杨树杂交育种及杨树耐涝性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树(Populus L)是世界范围内广泛种植的速生用材树种。杨树的遗传改良和推广对于解决木材产品需求不断扩大与木材供应不足之间的矛盾具有重要作用和意义。在我国,杨树已成为最主要的工业用材林和生态防护林树种之一。
     本研究以杨属资源中经济价值最大的黑杨派杨树为主要试材,以培育速生、高抗性杨树新品种为目标,围绕杨树的杂交育种和抗涝性开展试验。主要结果如下:
     1.利用离体培养基法研究了不同温度贮藏条件下杨树花粉生活力随时间变化的规律,以及贮藏1~2 a后用于杂交育种的可行性。结果表明:当培养基固定成分包括0.7%琼脂+300 mg/L CACl_2+200 mg/L MgSO_4+100 mg/L KNO_3时,1-63杨、辽宁杨花粉萌发的最佳蔗糖、硼酸浓度分别为20%、100 mg/L和15%、100 mg/L。1-63杨和辽宁杨花粉于-20℃贮藏1 a后生活力分别为23.77%和34.19%,与新鲜花粉相比,其生活力分别降低48.51%和62.23%,花粉管长度分别减少48.9%和48.45%。用4℃条件贮藏1 a或-20℃条件贮藏2 a的花粉授粉后仍可以得到正常发芽的种子,尤以-20℃下贮藏的效果为好。
     2.通过室内发芽试验研究了杨树种子的耐贮性。结果表明:干燥方法、种子含水量、贮藏温度和贮藏时间均对辽宁杨和I-72杨种子的发芽率、成苗率、苗高、胚根长度等活力指标有极显著影响。对于杨树种子贮藏,室内阴干等缓慢脱水的干燥方法较硅胶干燥等快速脱水的方法好,尤以室内阴干1 d为最好,此时辽宁杨种子的含水量为10.16%。低温条件可提高种子的耐贮性,辽宁杨种子贮藏温度越低效果越好,其中以-70℃最好,贮藏110 d后种子的生活力比新鲜种子下降19.73%;I-72杨种子以4℃的低温贮藏效果最好,贮藏110 d后种子的生活力比新鲜种子下降65.02%。在各种贮藏温度条件下,随着贮藏时间的延长,种子的各项活力指标均明显降低。对于杨树种子贮藏而言,贮藏温度比干燥方法和种子含水量更重要。
     3.选取湖北省广泛栽培的黑杨优良品种(辽宁杨、I-63杨、I-69杨、I-72杨)为亲本进行室内切枝水培杂交育种,以期选育适宜于湖北地区栽培的杨树优良新品种。结果表明:杂交子代遗传变异丰富,杂种优势显著。苗高、地径生长均属于高遗传力性状。一年根一年杆苗木的苗高、地径的广义遗传力分别为76.74%、85.22%;苗高的一般配合力变量、特殊配合力变量分别为21.56%、78.44%,地径的分别为61.39%、38.61%。二年根一年杆苗木的生长表现与一年根一年杆苗木一致。杨树对锈病、溃疡病、天牛的抗性均受多基因控制,子代遗传变异丰富。子代的锈病抗性与亲本关系显著,而溃疡病和天牛抗性与亲本无显著相关性。以现有主栽杨树品种的苗高生长为标准进行苗期选择后,杂交子代可获得显著的超亲优势和遗传增益。部分杂交子代的生长量比当前主栽品种有较大提高,其中最高杂种子代的一年根一年杆苗木的苗高、地径比南林895杨分别提高14.98%和18.86%;二年根一年杆苗木的苗高、地径比南林895杨分别提高13.87%和41.38%,并具有优良的病虫害抗性。
     4.采用盆栽淹水试验研究了20个杂交子代和亲本的抗涝性,以估算杨树抗涝性的遗传参数,并初步选择抗涝杨树新品种。结果表明:淹水胁迫显著抑制了杨树的苗高、地径、叶面积、根系的生长,从而导致生物量显著下降。20个无性系均在淹水6~14 d后形成了膨大皮孔和不定根。与正常条件相比,淹水植株的净光合速率、气孔导度、蒸腾速率等气体交换参数和叶绿素荧光显著降低。淹水结束后,所有植株均快速恢复。即使在淹水胁迫下,杂交子代仍然具有显著的杂种优势,但小于正常条件下的杂种优势。淹水胁迫下,子代的苗高和地径均具有丰富的遗传变异,其最大超亲优势分别为68.63%和20.83%。以提高抗涝性为目标的杂交育种中,亲本的选择标准与正常条件下有所不同。亲本的特殊配合力效应值和一般配合力效应值比其自身的耐涝性更重要。以耐涝性较差的无性系做杂交亲本,仍然可以得到高抗涝性的子代。就育种目标而言,淹水胁迫下,苗高生长性状最重要,地径生长性状次之。依据试验结果,利用聚类分析法可以将20个无性系明显分为3类:无性系Lu、E4、E9、E29、A2、A8、A9、B1、B3、B4和D8聚为一类,耐涝性最强:无性系Lf、Ha、Lm、D1、D7、F9和F21聚为一类,耐涝性次强;无性系Sm和F13聚为一类,耐涝性最差。
     5.采用盆栽淹水试验研究了2个耐涝性具有显著差异的杨树无性系对淹水胁迫的响应,以探索杨树的耐涝机理。结果表明:I-69杨的抗涝性强,而小叶杨对淹水胁迫敏感,两者抗涝性的差异体现在形态、解剖、生理等多方面。I-69杨与小叶杨抗涝能力的差异主要体现在淹水后期(8~22 d),而后期差异的形成与前期(1~8 d)两者对淹水胁迫响应的不同密切相关。生理方面,I-69杨在淹水前期即大幅度降低叶片水势,诱导气孔快速关闭,以减少水分散失,并保持较高的自由水含量和水分利用率,从而维持较高的光合速率。同时,I-69杨还通过迅速、大量分解叶绿素以减少对光能的吸收,降低光能过剩和光氧化对光合系统的破坏作用,并分解蛋白质以合成其它抗逆物质,提高植株抗性。小叶杨则缺乏相应机制,在淹水胁迫前期,叶片水势降低缓慢,气孔关闭迟缓,水分大量散失,导致植株水分平衡破坏,且大量自由水转变为束缚水,水分利用效率降低。同时,小叶杨叶绿素分解缓慢,造成光能过剩和光氧化作用严重,导致PSⅡ的光合性能受损,光合速率大幅降低。形态方面,I-69杨膨大的皮孔在淹水胁迫过程中一直保持正常,而小叶杨膨大的皮孔在淹水后期易受细菌感染,大量腐烂。I-69杨的根系可忍受长期淹水胁迫,能够形成并保持较大的孔隙度,而小叶杨的根系虽然可形成较大孔隙度,但淹水后期大量腐烂,孔隙度迅速变小。淹没处理下,I-69杨的叶片可保持完整结构,而小叶杨的叶片则表皮破裂,结构严重受损。解剖方面,I-69杨的叶片能够在长期淹水胁迫下保持较完整的超微结构,而小叶杨叶片的超微结构在淹水后期损伤严重,细胞器大量解体。作者认为,耐涝杨树品种兼具避缺氧性与耐缺氧性机制,而敏感品种则缺乏相应机制。淹水胁迫下,迅速皮孔膨大并保持正常活性、快速降低水势并关闭气孔、保持高光合速率和水分利用效率、快速分解叶片叶绿素和蛋白质、增大并保持根系孔隙度、提高叶片超微结构稳定性等响应对杨树的存活与生长具有十分重要的作用,可作为耐涝杨树品种选择的参考和指标。
Poplar, a widely cultivated tree species in the world, was of significance for meeting the inconsistency between increase of woody products requirement and scarce of provision. In china, poplar was one of the most important tree species for afforestation in woody production forests and ecology protection forests.
     In the present study, we adopted Aigerious section poplar clones as our research materials for their maximum economic values. The study was focused on cross breeding and flood tolerance of poplar to breed some new clones with characteris of fast-growing and strong tolerance.
     The major results are as follows:
     1. Cultured in vitro, time courses of viabilities of poplar pollens stored in different temperatures were studied, as well as the feasibilities of the stored pollens used for cross breeding. Results showed that the optimum concentrations of sucrose and boric acid for germination of I-63 and Liaoning poplar pollens were, respectively, 20%, 100 mg/L and 15%, 100 mg/L when medium containing 0.7% agar+300 mg/L CaCl_2+200 mg/L MgSO_4+100 mg/L KNO_3 The viabilities of I-63 and Liaoning poplar pollens after one-year storage in -20℃were 23.77% and 34.19%, respectively, decreasing 48.51% and 62.23% compared with fresh pollens. The length of pollen tube decreased 48.90% and 48.45%, respectively. It was feasible to obtain vigorous seeds using the pollens for pollination in cross breeding, which were stored in 4℃for one year or in - 20℃for two years. The optimum storage temperature was - 20℃.
     2. Storage capacities of poplar seeds were studied using germination method indoor. Results showed that drying method, moisture content, storage temperature and time all significantly affected viabilities of I-72 and Liaoning poplar seeds, including germination rate, seedling rate, seedling height and radicle length. In terms of storage, poplar seeds were suitable to be slowly dehydrated indoor naturally, but not be rapidly dehydrated by silica dehydration, and the optimum duration was one day. In this way, 10.16% of moisture content could be obtained for Liaoning poplar seeds. Storage capacities of Sect. Aigeiros poplar seeds could be enhanced in low temperature. Seeds of Liaoning poplar preferred cryopereservation below 0℃and -70℃was the best. However, I-72 could get better effect if it was stored at 4℃. After stored for 110 days, viability index would respectively decrease 19.73% and 65.02% compared to fresh seeds for Liaoning poplar seeds in -70℃and I-72 seeds in 4℃. With storage time prolonging, all items related to seed viabilities were declined significantly. For storage of poplar seed, storage temperature was more important than drying method and moisture content of seed.
     3. Cross breeding was performed using superior poplar clones of Aigeiros Section (Liaoning poplar, I-63,I-69 and I-72) widely cultivated in Hubei Province to breed new poplar clones. The progenies showed abundant genetic variation and obvious heterosis. Seedling growth of height and root-collar diameter both were characters with high heritabilities. Heritabilities in the broad sense of one-year old seedlings with one-year old roots in height and root-collar diameter were respectively 76.74 % and 5.22 %. The general combining ability variable and specific combining ability variable of height were 21.56 % and 78.44 %, respectively, as well as 61.39 % and 38.61 % in root-collar diameter. All of them were consistent with the one-year old seedlings with two-year old roots. Resistance of poplar to rust disease, canker and longicom beetles were controlled by multiple genes. The resistance of progenies to rust disease was obviously relative with their parents, but this kind relativity have not occurred in resistance of canker and longicom beetles. According to height growth of widely cultivated clones, obvious heterosis of higher-parent and genetic gain could be obtained after primary selection. Some progenies had much higher growth than the widely cultivated clones. Compared with Nanlin 895 poplar, the highest progenies increased 14.98% and 18.86%, respectively, in growth of height and root-collar diameter of one-year old seedlings with one-year old roots, as well as 13.87 % and 41.38 % in growth of height and root-collar diameter of one-year old seedlings with two-year old roots, and possessed characters of superior resistance to disease and insects.
     4. Flood tolerance of 20 clones, including progenies and their parents, were studied to select flood-tolerant clones primarily, as well as to estimate genetic variances in flood tolerance of poplar. Results showed that all the flooded cuttings showed significant reduction in growth of height, root-collar diameter, leaf, and root, as well as total biomass yield. All 20 clones formed hypertrophied lenticels and adventitious roots by Day 6 to 14 of flooding. And for flooded cuttings, net photosynthesis, stomatal conductance, transpiration, and chlorophyll fluorescence decreased significantly compared with the control. After flooding ended, all plants recovered rapidly. Heterosis existed in F1 generations, regardless of flooding condition. Whereas heterosis in flooding condition was lower than that of in watered condition. Under flooding, the maximum heterosis of higher-parent in height and root-collar diameter was 68.63% and 20.83%, respectively. Besides, variance of flood tolerance among progenies was obvious in growth of height and root-collar diameter. Selection criterions of parents in cross breeding were different between watered and flooding. Relative effect values of the specific combining ability (SCA) and relative effect values of the general combining ability (GCA) of parents were more important than their flood tolerance. Progenies with higher level of flood tolerance also could be obtained, although their parents were intolerant. In terms of breeding, height growth would be most important in flooding condition, and root-collar diameter growth was also very useful. Based on data of all measured values, the tested 20 clones were classified into three groups using hierarchical cluster analysis. Clones Lu, E4, E9, E29, A2, A8, A9, B1, B3, B4, and D8, were flood-tolerant. Clones Lf, Ha, Lm, D1, D7, F9, and F21 were moderately flood-tolerant. Clones Sm and F13 were flood-susceptible.
     5. Responses to soil flooding of two poplar clones with significantly different flood tolerance were studied to illuminate mechanism of poplar flood-tolerance. Results showed that P. deltoides cv.Lux ex. I-69/55 (Lu) was flood-tolerant, whereas P. simonii (Si) was flood-susceptible. They differed in morphological, ecophysiological, and anatomical characteristics when subjected to flooding. The difference between Lu and Si visualized in latter flooding period (8~22 d), but it was closely related to their responses to flooding in former flooding period (1~8 d). In terms of ecophysiology, in former flooding period, Lu could keep a high level of photosynthesis, as well as high free water content and water use efficiency, through inducing pore closure and reducing water lost due to decrease water potential of leaves rapidly. Meantime, chlorophyll of Lu was decomposed quickly to reduce sunlight absorbation and to avoid destruction to photosynthesis system by photooxidation due to light energy overplus. Protein of Lu was also rapidly decomposed to synthesize other substances to enforce its flood tolerance. Reversely, for Si, much water was evaported due to slow water potential decrease of leaves and pore closure in former flooding period, leading disorder of water system directly, as well as much free water transformed into bound water and lowered water use efficiency. Meanwhile, slow decompose of chlorophyll of Si lead light energy overplus and photosynthesis systemⅡ(PSⅡ) destruction occurred seriously. Therefore, photosynthesis rate of Si seriously decreased under flooding. As for morphology, all hypertrophied lenticels of Lu were fine during flooding, whereas many hypertrophied lenticels of Si were easy to be infected by bacteria and rot. Furthermore, Lu could form and maintain large root porosities during flooding period. However, Si could form large root porosities, but its roots easily rot to decrease the aerenchyma in latter flooding period. Under submergency, Lu could keep intact leaves structure. Nevertheless, leaf epidermis and structure of Si were destroyed seriously. In terms of anatomy, ultrastructure of leaves of Lu were still intact at the end of flooding, whereas ultrastructure of leaves of Si were destroyed seriously, and many organelles were decomposed. Therefore, the authors thought that flood-tolerant poplar clones were both with mechanisms of avoidng oxygen scarcity and tolerating oxygen scarcity. Whereas, flood-susceptible poplar clones lacked these mechanisms. Under soil flooding, responses of rapidly forming and maintaining hypertrophied lenticels, quickly decreasing water potential and closing pores, keeping high level of photosynthesis and water use efficiency, rapidly decomposing chlorophyll and protein of leaves, enlarging and maintaining root porosities, maintaining intact ultrastructure of leaves etc. were very important to survive and growth of poplar, which could be adopted as references and indexes for selecting flood-tolerant poplar chones.
引文
1.陈贵,周毅,郭世伟,沈其荣.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究.中国农业科学,2007,40(10):2162-2168
    2.陈建,张光灿,张淑勇,王梦军.辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程.应用生态学报,2008,19(6):1185-1190
    3.董海州,高荣歧,尹燕枰.不同贮藏和包装条件下大葱种子生理生化特性的研究.中国农业科学,1998,31(1):59-64
    4.董天慈.小叶杨与胡杨亚属间有性杂交.遗传,1980,1:25-28
    5.方升佐,徐锡增,吕士行.杨树定向培育.合肥:安徽科学技术出版社,2004
    6.郭光明,张福锁,尚忠林.硼对百合花粉萌发过程中细胞内游离钙离子的影响.中国农业大学学报,2002,7(5):32-37
    7.胡启鹏,郭志华,李春燕,马履一.不同光环境下亚热带常绿阔叶树种和落叶阔叶树种幼苗的叶形态和光合生理特征.生态学报,2008,28(7):3262-3270
    8.胡适宜.植物胚胎学试验方法(一)花粉生活力的测定.植物学通报,1993,10(2):60-62
    9.胡田田,康绍忠.植物淹水胁迫响应的研究进展.福建农林大学学报,2005,34(1):18-24
    10.胡伟民,胡晋,宋文坚.超干长期贮藏对不同类型水稻种子生活力和活力的影响.中国水稻科学,2003,17(4):379-382
    11.胡小荣,陶梅,卢新雄.油菜种子贮存最适含水量与贮藏寿命研究.种子,2006,25(10):22-26
    12.黄东森.阔叶树遗传改良.北京:科学技术文献出版社,1991,1-19
    13.蒋明义,郭绍川.渗透胁迫及光照下水稻幼苗叶片光合色素降解过程中~1O_2的参与.植物学报,1996,38(10):797-802
    14.蒋雅娟,贺岩,张登峰,徐丽,苏胜宝,戴景瑞,王守才.玉米抗南方型锈病基因共分离分子标记的研究.作物学报,2007,33(5):849-852
    15.柯世省,杨敏文.水分胁迫对云锦杜鹃光合生理和光温响应的影响.园艺学报,2007,34(4):959-964
    16.李合生.植物生理生化试验原理和技术.北京:高等教育出版社,2000
    17.李善文,张志毅,何承忠,安新民.中国杨树杂交育种研究进展.世界林业研究,2004,17(2):37-41
    18.李善文,张志毅,于志水,何承忠,安新民,李百炼.杨树杂交亲本分子遗传距离与子代生长性状的相关性.林业科学,2008,44(5):150-154
    19.李霞,阎秀峰,于涛.水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响.应用生态学报,2005,16(12):2353-2356
    20.李新国,毕玉平,赵世杰,孟庆伟,何启伟,邹琦.短时低温胁迫对甜椒叶绿体超微结构和光系统的影响.中国农业科学,2005,38(6):1226-1231
    21.李阳生.淹水胁迫下水稻根尖细胞中Ca~(2+)和Ca~(2+)-ATP酶的分布。中国水稻科学,2001,15(3):237-240
    22.李毅,刘榕,孙雪新.箭杆杨×胡毛杨良种选育及测定.林业实用技术,2002,2:7-8
    23.李跃进,郝朝晖.南林95杨、895杨繁育技术.林业实用技术,2003,4:26
    24.卢庆善,孙毅,华泽田.农作物杂种优势.北京:中国农业科技出版社,2002
    25.马常耕.从世界杨树杂交育种的发展和成就看我国杨树育种研究.世界林业研究,1994,3:23-291
    26.马常耕.我国杨树杂交育种的现状和发展对策.林业科学,1995,31(1):60-68
    27.苗琛,利容千,王建波.甘蓝热胁迫叶片细胞的超微结构研究.植物学报,1994,36(9):730-732
    28.朴永浩,曲柏宏,代志国.梨花粉贮藏特性与授粉能力的研究.北方园艺,2002,5:54-55
    29.Sekowin M.意大辅北部的杨树(包括美洲黑杨)育种.见:中国林业科学研究院林业研究所,林业译丛:国外杨树栽培,1982,78-81
    30.沈熙环.林木育种学.北京:中国林业出版社,2006
    31.史锋厚,喻方圆,沈永宝.超低温贮藏对油松种子的影响.南京林业大学学报,2005,29(6):119-122
    32.苏晓华,黄秦军,张冰玉,张香华.中国杨树良种选育成就及发展对策.世界林业研究,2004,17(1):46-49
    33.孙国荣,彭永臻,阎秀峰.干旱胁迫对白桦实生苗保护酶活性及脂质过氧化作用的影响.林业科学,2003,39(1):165-167
    34.孙群,王建华,孙宝启.种子活力的生理和遗传机理研究进展.中国农业科学,2007,40(1):48-53
    35.Starova H B.杨柳科的育种.(马常耕译).北京:科学技术文献出版社,1984
    36.唐罗忠,徐锡增,方升佐.土壤涝渍对杨树和柳树苗期生长及生理性状影响的研究.应用生态学报,1998.9(5):471-474
    37.王明庥.美洲黑杨×小叶杨杂交育种研究.见:林业部科技司主编,阔叶树遗传改良.北京:科学技术文献出版社,1991,83-92
    38.王钦丽,卢龙斗,吴小琴.花粉的保存及其生活力测定.植物学通报,2002,19(3):365-373
    39.王庆斌,张玉波,刘国刚,肖杰,夏善智.美洲黑杨杂种无性系引种苗期选择.东北林业大学学报,2002,23(5):11-14
    40.王世绩.杨树研究进展.北京:中国林业出版社,1995
    41.汪晓峰,景新明,郑光华.含水量对种子贮藏寿命的影响.植物学报,2001,43(6):551-557
    42.王玉萍,张峰,王蒂.马铃薯花粉的超低温保存研究.园艺学报,2003,30(6):683-686
    43.魏和平,利容千,王建波.淹水对玉米叶片细胞超微结构的影响.植物学报,2000a,42(8):811-817
    44.魏和平,利容千.淹水对玉米不定根形态结构和ATP酶活性的影响.植物生态学报,2000b,24(3):293-297
    45.吴鸿锦,刘志光,韩克展.新杂交种沙毛杨的选育.北京林业大学学报,1996,18(3):48-53
    46.肖明禹.大青杨种子的调制与贮藏.林业科技,1981,3:13-14
    47.徐纬英,黄东森.杨树的有性杂交.林业科学,1956,12(3):215-225
    48.徐纬英.杨树选种学.北京:科学出版社,1960
    49.徐纬英.新杨树杂种-群众杨.林业科学,1984,20(2):122-131
    50.晏斌,戴秋杰,刘晓忠.玉米叶片涝渍伤害过程中超氧自由基的积累.植物学报,1995,37(9):738-744
    51.杨期和,叶万辉,张云.锥栗种子萌发和贮藏特性的初步研究.北京林业大学学报,2005,27(1):92-95
    52.杨期和,叶万辉,廖富林,刘志伟,尹小娟.种子贮藏特性研究的试验影响因素.武汉植物学研究,2006,24(5):469-475
    53.杨志敏,马克.维拉尔.环境条件对杨树花粉生活力的影响.林业科学研究,1990,3(4):388-392
    54.姚秀玲,杨得基,王小平.小叶杨种子贮藏试验研究.林业科学,1993,2:172-175
    55.姚允聪,王绍辉,孔云.弱光条件下桃叶片结构及光合特性与叶绿体超微结构变化.中国农业科学,2007,40(4):855-863
    56.叶培忠.白杨繁殖育种.林业科学,1955,1(1):37-46
    57.叶勇,卢昌义,谭凤仪.木榄和秋茄对水渍的生长与生理反应的对比研究.生态学报,2001,12(10):1654
    58.易丽娟,曾幼玲,吕艳,梅新娣,张富春.中林美荷杨叶柄的组织培养及植株再生.植物生理学通讯,2004,40(5):576
    59.喻方圆,徐锡增.植物逆境生理研究进展.世界林业研究,2003,16(5):6-11
    60.曾丽,赵梁军,孙强.超干处理与贮藏温度对一串红种子生活力与生理变化的影响.中国农业科学,2006,39(10):2076-2082
    61.张春玲,李淑梅,赵自成,胡建军,韩一凡.杨树新品种‘丹红杨'.林业科学, 2008,44(1):47
    62.张海英,孟淑春,孔祥辉.超干贮存对番茄种子活力的影响.园艺学报,2002,29(1):35-38
    63.张吉旺,董树亭,王空军,刘鹏,胡昌浩.大田增温对夏玉米光合特性的影响.应用生态学报,2008,19(1):81-86
    64.张金凤,朱之悌,张志毅.中介亲本在黑白杨派间杂交中的应用.北京林业大学学报,2000,22(6):35-38
    65.张伟,马志卿,王春平.贮藏时间对小麦育种者种子萌发特性的影响.种子,2007,26(8):67-69
    66.张绮纹.黑杨派内杨树位遗传改良.林业科学,1987,23(2):174-181
    67.张亚利,尚晓倩,刘燕.花粉超低温保存研究进展.北京林业大学学报,2006,28(4):139-147
    68.张玉进,张兴国,刘佩瑛.魔芋花粉的低温和超低温保存.园艺学报,2000,27(2):139-140
    69.赵天宏,史奕,黄国宏.CO_2和O_3浓度倍增及其交互作用对大豆叶绿体超微结构的影响.应用生态学报,2003,14(12):2229-2232
    70.赵天锡,陈章水.中国杨树集约栽培.北京:中国科学技术出版社,1994
    71.朱诚,曾广文,景新明.洋葱种子含水量与贮藏温度对其寿命的影响.植物生理学报,2001,27(3):261-266
    72.朱之悌,林惠斌,康向阳.毛白杨异源三倍体B301等无性系选育的研究.林业科学,1995,31(6):499-505
    73.卓仁英,陈益泰.木本植物抗涝性研究进展.林业科学研究,2001,14(2):215-222
    74.左志锐,高俊平,穆鼎,刘春.盐胁迫下百合两个品种的叶绿体和线粒体超微结构比较.园艺学报,2006,33(2):429-432
    75.Abad C,Karen L M,Irving A M.Fate of oxygen losses from Typha domingensis (Typhaceae) and Cladium jamaicense(Cyperaceae) and consequences for root metabolism.American Journal of Botany,2000,87:1081-1090
    76.Abdul-Baki A A.Biochemical aspects of seed vigor.HortScience,1980,15:765-771
    77.Allen D J,Ort D R.Impacts of chilling temperatures on photosynthesis in warm-climate plants.Trends in Plant Science,2001,6:36-42
    78.Andrews D L,Cobb B G,Johnson J R.Hypoxic and anoxic induction of alcohol dehydrogenase in roots and shoots of seedings of Zeamays Adh transcripts and enzyme activity.Plant Physiol.,1993,101:407-414
    79.Andrews D L,Macapline D M,Cobb B G.Differential induction of mRNA for the glycolytic and ehtanolic fermentative pathways by hypoxia and anoxia in maize seedlings. Plant Physiol., 1994,106: 1575-1582
    80. Anton J M P, Marjolein C H C, Joris J B. Submergence research using Rumex palustris as a model, looking back and going forward. Journal of Experimental Botany, 2002, 53: 391-398
    81. Armstrong W, Cousins D, Armstrong J. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere a microelectrode and modelling study with Phragmites australis. Annals of Botany, 2000, 86: 687-703
    82. Ashraf M. Relationships between leaf gas exchange characteristics and growth of differently adapted populations of Blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging. Plant Sci., 2003, 165: 69-75
    83. Barrett J W, Rajora O P, Yeh F C H. Mitochondrial DNA variation and genetic relationships of Populus species. Genome, 1993, 36: 87-93
    84. Beny A, Mary P, Mason P. The effect of high temperature and high atmospheric CO_2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiologia Plantarum, 2001, 112: 505-512.
    85. Bilger W, Schreiber U, Bock M. Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia, 1995,102: 425-432
    86. Blanke M M, Cooke D T. Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Regulation, 2004, 42: 153-160
    87. Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 2003, 91: 179-194
    88. Boru G, Ginkel M, Kronstad W E, Boersma L. Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica, 2001, 117: 91-98
    89. Bouny J M, Saglio P H. Glycolytic flux and hexokinase activities in anoxic maize root tips acclimated by hypoxic pretreatment. Plant Physiology, 1996, 111: 187-194
    90. Bradshaw T. Genome mapping in Populus. Poplar molecular network, 1993, 1(2): 1-3
    91. Brodribb T J, Holbrook M. Stomatal closure during leaf dehydration correlation with other leaf physiological traits. Plant Physiology, 2003, 132(4): 2166-2173
    92. Bussis D, Heineke D. Aechmation of potato plants to polyethylene glycol-induced water deficit II contents and subcelualr distribution of organic solutes. Journal of Experimental Botany, 1998,49: 1361-1370
    93. Cao F L, Conner W H. Selection of flood-tolerant Populus deltoids clones for reforestation projects in China. Forest Ecology and Management, 1999, 117:211 -220
    94. Catalayud A, Deltoro V I, Barreno E, Valle-Tascon del S. Changes in vivo chlorophyll fluorescence quenching in Lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection. Plant Physiology, 1997,101: 93-102
    
    95. Ceulemans R, Impens I, Steenackers V . Variations in photosynthetic anatomical, and enzymatic leaf traits and correlations with growth in recently selected Populus hybrids. Can. J. For. Res., 1987,17: 273-283
    
    96. Collaku A, Harrison S A . Heritability of waterlogging tolerance in wheat. Crop Sci., 2005,45: 722-727
    
    97. Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deepwater rice (Oryza sativa L). Annals of Botany, 2003a, 91: 301-309
    
    98. Colmer T D. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003b, 26: 17-36
    
    99. Colmer T, Gibberd M, Wiengweera A. The barrier to radial oxygen loss from roots of rice (Oryza sativa L) is induced by growth in stagnant solution. Journal of Experimental Botany, 1998, 49: 1431-1436
    
    100.Coode D, Bachheld J. Effect of long term fumigation with ozone on the turnover of the D-I reaction center polypeptide of photosystem II in spruce. Plant Physiology, 1992,86:568-574
    101.Cooper D T, Randall W K. Genetic differences in the height growth and survival of cottonwood full-sib families. In: Proc.12th South For. Tree Impro. Conf., 1973, 206-212
    102.Crawford R M M. Oxygen availability as an ecological limit to plant distribution. Adv. Ecol. Res., 1992, 23: 93-185
    103.Danilo D, Fernando O, Jayonna L. In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen. Plant Cell Rep, 2006, 25: 450-456
    104.Dennis E S, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren F U, Grover A, Ismond K P, Good A G, Peacock W J. Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany, 2000, 342: 89-97
    105.Dickmann D I. An overview of the genus Populus. In: Dickmann D I, Isebrends J G, Eckenwalder J E eds., Poplar culture in north America. Pan A, Chapter 1. Ottawa: NRC Research Press, National Research Council of Canada, 2001, 1- 42
    106.Dickmanndi S. Genetic development of poplar in northeast of American. Poplar, 1985,2(2): 81-84
    107.Domingo R, Perez-Pastor A , Ruiz-Sanchez M C. Physiological responses of apricot plants grafted on two different rootstocks to flooding conditions. J. Plant Physiology, 2002,159: 725-732
    108.Drew A P, Chapman J A. Inheritance of temperature adaptation in intra-and inter-specific Populus crosses. Can. J. For. Res., 1992, 22: 62-67
    109.Drew M C, He C J, Morgan P W. Programmed cell death and aerenchyma formation in roots. Trends in Plant Sciences, 2000, 5: 123-127
    
    110.Dylewsi D P, Singh N K, Cherry J H. Effect of heat shock and thermo adaptation on the ultrastructure of cowpea (Vigna unguiculata) cells. Protoplasma,1991, 163: 125-135
    
    111.Ellis R H. A low-mosisture-content limit to logarithmicrelation between seed moisture content and longevity. Annals of Botany, 1988, 61: 405-408
    112.Ellis R H, Hong T D. Survival of dry and ultradry seeds of carrot, groundnut, lettuce, oil seed vape and onion during five years hermetic storage at two temperatures. Seed Sic. Technol., 1996, 24: 347-358
    113.Ellis R H, Hong T D, Roberts E H. An intermediate category of seed storage behaviour. J. Exp. Bot., 1990a, 41: 1167-1174
    114.Ellis R H, Hong T D, Robert E H, Tao K L. A low moisture content limit to relationship beween seed moisture and longevity. Annals of Botany, 1990b, 65: 493-504
    115.Ellis R H, Roberts E H. Improved equations for the prediction of seeds longevity. Annals of Botany, 1980, 45: 13-30
    116.Else M A, Tiekstra A E, Croker S J, Davies W J. Jackson M B. Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transpirant in xylem sap. Plant Physiology, 1996, 112: 239-247
    117.Eric J W V, Gerard M B. Measurement of porosity in very small samples of plant tissue. Plant and Soil, 2003, 253: 81-90
    118.Espinosa L Y, Terrazas T, Mata L L. Effects of flooding on wood and bark anatomy of four species in a mangrove forest community. Trees, 2001, 15: 91-97
    119.Faivre R P, Jeandroz S, Lefevre F. Ribosomal DNA studies in poplars, Populus deltoides, P. nigra, P. trichocarpa, P. maxmowiczii and P. alba. Genome, 1992, 35: 733-740
    120.Farmer R E. Genetic variation among open-pollinated progeny of eastern cottonwood. Silvae Genetica, 1970, 19: 149-151
    
    121.Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiology, 1982, 33: 317-345
    122.Farrant J M, Pammenter N W, Berjak P. The increasing desiccation sensitivity of recalcitrant Avicennia marina seeds with storage time. Physiologia Plantarum, 1986, 7: 291-298
    123.Freeling M, Bennett D C. Mazie Adhl. Annual Review of Genetics, 1985, 19: 297-323
    124.Fukao T, Paterson A H, Hussey M A, Yamasue Y, Kennedy R A, Rumpho M E. Construction of a comparative RFLP map of Echinochloa crus-galli toward QTL analysis of flooding tolerance. Theor. Appl. Genet., 2004, 108: 993-1001
    125.Geldern E V, Fossey A, Robbertse P J. The criteria of measurement of the inorganic acid test of pollen viability. South African Journal of Botany, 1994, 61: 253-259
    126.Germain V, Raymond P, Ricard B. Differential expression of two lactate dehydrogenase genes in response to oxygen deficit. Plant Molecular Biology, 1997, 35:711-721
    127.Gibberd M R, Gray J D, Cocks P S, Colmer T D. Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and 'aerotropic rooting'. Annals of Botany, 2001, 88: 579-589
    128.Giles K L. Effect of water stress on the ultrastructure of leaf cells of Sorghum bicolor. Plant physiology, 1976, 57: 11-14
    129.Gong J R, Zhang X S, HuangY M, Zhang C L. The effects of flooding on several hybrid poplar clones in Northern China. Agroforest Systems, 2007, 69: 77-88
    130.Gravatt D A and Kirby C J. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiology, 1998, 18:411-417
    131 .Grichko V P, Glick B R. Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlledby the 35S, rolD or PRB-1b promoter. Plant Physiology and Biochemistry, 2001, 39(1): 19-25
    132.Gustavo G S, Pedro I, Agustin A G, Edmundo L P, Viviana V. Physiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber Mill. Plant and Soil, 2005, 276: 301-311
    133.Harry D E, Kimmerer T W. Molecular genetica and physiology of alcohol dehydrogenase in woody plants. Forest Biotechnology, 1991, 43(3-4): 251-272
    134.Havan X M, Tardy F. Temperature dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. Planta, 1996,198:324-333
    135.Heilmeier H, Wartinger A, Erhard M. Soil drought increases leaf and whole-plant water use of Prunus dulcis Mill grown in the Negev Desert. Oecologia, 2002, 130: 329-336
    136.Hildebrand D F. Peroxidative response of leaves in two soybean genetypes injured by two spotted spider mites. J. Econ. Entomol., 1986, 79: 1459-1465
    137.Holmberg N, Bulow L. Advance on enhance plant abiological stress tolerance by transgene. J. Trend in Plant Science, 1998, 3(2): 61-66
    
    138.Hong T D, Ellis R H. A protocol to determine seed storage behaviour. In: Engles J M ed., IPGRI Technical Bulletin No. 1. Rome: International Plant Genetic Resources Institute (IPGRI), 1996,1-62
    139.Hook D D. Adaptations to flooding with fresh water. In: Kozlowski T.T. ed., Flooding and plant growth. New York: Academic Press, 1984, 265-294
    140.Hose E, Clarkson D T, Steudle E. Review article the exoderm is a variable apoplastic barrier. Journal of Experimental Botany, 2001, 52: 2245-2264
    141.Hosner J F, Boyce S G. Relative tolerance to water saturated soil of various bottom land hardwoods. Forestry Science, 1962, 8: 180-186
    142.Huq E, Harringtons, Hossain M A. Molecular characterization of pdc2 and mapping of three pdc genes from rice. Theoretical and Applied Genetics, 1999, 98: 815-824
    143.Huynh L N, Toai T V, Streeter J, Banowetz G. Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin. Journal of Experimental Botany , 2005, 415: 1397-1407
    144.International Seed Testing Association. International rules for seed testing. Seed Sci Tech. 1985.
    
    145.Islam M A, Macdonald S E. Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees, 2004, 18: 35-42
    146.Ismail M R, Noor K M. Growth and physiological process of young star fruit plant under soil flooding. Hort Science, 1996, 65: 229-238
    
    147.Issarakraisila M, Ma Q F, Turner D W. Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit. Scientia Horticulturae, 2007, 111: 107-113
    148.Jackson M B, Colmer T D. Response and adaptation by plants to flooding stress. Annals of Botany, 2005, 96: 501-505
    
    149.Jackson M B, Fenning T M, Drew M C. Stimulation of ethylene production and gas space formation in adventitious roots of zeanays L by small partial pressures of oxygen. Planta, 1995, 165: 486-492
    150.Jackson M B, Saker L R, Crisp C M, ElseM A, Janowiak F. Ionic and pH signalling from roots to shoots of flooded tomato plants in relation to stomatal closure. Plant and Soil, 2003,253: 103-113.
    151. Jaindl R G. Influence of an environmental gradient on physiology of single leaf pinyon. Journal of Rang Management, 2004, 48: 224-231
    152. Jansen C, Steeg H M, Kroon H. Investigating a trade-off in root morphological responses to a heterogeneous nutrient supply and to flooding. Functional Ecology, 2005,19: 952-960
    153.Johnson Z, Barber R T. The low-light reduction in the quantum yield of photosynthesis: potentialerrors and biases when calculating the maximum quantum yield. Photosynthesis Research, 2003, 75(1): 85-95
    154.Kate M, Johnson G N. Chlorophyll fluoreseenee-a pratieal guide. J. Exp. of Bot., 2000, 51(345): 659-668
    155.Kende H, Derknaap E, Cho H T. Deepwater rice: a model plant to study stem elongation. Plant Physiology, 1998,118: 1105-1110
    156.Kennedy R A, Rumpho M E, Fox T C. Anaerobic metabolism in plants. Plant Physiology, 1992, 100: 1-6
    157.Khatun S, Flowers T J. The estimation of pollen viability in rice. J. Exp. Bot., 1995, 46: 151-154
    158.Koster K L, Lcopold A C. Sugars and desiccation tolerance in seeds. Plant Physiology, 1988,88:829-832
    159.Kozlowski T T. Extent, causes, and impact of flooding. In: Kozlowski T T ed., Flooding and Plant Growth. London: Academic Press, 1984,1-5
    160.Kozlowski T T. Responses of woody plants to flooding and salinity. Tree physiol. Mon., 1997, 1: 1-29
    161.Kozlowski T T, Pallardy S G. Growth control in woody plants. San Diego, C A: Academic Press, 1997
    162.Kreuzwieser J, Furniss S, Rennenberg H. Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species. Plant, Cell and Environment, 2002, 25: 1039-1049
    163.Laan P, Tosserams M, Blom C W P M, Veen B W. Internal oxygen transport in Rumex species and its significance for respiration under hypoxic conditions. Plant and Soil, 1990,122: 39-46
    164.Ladygin V G. Effect of root zone hypoxia and anoxia on the functional activity and chloroplast ultrastructure in leaves of Pisum sativum and Glycine mar. Fiziol. Rast., 1999,46: 246-258
    165.Lee D W, Bone R A, Tersis S. Correlates of leaf optical properties in tropical forest sun and extreme-shade plants. American Journal of Botany, 1990, 77: 370-380
    166.Li M, Yang D, Li W. Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding. Photosynthetica, 2007, 45 (2): 222-228
    167.Liao C T, Liu C H. Effect of flooding stress on photosynthetic activities of Monordica charantia. Plant Physiol. Bio., 1994, 32: 479-485
    168.Lindow S E. Theory and application of genetic engineering for resistance and avoidance . HortScience, 1994,29: 581
    169.Lopez O R and Kursar T A. Flood tolerance of four tropical tree species. Tree physiology, 1999,19: 925-932
    170.Lu C M, Zhang J H. Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J. Exp. of Bot., 1999, 50(336): 1199-1206
    171.Luza J G, Polito V S. Cryopreservation of English walnut (Juglans regia L) pollen. Euphytica, 1988,37: 141-148
    
    172.Malvolti M E, Teissier du C E, Fineshi S. Biochemical markers in eastern cottonwood (Populus deltoides Bartr.), enzymatic variation in a factorical mating design. JUFRO workshop on biochemical markers in the pogulatioa genetics of forest trees, Porano, Italy, 1989
    173.Manion P D. Resistance in aspen to hyposylon canker. In: BIanchett R A, Biffs A R eds., Defense Mechanisms of Woody Plants Against Fungi. Springer-verlag, 1992: 308-320
    174.Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B. Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica, 2005, 142: 33-42
    175.Marcelo S M, Alex-alan F A, Fabio P G, Pedro A O M, Delmira C S. Effects of soil flooding on leaf gas exchange and growth of two neotropical pioneer tree species. New Forest, 2005,29: 161-168
    176.Martin B, Louis B, Brook G. Sympatry between alternate hosts affects population structure of poplar leaf rust. Proc. First Rust of Forest trees, 1998, 712: 65-69
    177.Mckevlin M R, Hook D D, Rozelle A A. Adapation of plants to flooding and soilwaterlogging. In: Messina M G, Conner W H eds. Southern Foresled Welland: Ecology and Management Lew is publishs, 1998, 173-204
    178.Mielke M S, Almeida F A. Effects of soil flooding on leaf gas exchange and growth of two neotropical pioneer tree species. New Forest, 2005,29:161-168
    179.Mohrdiek O. Progeny tests with Leuce poplars in Germany: crossings within and between species, and backcrossings. Kommissionswerlag, Hamburg, 1979, 70
    180.Navari-Izzo F, Rascid N. Plant responses to water-deficit conditions. Pessarakli M. Hand book of Plant and Crop Stress (2nd edition). New York: Marcel D, 1999, 231-270
    181 .Newsome R D, Kozlowski T T, Tang Z C. Responses of Ulmus americana seedling to flooding of soil. Canada Journal of Botany, 1982, 60: 1688-1695
    182. Oren L J, Louis N B. Principles and practices of seed storage. 1978,9-27, 73-92
    183.Parolin P. Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia, 2001,128: 326-335
    184.Parton E, Vervaeke I, Delen R. Viability and storage of bromeliad pollen. Euphytica, 2002,125:155-161
    185.Pastor A, Lopez-Carbonell M, Alegre L. Abscisic acid immunolocalization and ultrastructural changes in water-stressed lavender (Lavandula stoechas L.) plants. Physiol Plant, 1999,105: 272-279
    186.Pavelic D, Arpagaus S, Rawyler A. Impact of post-noxia stress on membrane lipids of anoxia-pretreated potato cells. A Reappraisal Plant Physiology, 2000,124: 1285-1292
    187.Perumalla C J, Peterson C A, Enstone D E. A survey of angiosperm species to detect hypodemal Casparian bands I Roots with a uniserate hypodemis and epidermis. Botanical Journal of the Linnean Society, 1990,103: 93-112
    188.Peterson C A, Perumalla C J. A survey of angiosperm species to detect hypodemal Casparian bands II Roots with a multiserat hypodemis or epidermis. Botanical Journal of the Linnean Society, 1990, 103: 113-125
    189.Pezeshki S R. Differences in patterns of photosynthetic responses to hypoxia in flood-tolerant and flood-sensitive tree species. Photosynthetica,1993, 28: 423-430
    190.Pezeshki S R. Wetland plant responses to soil flooding. Environ. Exp. Bot., 2001, 46: 299-312.
    191.Pezeshki S R, Delaune R D, Mecder J F. Carbon assimilation and biomass partitioning in Auicennia geminans and Rhizophora mangle seedlings in response to soil redox condition. Enviormental and Experimental Bolaty, 1997, 37: 161
    192.Pharis R P, Yeh F C, Dancik B P. Superior growth potential in trees: What is its basis, and can it be tested for at an early age. Can. J. For. Res., 1991,21: 368-372
    193.Pichot C, Teissier du Cros E. Estimation of genetic parameters in the European black poplar (Populus nigra L.), consequence on the breeding strategy. Ann. Sci. For., 1988,45:223-238
    194.Pichot C, Teissier du Cros E. Estimation of genetic parameters in eastern cotton-wood (Populus deltoides Bartr.), consequence for the breeding strategy. Ann. Sci. For., 1989, 46: 307-324
    195.Ponnamperuma F N. Effect of flooding in soils. In: Kozlowski T T ed, Flooding and Plant Growth. London: Academic Press, 1984, 9-45
    
    196.Poot P, Lambers H. Growth responses to waterlogging and drainage of woody Hakea (Proteaceae) seedlings, originating from contrasting habitats in south-western Australia. Plant and Soil, 2003, 253: 57-70
    
    197.Porterfield D M, Musgrave M E. The tropic response of plant roots to oxygen: oxytropism in Pisum sativum. Planta, 1998,206(1): 1-6
    198.Pospisil J. The importance of forest tree breeding, an example of the Aspen. Lesnictvi, 1988, 34(4): 731-754
    
    199.Powles S B, Osmond C B. Inhibition of the capacity and effiiciency of photosynthesis in bean leaflets illuminatedina CO_2 free atmosphere at low oxygen: a possible role for photorespiration. Aust. J. Plant Physiology, 1978, 5: 619-629
    200.Preiszner J, Vantoai T T, Huynh L. Structure and activity of a soybean Adh promoter in transgenic hairy roots. Plant Cell Rep., 2001, 20: 763-769
    201.Ratcliffe R G. In vivo NMR studies of the metabolic response of plant tissues to anoxia. Annals of Botany, 1997, 79 (Suppl A): 39-48
    202.Reid D M, Crozier A, Harvey BMR. The effects of flooding on the export of gibberellins from the root to the shoot. Planta, 1969, 89: 376-379
    
    203.Ristic Z, David D C. Chloroplast structure after water and high-temperature stress in two lines of maize that differ in endogenous levels of abscisic acid. Int. J. Plant Sci., 1992, 153:186-196
    
    204.Roberts E H. Predicting the storage life of seeds. Seed Sci. Tech., 1973,1:499-514
    205.Rohacek K. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships. Photosynthetica, 2002,40(1): 13-29
    206.Roy S K. Development of flood tolerant Artocarpus heterophyllus through in vitro technique. Agricoltura Ricerca, 1993,15: 146
    207.Sacks E J, Clair D A S. Cryogenic storage of tomato pollen: effect on fecundity. HortScience, 1996, 31(3): 447-448
    
    208.Santabumdrim M, Berkowitz G H. Correlation between the maintenance of photosynthesis and in situ protoplast volume at low water potentials in drought wheat. Plant Physiology, 1990, 92 : 733
    209.Sato K N, Lwais. Establishment of reliable method of in vitro pollen germination and pollen preservation of Brassica rape. Euphyca, 1998,103: 29-33
    210.Schmull M, Thomas F M. Morphological and physiological reactions of young deciduous trees (Quercus robur L., Q. petraea [Matt.] Liebl., Fagus sylvatica L.) to waterlogging. Plant and Soil, 2000,225: 227-242
    211.Seago J L, Peterson C A, Enstone D E. Cortical development in roots of the aquatic plant Pontederia cordata (Pontederiaceae). American Journal of Botany, 2000, 87: 1116-1127
    212.Sena G A R, Kozlowski T T. Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding. Plant Physiology, 1980, 66: 267-271
    213.Sheikh M B. The component of soluble sugar in peanut. Journal of Agricultural and Food Chemistry, 1992,40(5): 780-783
    214.Shiba H, Daimon H. Histological observation of secondary aerenchyma formed immediately after flooding in Sesbania cannabina and S. rostrata. Plant and Soil, 2003,255:209-215
    215.Skriver K, Mundy J. Gene expression in response to abscisic acid and osmotic stress. The Plant Cell, 1990, 2: 503-512
    216.Smethurst C F, Garnett T, Shabalal S. Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant and Soil, 2005,270: 31-45
    217.Smethurst C F, Shabala S. Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 2003, 30: 335-343
    218. Sparks D, Yates I E. Pecan pollen stored over a decade retains viability. Hortscience: a Publication of the American Society for Horticultural Science, 2002, 37(1): 176-177
    219. Stettler R F, Zsuffa L, Wu R L. The role of hybridization in the genetic manipulation of Populus. In: Stettler R F, Jr Branshaw H D, Heiloran P E eds., Biology of Populus and its Implications for Management and Conservation. Part 1, Chapter 6. Ottawa: NRC Research Press, National Research Council of Canada, 1996, 87-112
    220.Stolzy L H, Sojka R E. Effects of flooding on plant diseases. In: Kozlowski, T.T. ed., Flooding and Plant Growth. New York : Academic Press, 1984, 221-264
    221.Sundblad L G, Sjostrom M, Malmberg G, Oquist G. Prediction of frost hardiness in seedlings of Scots pine (Pinus sylvestris) using multivariate analysis of chlorophyll fluorescence and luminescence kinetics. Can. J. For. Res., 1990,20: 592-597
    222.Tanaka Y, Tanaka A, Tsuji H. Effect of 5-aminolevulinic acid on the accumulation of chlorophyll b and apoproteins of the lightharvesting chlorophyll a/b-protein complex of PS II. Plant Cell Physiol., 1993, 34: 465-472
    223.Tang Z C, Kozlowski T T. Some physiological and growth responses of Betula papyrifera seedlings to flooding. Physiologia Plantarum, 1982, 55:415-420
    224.Tang Z C, Kozlowski T T. Water relations, ethylene production, and morphological adaptation of Fraxinus pennsylvanica seedlings to flooding. Plant and Soil, 1984, 77: 183-192
    225.Teissier D U C. Breeeding strategies with Poplars in Europe. For. Ecol. and Manag., 1984,8:23-39
    
    226.Thomas H B. Environmental control of moisture content and viability in Schlumbergera truncata (Cactaceae) pollen. Journal of the American Sociery for Horticultural Science, 2001, 126: 625-630
    227.Toai T T, Martin S K S, Chase K. Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci., 2001,41:1247-1252
    228.Tolbert N E. Microbodies-peroxisomes and gly-oxysomes. Annu. Rev. Plant Physiol., 1971,22:4574
    229.Toissier du Cros E. Breeding strategies with poplars in Europe. For. Ecol. and Manag., 1984, 8: 23-39
    230.Trought M C T, Drew M C. The development of waterlogging damage in wheat seedlings (Triticum aestivum L.) I. Shoot and root growth in relation to changes in the concentration of dissolved gases and solutes in the soil solution. Plant and Soil, 1980, 54: 77-94
    231.Valbuena L, Vera M L. The effects of thermal scarification and seed storage on germination of four heathland species. Plant Ecology, 2002,161(1): 137-144
    232.Vasellati V, Oesterheld M, Medan D, Loreti J. Effects of flooding and drought on the anatomy of Paspalum dilatatum. Annals of Botany, 2001, 88: 355-360
    233.Vasquez E, Montiel F, Vasquez-Ramos J M. DNA lipase activity in deteriorated maise embryo axes during germination: a model relating defects in DNA metabolism in seeds to loss of germinability. Seed Science research, 1991, 1: 269-273
    234.Voesenek L A C J, Jackson M B, Toebes A H W, Huibers W, Vriezen W H , Colmer T D. De-submergence induced ethylene production in Rumex palustris: Regulation and ecophysiological significance. Plant J., 2003, 33: 341-352
    235.Wagner I. Testing of juvenile-mature correlations in investigations of the water regime in 12 clones of Norway spruce (Picea abies) illustration of height growth. Forst Wissen Schaft Liches Central Blatt, 1994,113 (2): 125-136
    236.Waldhoff D, Junk W J, Furch B. Responses of three central Amazonian tree species to drought and flooding under controlled conditions. Int. J. Ecol. Environ., 1998, 24: 237-252
    237. William W P C, Lan H, Min S. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment and identification of proteins by mass Spectrometry. Plant Physiology, 2000, 122: 295-318
    238.Wu R L, Han Y F, Hu J J, Fang J J, Li L, Li M L, Zeng Z B. An integrated genetic map of Populus deltoides based on amplified fragment length polymorphisms. Theor Appl. Genet., 2000, 100: 1249-1256
    
    239. Yang Q H, Yin S H, Song S Q, Ye W H. Development of desiccation tolerance and germination physiology of Crotalaria pallida Ait seed. Seed Sci. Tech., 2004, 32(1): 99-111
    
    240. Ying C C, Bagley W F. Genetic variation of eastern cottonwood in a eastern Nebraska provenance study. Silvae Genetica, 1970, 25: 67-73
    
    241.Yordanova R Y, Popova L P. Photosynthetic response of barley plants to soil flooding. Photosynthetica, 2001, 39 (4): 515-520
    242.Zhang D, Zhang Z, Yang K, Li B. Genetic mapping in (Populus tomentosa × Populus bolleana) and P. tomentosa Carr. using AFLP markers. Theor Appl. Genet., 2004,108: 657-662
    243 .Zhang J, Toai T V, Huynh L, Preiszner J. Development of flooding-tolerant Arabidopsis thaliana by autoregulated cytokinin production. Molecular Breeding, 2000,6: 135-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700