, Estimation of Snow Water Equivalence Using SIR-C/X-SAR, Part Ⅱ: Inferring snow depth and particle size, IEEE Trans. Geosci. Remote Sens., 2000b, Vol. 38, No. 6:2475-2488
    140. Shuman C.A. and Alley R., Spatial and temporal characterization of hoar formation in central Greenland using SSM/I brightness temperatures, Geophys. Res. Lett., 1993, Vol.20, No.23:2643-2646
    141. Shuman, C.A., R.B. Alley, S. Anandakrishnan, and C.R. Steams. An empirical technique for estimating near-surface air temperatures in central Greenland from SSM/I brightness temperatures. Remote Sens. Environ., 1995, Vol.51:245-252
    
    
    142. Shuman, C.A., and C.R. Stearns. Decadai-length composite inland West Antarctic temperature records. J. Climate, 2001, Vol. 14:1977-1988
    143. Shuman, C.A., and C.R. Steams. Decadai-length composite West Antarctic air temperature records. Boulder, CO: National Snow and Ice Data Center. Digital media. 2002
    144. Solberg R., et al. Snow algorithms and products, Report from SNOWTOOLS WP410, Norwegian Computing Center, Report 924, Norway, 112 p, 1997
    145. Stearns, C.R., L.M. Keller, G.A. Weidner, and M. Sievers. Monthly Mean Climatic Data for Antarctic Automatic Weather Stations. Antarctic Research Series, AGU, 1993a, Vol. 61:1-21
    146. Steams, C.R., and G.A. Weidner. Sensible and Latent Heat Flux Estimates in the Antarctic. Antarctic Research Series, AGU, 1993b, Vol. 61:109-138
    147. Weller G.E, The role of Antarctic in global change. ICSU Press/SCAR, Cambridge, England, 28p, 1989
    148. Weller G.E., The role of Antarctic in global change: An international plan for a regional research programme. SCAR, Cambridge, England, 54p, 1993
    149. West, R., Microwave emission from polar firn. Unpublished Ph.D. Thesis, University of Washington
    150. Wingham, D.J., C. G. Rapley, and H.D. Griffiths. New Techniques in Satellite Altimeter Tracking Systems. International Geoscience and Remote Sensing Symposium,IGARSS, Z(?)rich, Switzerland, 8-11 September 1986, 1339-1344, 1986
    151. Wingharn, D.J., C.G. Rapley, and J.G. Morley. Improved resolution ice sheet mapping with satellite radar altimeters. EOS, 1993a, Vol.74, No.10:113-116
    152. Wingham, D.J., R.J. Arthem, D.C. Curtis, and J.J. Proud. Measuring ice sheet changes with the ERS-1 altimeter. Proceedings of the Second ERS-1 Symposium - Space at the Service of our Environment, Hamburg, Germany, 11-14 October 1993, SP-361, 1993b, Vol.1: 127-132
    153. Wingham, D.J. The limiting resolution of ice-sheet elevations derived from pulse-limited satellite altimetry. J. Glaciol., 1995a, Vol.41, No. 138:413-422
    154. Wingham, D.J. A method for determining the average height of a Iarge topographic ice sheet from observations of the echo received by a satellite altimeter. J. Glaciol., 1995b, Vol.41, No.137:125-141
    155. Wismann, V., Monitoring of seasonal snowmeit in Greenland with ERS scatterometer data, IEEE Trans. Geosci. Remote Sens., 2000, Vol.38, No.4:1821-1826
    156. Ulaby F. T., R. K. Moore, A. K. Fung, Microwave Remote Sensing-active and passive (Volume Ⅲ) From Theory to Applications, Artech House, 1986
    157.Ulaby F. T., R. K. Moore,冯健超著,微波遥感(第一卷)微波遥感基础和辐射测量学,科学出版社,北京,1987a
    158.Ulaby F. T, R. K. Moore,冯健超著,微波遥感(第二卷)雷达遥感和面目标的散射、辐射理论,科学出版社,北京,1987b
    159. Xiaoqing Wu, Karl-Heinz Thiel, Stefan Wunderle, The use of tandem data in the Antarctic area, in Proceedings of the 'Fringe 96' Workshop on ERS SAR Interferometry, 1996.
    160. Young, N.W., D. Hall & G. Hyland, Directional anisotropy of C-band backscatter and
    
    orientation of surface microrelief in East Antarctica. In Proceedings of the First Australian ERS Symposium. University of Tasmania, Hobart, 6 February 1996. COSSA Publication 037, 1996:117-126
    161. Young, N.W. and G. Hyland. Applications of time series of microwave backscatter over the Antarctic region. In Proceedings of the 3rd ERS Scientific Symposium, Florence, Italy, 17-20 March 1997. ESA Publication ESA SP-394, 1997
    162. Young N.W., Hyland G.., Velocity and strain rates derived from InSAR analysis over the Amery Ice Shelf, East Antarctica. Ann. Glaciol., 2002, Vol.34:228-234
    163. Yueh, S. H., and Kwok R., Arctic sea ice extent and melt onset from NSCAT observations, Geophys. Res. Lett., 1998, Vol.25, No.23:4369-4372
    164. Z.Zhao, Surface velocity of the East Antarctic ice stream from RADARSAT-1 interferometric synthetic aperture radar data, Unpublished Ph.D. Thesis. The Ohio State University, USA, 2001.
    165. Zebker H. A., Werner C. L., et al., Accuracy of Topographic Maps Derived from ERS-1 Interferometric Radar, IEEE Trans. Geosci. Remote Sens., 1994a, Vol.32, No. 4:823-836
    166. Zebker H. A., Rosen P., Goldstein R. M., A. Gabriel and C. L. Werner, On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. J. Geophys. Res., 1994b, Vol.99:19617-19634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700