杨树抗旱多基因转化及整合机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候变化和环境污染的加剧,水分、温度、光照等非生物因子正逐渐成为制约林木健康生长和生产力发挥的重要因素。培育抗非生物逆境的林木新品种已经成为提高我国森林覆盖率,发挥人工林生产力的重要途径。传统育种手段存在育种周期长,效率低等缺点,已不能满足我国林业发展对优良品种的迫切需求,基因工程技术的迅速发展使得人们可以通过分子水平的操作实现对林木相关性状的快速、高效改良。本研究以欧美杨渤丰1号(Populus×euramericana cl.‘Bofeng1’)为试验材料,在对其组培再生体系进行优化的基础之上,采用基因枪法对其进行五个抗旱相关基因——转录因子基因JERF36基因、ZxZF基因、AREB基因和功能基因SacB基因、GST基因的共转化,以期培育出具有强抗旱性的转基因杨树新品种,同时,对外源基因在受体材料基因组上的整合特征进行深入探讨,完善转基因技术的理论基础。主要研究结果如下:
     1.优化了渤丰1号杨再生体系,突破了黑杨派树种组培再生率不高的难题。其叶片和叶柄最适不定芽诱导培养基均为MS+6-BA0.4mg·L~(-1)+NAA0.04mg·L~(-1);不定芽最适生根培养基为1/2MS+IBA0.05m g·L~(-1)+NAA0.02mg·L~(-1);组培的最适光照强度为2300lx;40mg. L~(-1)卡那霉素可以抑制渤丰1号杨叶片的诱导与分化,20mg. L~(-1)卡那霉素可以抑制渤丰1号杨不定芽的生根。首次发现增加Cu~(2+)浓度能显著促进杨树不定芽的诱导和分化;使用该再生体系时,外植体的分化率和生根率均达100%,叶片的平均分化芽数多达20个以上,组培苗移栽成活率可达98%。
     2.进行了渤丰1号杨抗旱多基因的共转化。对获得的3000多株再生苗进行了PCR检测,共获得62个单基因转化植株(JERF3618株、SacB10株、ZxZF28株、GST5株、AREB1株),22个双基因转化植株(JERF36和SacB2株、JERF36和ZxZF13株、SacB和ZxZF7株),8个三基因转化植株(JERF36、SacB和ZxZF)和1个四基因转化植株(JERF36、ZxZF、GST和AREB)。然后,对部分转化植株进行了Southern杂交检测和QRT-PCR分析,进一步证实了外源基因在渤丰1号杨中的整合和表达。
     3.对转基因株系1B14进行了基因组重测序研究,率先采用高通量测序的手段对外源基因的整合情况进行了深入探究。发现外源基因在受体植株的染色体上存在整合,总的拷贝数为3,并且外源基因倾向于整合在染色体的远端,这可能与该区域的复制活跃有关。外源基因JERF36、SacB、ZxZF均整合在第2号染色体上,基因的左右边界均带有载体的部分序列,并有部分的缺失。同时,还发现有载体的部分骨架序列整合在受体染色体上,这与农杆菌介导的转化明显不同,可能与基因枪以物理的方式将外源基因导入受体细胞有关。根据对整合特征的分析我们总结出基因枪介导的外源基因转化可分为两种方式(农杆菌式整合和机械式整合)的假设。此外,重测序还检测到转基因植株的SNPs总计为2988581,其中1077575是纯合,而1911006属于杂合。短的插入缺失位点(1~5bp)数是212089,其中115674是杂合,96415属于纯合,110523是插入,101566为缺失。检测到结构变异SVs总计为24584,其中缺失18863,插入4362,以及1359的其他结构变异。
     总之,能否成为林木基因工程研究的模式材料关键在于所选材料是否拥有高效的组培再生体系。本研究所建立的再生体系是目前黑杨派树种中的最佳体系之一,这为研究者以生产实践中占主体地位的黑杨派树种为模式材料进行基因克隆、转化以及基因在林木中的功能解析和应用等提供了前提。同时,获得的大量转基因株系为培育抗性优良的杨树品种提供了坚实的物质基础。在全基因组水平上对转基因整合机制的分析,开辟了转基因研究的新方向,深入揭示了外源基因在受体基因组中的整合特征,为转化机制的阐明奠定了理论基础。
With the aggravation of global climate change and environmental pollution, abioticfactors such as water, temperature, light, etc. are gradually becoming the limit factors in treesgrowth and productivity. Breeding new varieties to resist abiotic stress has become animportant way for increasing forest coverage rate and plantation productivity in China.Because the long cycle, low efficiency and other defects, traditional breeding methods can nolonger meet the needs of the forestry development. With the rapid development of geneticengineering, people can improve forest faster and more efficient by the molecular leveloperation. In this research, Populus×euramericana cl.‘Bofeng1’ was the experimentalmaterial. On the basis of regeneration system optimization, five drought-related gene JERF36,ZxZF, AREB, SacB and GST were co-transformation into it by the particle bombardmenttransformation so as to breed the new varieties of transgenic poplar with drought tolerance. Inaddition,the integration mechanism of foreign genes were also studied. The main results aredescribed as follows:
     1. A stable and high efficient regeneration system of ‘Bofeng1’ was established. theoptimum medium for adventitious buds regeneration was MS+6-BA0.4mg L~(-1)+NAA0.04mg L~(-1); The optimum medium for rooting of shoots was1/2MS+IBA0.05m g L~(-1)+NAA0.02mg L~(-1); The optimal light intensity was2300lx; the induction and differentiation ofleaves can be inhibited by40mg L~(-1)Kan;the rooting of shoots can be inhibited by20mg L~(-1)Kan. It was the fist time to find that the differentiation rate of adventitious buds of ‘Bofeng1’ can be significantly promoted by copper. Using this system, both shoot regeneration rate androoting rate were up to100%; and the average number of differentiated shoots in each leafexplant was up to20; and the survival rate of seedlings reached98%.
     2. More than3000regenerated seedlings were obtained by multiple drought-related geneco-transformation. Subsequently, PCR analysis of regenerated plants was done. At last,62single-gene transgenic plants were obtained (JERF3618lines, SacB10lines, ZxZF28lines, GST5lines, AREB1lines);22double gene transgenic plants were obtained (JERF36&SacB2lines, JERF36&ZxZF13lines, SacB&ZxZF7lines);8three gene transgenic plants wereobtained (JERF36, SacB, ZxZF);1four gene transgenic plants was obtained (JERF36, GST,AREB, ZxZF). Then, the result of Southern blot and QRT-PCR analysis in some samples furtherconfirmed the integration and expression of foreign genes in ‘Bofeng1’.
     3. The re-sequencing study of1B14showed that JERF36、SacB and ZxZF were integratedin the chromosomes of ‘Bofeng1’. The total copy number was3, and we found that exogenousgenes tend to be integrated in the distal part of recipient chromoses. This should be related totwo factors: the distal part of plant chromoses was rich in genes; and its transcriptional activitywas higher than other regions. Exogenous genes were integrated in chromosome2. There werepartial fragments of vector DNA at left and right borders of JERF36、SacB and ZxZF, and bothbeing lost partial sequence. In addition, we found there were a number of large fragments ofvector backbone sequences integrated into the recipient chromosome, which was significantlydifferent to the integration mechanism of Agrobacterium mediated transformation. It may bedue to gene transferred into recipient cell by mechanical forces in the particle bombardmenttransformation. According to the analysis of the exogenous gene's integration features, wesuppose that there are two ways for foreign gene integrating into the recipient genome in theparticle bombardment transformation (Agrobacterium-style integration and mechanicalintegration). Moreover, on the basis of re-sequencing, in receptor material we found2988581single nucleotide polymorphism (SNPs). and1077575is homozygous;1911006isheterozygous; There are212089short insertion&deletion(Indel). and115674isheterozygous;96415is homozygous;110523is inserted;101566is in deletion. There are24584structural variation (SVs).and18863is in deletion,4362is in insertion,1359belong toother structural variation.
     In a conclusion, an efficient regeneration system is a key factor to determine whether itcan become the model material of forest genetic engineering research. The regeneration systemestablished in this study is one of the best systems in the species of Aigeiros Section. Itprovides the premise for researchers to use black poplar which have the dominant status in production practice as a model material for gene cloning, transformation, and functionalanalysis and applications in trees. Meanwhile, a large number of transgenic plants wereobtained, which provide a solid material foundation for the cultivation of excellent resistantvarieties of poplar. The new direction of transgenic research was opened up by the analysis ofintegration mechanisms in the whole genome. The integration characteristics of the exogenousgene in the receptor genome was in-depth revealed, and it provides a theoretical basis for theelucidation of the transformation mechanism.
引文
Abe H, Urao T. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators inabscisic acid signaling[J]. Plant Cell,2003,15:63-78
    Armstrong C L, Petersen W L, Buchholz W G, et al. Factors affecting PEG-mediated stable transformation ofmaize protoplasts [J]. Plant Cell Reports,1990,9(6):335-339
    Aziz M A, Salem D S, Salama M S, et al. In vitro study for laser gene transfer in BHK-21fibroblast cell line[J]. Progress in biomedical optics and imaging,2009,10(15):1-9
    Badr Y, Bahieldin A, Aziz M A, et al. A modified protocol for laser-mediated gene transfer in wheat[J]. ArabJournal of Biotechnology,2004,7(2):299-304
    Bae E K, Lee H, Lee J S, et al. Drought, salt and wounding stress induce the expression of the plasmamembrane intrinsic protein1gene in poplar (Populus alba×P. tremula var. glandulosa)[J]. Gene,2011,483(1-2):43-48
    Barampuram S and Zhang Z J. Recent advances in plant transformation[J]. Methods Mol Biol,2011,701,1-35
    Basia Vinocur, Arie Altman. Recent advances in engineering plant tolerance abiotic stress: achievements andlimitations[J].Current Opinion in Biotechnology,2005,16:123-132
    Biela A, Grote K, Otto B, et al. The nicotiana tabacum plasma membranes aquaporin NtAQP1is mercuryinsensitive and permeable for glycerol[J]. Plant J,1999,18(5):565-570
    Bosela M J. Effects of β-lactam antibiotics, auxins, and cytokinins on shoot regeneration from callus culturesof two hybrid aspens, Populus tremuloides×P. tremula and P. xcanescens×P. gradidentata[J]. Plantcell, tissue and organ culture,2009,98(3):249-261
    Bowler C, Van M M. Superoxide dismutases and stress tolerance[J]. Annu Rev Plant Physiol Plant Mol Biol,1992,43:83-116
    Capell T, Escobar C. Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryzasativa L.) affects normal development patterns in vitro and results in putrescine accumulation intransgenic plants[J]. Theor Appl Genet,1998,97(1-2):246-254
    Carroll D. Genome engineering with zinc-finger nucleases[J]. Genetics,2011,188(4):733-782
    Caruso A, Morabito D, Delmotte F, et al. Dehydrin induction during drought and osmotic stress in Populus[J].2002,40(12):1033-1042
    Casas A M, Kononowicz A K, Bressan R A, et al. Cereal transformation through particle bombardment[J].Plant Breeding Reviews,1995,13:235-264
    Castellanos-Hernández O A, Rodríguez-Sahagún A, Acevedo-Hernández G J, et al. Transgenic Paulowniaelongata S. Y. Hu plants using biolistic-mediated transformation [J]. Plant Cell, Tissue and OrganCulture,2009,99(2):175-185
    Chang S J, Puryear J D, Dias M, et al. Gene expression under water deficit in loblolly pine (Pinus taeda):isolation and characterization of cDNA clones[J]. Physiol Plant,1996,97,139-148
    Chaves M M, Pereira J S, Maroco J. Understanding plant response to drought from genes to the wholeplant[J]. Funct Plant Biol,2003,89:239-264
    Christou P. Genetic transformation of crop plants using micro-projectile bombardment[J].The Plant Journal,1992,(2):275-281
    Citovsky V, Kozlovsky S V, Lacroix B, et a1. Biological systems of the host cell involved in Agrobacteriuminfection[J]. Cellular Microbiology,2007,9(1):9-20
    Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil.Annu Rev Plant Physiol Plant Mol Boil,1991,42:55-76
    Fromm M, Taylor L P, Walbot V. Expression of genes transferred into monocot and dicot plant cells byelectroporation [J]. PNAS,1985,82:5824-5828
    Gao C Q, Wang YC, Jiang B, et al. A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) fromTamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae[J].Molecular Biology Reports,2011,38(2):957-963
    George S J, Usha B, Parida A. Isolation and Characterization of an atypical LEA protein coding cDNA andits promoter from drought-tolerant plant Prosopis juliflora[J]. Applied Biochemistry and Biotechnology,2009,157(2):244-255
    George S J, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferasefrom phreatophyte Prosopis juliflora confer drought tolerance on tobacco[J]. Journal of PlantPhysiology,2010,167(4):311-318
    Geurts A M, Cost G J, Freyvert Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases[J].Science,2009,325(5939):433
    Gu S B, Li S C, Feng H Y, et al. A novel approach to microbial breeding-low-energy ion implantation[J].Applied Microbiology and Biotechnology,2008,78(2):201-209
    Guang yu Zhou, Jian Weng, Yishen Zeng, et a1. Introduction of exogenous DNA into cotton embryos[J].Methods in Enzymology,1983,101:433-481
    Guo X H, Jing J, Wang B C, et al. ThPOD3, a truncated polypeptide from Tamarix hispida, conferreddrought tolerance in Escherichia coli[J]. Molecular Biology Reports,2010,37(3):1183-1190
    Guo Y D, Liang H, Berns M W. Laser-mediated gene transfer in rice[J]. Physiologia Plantarum,1995,93(1):19-24
    Hoekstra F A, Golovina E A, Buitink J. Mechanism of plant desiccatio tolerance[J]. Treads Plant Sci,2001,6:431-438
    Huang X S, Luo T, Fu X Z, et al. Cloning and molecular characterization of a mitogen-activated proteinkinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerancein transgenic tobacco[J]. Journal of Experimental Botany,2011,62(14):5191-5206
    Isalan M. Zinc-finger nucleases: how to play two good hands[J]. Nature methods,2011,9(1):32-34
    Iuchi S, Kobayashi M, Taji T, et al. Regulation of drought tolerance by gene manipulation of9-cis-epoxycar-otenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. Plant J,2001,27(4):325-333
    Jain P, Kachhwaha S, Kothari S L. Improved micropropagation protocol and enhancement in biomass andchlorophyll content in Stevia rebaudiana (Bert.) Bertoni by using high copper levels in the culturemedium[J]. Scientia Horticulturae,2009,119(3):315–319
    Jiménez J á, Alonso-ramirez A, Nicolas C. Two cDNA clones (FsDhn1and FsClo1) up-regulated by ABAare involved in drought responses in Fagus sylvatica L. seeds.[J]. Journal of plant physiology,2008,165(17):1798-1807
    Kim Y G, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavagedomain[J]. PNAS,1996,93(3):1156-1160
    Krens F A, Molendijk L, Wullems G J, et al. In vitro transformation of plant protoplasts with Ti-plasmidDNA[J]. Nature,1982,296:72-74
    Liu X Z, Li H L, Lou R H, et al. Transgenic Pinus armandii plants containing BT obtained via electropora-tion of seed-derived embryos[J]. Scientific Research and Essays,2010,5(22):3443-3446
    Liu Y C, Vidali L. Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrellapatens[J]. Journal of Visualized Experiments,2011,50:1-4
    Liu Y, Yang H, Sakanishi A. Ultrasound: Mechanical gene transfer into plant cells by sonoporation[J].Biotechnology advances,2006,24(1):1-16
    Mayne M B, Coleman J R and Blumwald E. Differential response to drought and abscisic acid of twocDNAs corresponding to genes expressed during drought conditioning in jack pine seedlings[J].1996,13(4):165-176
    McCullen C A, Binns A N. Agrobacterium tumefaciens and plant cell interactions and activities required forinterkingdom macromolecular transfer[J]. The Annual Review of Cell and Developmental Biology,2006,22:101-127
    McKersie B D, Bowley S R. Winter survival of transgenic alfalfa overexpressing superoxide dismutase[J].Plant Physiology,1999,19(3):839-847
    Nehra N S, Becwar M R, Rottmann W H, et a1. Forest biotechnology: innovative methods, emergingopportunities[J]. In Vitro Cell Developmental Biology—Plant,2005,41:701-717
    Ohme-Takagi, Masaru, Hideaki Shishi. Ethylene-inducible DNA binding proteins that interact with anethylene responsive element[J]. The Plant Cell,1995,7:173-182
    Padmanabhan V, Dias D M, Newton R J. Expression analysis of a gene family in loblolly pine (Pinus taedaL.) induced by water deficit stress[J]. Plant Mol Biol,1997,35,801-807
    Parsons TJ, Sinkar VP, Stetder RF, Nester, EW, Gordon, MP. Transformation of Poplar by Agrobacteriumtumefaciens[J]. Nat Biotechnol,1986,4:533-536
    Pérez-Barranco G, Torreblanca R, Padilla M G, et al. Studies on genetic transformation of olive (Oleaeuropaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection;II. Transient transformation via particle bombardment[J]. Plant Cell, Tissue and Organ Culture,2009,97(3):243-251
    Petolino J F, Worden A, Curlee K, et al. Zinc finger nuclease-mediated transgene deletion[J]. Biomedical andLife Sciences,2010,73(6):617-628
    Pi Y, Jiang K J, Cao Y, et al. Allene oxide cyclase from Camptotheca acuminata improves tolerance againstlow temperature and salt stress in tobacco and bacteria[J]. Molecular Biotechnology,2008,41(2):115-122
    Pilate G, Haggman H, Allona I, et a1. Biological characterization of genetically modified trees (GMTs).BMC Proc2011,5, DOI:10.1186/1753-6561-5-S7-O58
    Potrykus I, Saul M W, Petruska J, et al. Direct gene transfer to cells of a graminaceous monocot [J].Molecular and General Genetics,1985,199(2):183-188
    Purkayastha J, Sugla T, Paul A, et al. Efficient in vitro plant regeneration from shoot apices and gene transferby particle bombardment in Jatropha curcas[J]. Biologia Plantarum,2010,54(1):13-20
    Purnhauser L. Stimulation of shoot and root regeneration in wheat, Triticum aestivum callus cultures bycopper[J]. Cereal Res. Commun,1991,19:419-423
    Qin F, Li J, Zhang G Y, et al. Isolation and Structural Analysis of DRE-Binding Transcription Factor fromMaize (Zea mays L.)[J]. Acta Botanica Sinica,2003,45(3):331-339
    Qiu Q S, Wang Z Z. Changes of UHN1expression and subcelluar distributeon in A. delicisoa cells underosmotic stress[J]. Science in China,2002,45(1):1-1
    Rami T. EL-Khatib, Erik P. Hamerl Ynck, et al. Transgenic poplar characterized by ectopic expression of apine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress[J]. TreePhysiology,2004,24:729-736
    Ratinasabapathi B, Mccue K F, Gage D A, et a1. Metablic engineering of glycine bactain synthesie: plantbetaine aldehyde dehydrogenase lacking typical transit peptides are targeted to tobacco chloroplastswhere they confer betaine aldehyde resistance[J]. Planta.1994,193:155-162
    Rémy S, Tesson L, Ménoret S, et al. Zinc-finger nucleases: a powerful tool for genetic engineering ofanimals[J]. Transgenic Research,2010,19(3):363-371
    Richard S, Morency M J, Drevet C, et al. Isolation and characterization of a dehydrin gene from whitespruce induced upon wounding, drought and cold stresses[J]. Plant Mol Biol,2000,43,1-10
    Romero C, Belles J M. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobaccoplants: pleiotropic phenotypes include drought tolerance [J]. Planta,1997,201(3):293-297
    Sakamoto A, Alia M, Murata N. Metabolic engineering of rice leading to biosynthesis of glycine betaine andtolerance to salt and cold[J]. Plant Mol Boil,1998,38:1011-1019
    Santoni V, Gerbeau P, Avot H, et al. The high diversity of aquaporins reveals novel facets of plant membranefunctions[J]. Curr Opin Plant Biol,2000,3(6):476-481
    Sarda X, Tousch D, Ferrare K, et al. Two TIP2like genes encoding aquaporins are expressed in sunflowerguard cells[J]. Plant J,1997,12(5):1103-1111
    Sarma R N, Fish L, Gill B S. Physical characterization of the homologous groups chromosome of wheat interms of rice linkage blocks, and physical mapping of some important genes[J]. Gemone,2000,43:191-198
    Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants[J]. Trends Plant Sci,2002,7:41-48
    Shaohui Yang, Guilan Li, Minggang Li et a1. Transgenic soybean with low phytate content constructed byAgrobacterium transformation and pollen-tube pathway[J]. Euphytica,2011,177(3):375-382
    Shen Y G, He S J, Zhang W K, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-bindingtranscription factor induced by cold, dehydration and ABA tress[J]. Theor Appl Genet,2003,106:923-930
    Sheveleva E, Chmara W. Increased salt and drought tolerance by d-ononitol production in transgenicNicotiana Tabacuml L.[J]. Plant Physiol,1997,115(3):1211-1219
    Shinozaki K, Shinozaki K Y. Molecular responses to dehydration and low temperature: differences and crosstalk between two stress signaling pathways[J]. Curr Opin Plant Biol,2000,3:217-223
    Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress[J]. Curr OpinBiotechnol,1996,7:161-167
    Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses[J]. CurrOpin Plant Biol,2000,5(5):430-436
    Soltis P S, Soltis D E, Smiley C J. An rbcL sequence from a Miocene Taxodium (bald cypress)[J]. PNAS,1992,89(1):449-451
    Song Y Z, Hahn T, Thompson I P, et al. Ultrasound-mediated DNA transfer for bacteria [J]. Nucleic AcidsResearch,2007,35:1-9
    Soo Y K. The role of ABF family bZIP class transcription factors in stress response[J]. PhysiologiaPlantarum,2006,126:519-527
    Sun L, Liu ST, Ren J, et al. Optimization of particle bombardment conditions byglucuronidase (GUS)reporter system in tomato fruit. Afr J Biotechnol,2011,10,675-683
    Sunderlíková V, Salaj J, Kopecky D, et al. Dehydrin genes and their expression in recalcitrant oak (Quercusrobur) embryos. Plant Cell Reports.2009,28(7):1011-1021
    Takashi Hibino. Post-genomics’ research in Eucalyptus in the near future[J]. Plant Biotechnology,2009,26:109-113
    Tang M I, Yu Z L. Bioeffects of low energy ion beam implantation: DNA damage, mutation and genetranster[J]. Plasma Science and Technology,2007,9(4):513-518
    Tang W, Newton R J, Li C, et al. Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1gene is associated with the polyamine biosynthesis[J]. Plant Cell report,2007,26(1):115-124
    Topfer R, Gronnenborn B, Schell J, et al. Uptake and transient expression of chimeric genes in seed-derivedembryos [J]. The Plant Cell,1989,1:133-139
    Townsend J A, Wright D A, Winfrey R J, et al. High-frequency modification of plant genes using engineeredzinc-finger nucleases[J]. Nature,2009,459(7245):442-445
    Trontin J F, Walter C, Klimaszewska K, et a1. Recent progress in genetic transformation of four Pinus spp[J].Transgenic Plant Journal,2007,1(2):314-329
    Tzfira T, Vaidya M, Citovsky V. Involvement of targeted proteolysis in plant genetic transformation byAgrobacterium[J]. Nature,2004,431:87-92
    Uchimiya H, Fushimi T, Hashimoto H, et al. Expression of a foreign gene in callus derived fromDNA-treated protoplasts of rice (Oryza sativa L.)[J]. Molecular and General Genetics,1986,204(2):204-207
    Urnov F D, Rebar E J, Holmes M C, et al. Genome editing with engineered zinc finger nucleases [J]. Nature,2010,11(9):636-646
    Vanesa B. Tognetti, Olivier Van Aken, KrisMorreel, et al. Perturbation of indole-3-butyric acid homeostasisby the udpglucosyltransferase ugt74e2modulates Arabidopsis architecture and water stress tolerance.The Plant Cell,2010,22:2660-2679
    Villemejane J, Mir L M. Physical methods of nucleic acid transfer: general concepts and applications[J].British Journal of Pharmacology,2009,157(2):207-219
    Wang B Q, Zhang Q F, Liu J H, et al. Overexpression of PtADC confers enhanced dehydration and droughttolerance in transgenic tobacco and tomato: effect on Ros elimination[J]. Biochemical and biophysicalresearch communications,2011,413(1):10-16
    Wang H M, Liu H M,Wang W J, et al. Effects of thidiazuron, basal medium and light quality on adventitiousshoot regeneration from in vitro cultured stem of Populus alba×P. berolinensis [J]. Journal of ForestryResearch,2008,19(3):257-259
    Wang J Y, Xia X L, Wang J P, et al. Stress responsive zinc-finger protein gene of Populus euphratica intobacco enhances salt toleranc[J]. Journal of Integrative Plant Biology,2008,50(1):56-61
    Wang S C, Liang D, ShiS G, et al. Isolation and characterization of a novel drought responsive geneencoding a glycine-rich RNA-binding protein in Malus prunifolia (Willd.) Borkh[J]. Plant MolecularBiology Reporter,2011,29(1):125-134
    Wang W X, Tzfira T, Levin, et al. Plant tolerance to water and salt streaa: the expression pattern of waterstress responsive protein(BspA)in transgenic aspen plant. In plant biotechnology and in vitro biologyin the21century Proc. Of the Ivth inter.Cong.Of the intern Assoc.of plant tissue culture andbiotech.Jerusalem, Isreal.561-565.
    Wang Z L, An X M, Li B, et al. Identification and characterization of CBF/DREB1-related genes in Populushopeiensis[J]. Forestry Studies in China,2008,10(3):143-148
    Weber G, Monajembashi S, Greulich K O, et al. Microperforation of plant tissue with a UV laser microbeamand injection of DNA into cells [J]. Naturwissens chaften,1988,75(1):35-36
    Wei Q, Guo Y J, Cao H M, et al. Cloning and characterization of an AtNHX2-like Na+/H+antiporter genefrom Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salttolerance in Arabidopsis thaliana [J]. Plant Cell, Tissue and Organ Culture,2011,105(3):309-316
    Wen X P, Pang X M, Matsuda N, et al. Over-expression of the apple spermidine synthase gene in pearconfers multiple abiotic stress tolerance by altering polyamine titers[J]. Transgenic research.2008,17(2):251-263
    Wendy A H, Mark A S. Barley transformation using biolistic techniques[J]. Methods in Molecular Biology,2009,478(2):125-136
    Whatmore A M, Chudek J A. The effects of osmotic upshock on the extracellular solute pools of Bacillussubtilis [J]. J Gen Miaobiol.1990,136:2527-2535
    Winton L. Tissue Culture Propagation of European Aspen[J]. Forest Science,1971,17(3):348-350
    Wu G Q, Xi J J, Wang Q, et al. The ZxNHX gene encoding tonoplast Na+/H+antiporter from the xerophyteZygophyllum xanthoxylum plays important roles in response to salt and drought[J]. Journal of PlantPhysiology,2011,168(8):758-767
    Xu T T, Bai Z Z, Wang L J, et al. Breeding of d(–)-lactic acid high producing strain by low-energy ionimplantation and preliminary analysis of related metabolism[J]. Applied Biochemistry andBiotechnology,2010,160(2):314-321
    Yevtushenko D P, Misra S. Efficient Agrobacterium-mediated transformation of commercial hybrid poplarPopulus nigra L.×P. maximowiczii A. Henry[J]. Plant Cell Rep,2010,29(3):211-221
    Yoshiba Y, Kiyosue T, Nakashima K, et al. Regulation of levels of proline as an osmolyte in plants underwaterstress[J]. Plant Cell Physiol,1997,38:1059-1102
    Yu Z L, Deng J G, He J J, et al. Mutation breeding by ion implantation[J]. Nuclear instruments and methodsin physics research,1991,59(60):705-708
    Zambryski P, Joos H, Genetello C, et al. Ti plasmid vector for the introduction of DNA into plant cellswithout alteration of their normal regeneration capacity. EMBO J,1983,12,2143-2150
    Zhang H M, Yang H, Rech E L. Transgenic rice plants produced by electroporation-mediated plasmid uptakeinto protoplasts[J]. Plant Cell Reports,1988,7(6):379-384
    Zhang L H, Jia B L, Zhuo R Y, et al. An acyl–acyl carrier protein thioesterase gene isolated from wintersweet(Chimonanthus praecox), CpFATB, enhances drought tolerance in transgenic tobacco (Nicotianatobaccum).Plant Molecular Biology Reporter,2011,DOI:10.1007/s-11105-011-0359-5
    Zhong-xun Luo, Ray Wu. A simple method for the transformation of rice via the pollen-tube pathway[J].Plant Molecular Biology Reporter,1988,6(3):165-174
    白爽.转Lea基因小黑杨花粉植株抗旱、耐盐性分析[D].东北林业大学,2007
    白志英,李存东,刘渊.干旱胁迫下小麦叶片脯氨酸和蛋白质含量变化与染色体的关系[J].植物遗传资源学报,2007,8(3):325-330
    毕毓芳,秦明艳,王婧婧,等.杨树SRK2C基因的克隆及其遗传转化[J].分子植物育种,2009,7(3):513-518
    毕毓芳.杨树SnRK基因克隆及遗传转化研究[D].南京林业大学,2009
    陈洪伟.白杨花粉管通道导入外源胡杨DNA技术研究[D].北京林业大学,2008
    陈金焕,叶楚玉,夏新莉,等.胡杨中两个新DREB类基因的克隆、序列分析及转录激活功能研究[J].北京林业大学学报,2010,32(5):27-33
    陈俊,王宗阳.植物MYB类转录因子研究进展[J].植物生理与分子生物学学报,2002,28(2):81-88
    陈少瑜,陈芳,王寅冰,等.针叶树种遗传转化研究进展与应用[J].世界林业研究,2006,19(2):12-17
    程华,李琳玲,王燕,等.银杏过氧化物酶基因POD1的克隆及表达分析[J].华北农学报,2010,25(6):44-51
    程华,李琳玲,许锋,等.银杏过氧化氢酶基因CAT1的克隆及表达分析[J].林业科学研究,2010,23(4):493-499
    程华,李琳玲,许锋,等.银杏锰型超氧化物歧化酶GbMnSOD基因的克隆与表达[J].园艺学报,2009,36(9):1283-1290
    丛郁,渠慎春,乔玉山.超声波直接转导外源基因转化八棱海棠的技术研究[J].南京农业大学学报,2007,30(3):42-46
    戴高兴,邓国富,周萌.干旱胁迫对水稻生理生化的影响[J].广西农业科学,2006,37(1):4-6
    戴晓,苟春宝,王勇,等.麻疯树干旱诱导差异表达基因片段的分离与功能分析[J].四川大学学报(自然科学版),2010,47(5):1190-1194
    邓仲香.银杏、油菜和荠菜脱水素基因的克隆和研究[D].复旦大学,2006
    董玉芝,杨传平,张道远,等.白花柽柳质膜水孔蛋白基因克隆及序列分析[J].植物研究,2006,26(4):475-479
    杜金友,陈晓阳,张桂荣等.转果聚糖蔗糖转移酶基因(SacB)美丽胡枝子的获得[J].生物工程学报,2006,22(6):940-944
    杜鹃,赵峰,曹越平.超声波辅助农杆菌介导转化大豆gus基因在不同外植体中的瞬时表达[J].上海交通大学学报(农业科学版),2010,28(5):439-448
    段有厚,邹剑秋,卢峰.高粱抗旱机理及保苗技术[J].杂粮作物,2009,29(1):25-27
    冯方剑.棉花不同时期抗旱机制的研究及抗旱相关性状遗传分析[D].新疆农业大学,2011
    高彩球,李艳霞,刘桂丰,等.翻译起始因子(eIF1A)基因的获得及抗旱性分析[J].东北林业大学学报.2007,35(8):6-9
    高静,李艳波,柯希望. PEG介导的苹果腐烂病菌原生质体转化[J].微生物学报,2011,51(9):1194-1199
    龚洪恩,吕芳德.离子束生物技术在植物育种中的应用[J].经济林研究,2008,26(1):113-116
    韩素英,张守攻,汪泉,等.小叶杨Δ1-吡咯琳-5-羧酸合成酶(P5CS)基因克隆及在杂种落叶松中的转化[J].生物技术通报,2006,3:88-92
    侯立群,李秀芬,崔刚,等.几种遗传转化技术在核桃转基因育种中的应用[J].山东林业科技,2004,1:8-9
    胡赞民,胡军,霍春月,等.一种柠条谷胱甘肽S-转移酶基因-CkGST及其应用[P].中国专利:200510-004244.8,2007-10-10
    胡赞民,胡军,苏晓华,等.一种柠条转录因子CkAREB及其在抗逆植物培育中的应用[P].中国专利:200610011987.2,2007-11-28
    黄文峰,徐远峰,黄惜,等.橡胶树(HbDHN1)基因克隆及表达分析[J].热带作物学报,2009,30(6):798-803
    黄泽军,黄荣峰,黄大昉. ERF转录因子及其在植物防卫反应中的作用[J].植物病理学报,2004,34:193-198
    姬生栋,陈鹏,王加传,等.离子束介导玉米DNA的水稻变异后代AFLP分析[J].核农学报,2009,23(2):197-202
    纪丽丽.杨树基因枪多基因共转化研究[D].中国林业科学研究院.2004
    贾治邦,张建龙,汪绚,等.中国森林资源报告——第七次全国森林资源清查[R].北京:国家林业局,2011
    李琳玲,程华,许锋,等.银杏叶绿体铜锌超氧化物歧化酶基因GbCuZnSOD的克隆与表达[J].林业科学,2010,46(6):35-42
    李玲玲,江昌俊,房婉萍,等.花粉管通道法对茶树进行dsTCS基因转化的初步研究[J].安徽农业大学学报,2007,34(1):20-22
    李晓东,白晨,郭九峰,等.强旱生植物沙冬青AmERF基因的克隆及生物信息学研究[J].华北农学报,2010,25(5):76-79
    李义良,苏晓华,张冰玉,等.外源SacB基因在银腺杂种杨基因组中的表达及抗旱性分析[J].北京林业大学学报.2007,29(2):1-6
    李永健,杨丽涛,李杨瑞,等.不同时期喷施乙烯利对甘蔗生长、主要农艺性状及抗旱性的影响[J].植物学报,2002,9(1):12-18
    刘海涛,张川红,马淼,等.中国树木转基因研究进展及其生物安全管理现状[J].中国农学通报,2009,25(5):80-89
    刘焕臻,杨传平,姜静,等.转柽柳晚期胚胎富集蛋白基因烟草T1代的耐盐性评价[J].2006,17(6):898-900
    刘欣,李云.转录因子与植物抗逆性研究进展[J].中国农学通报,2006,22(4):61-65
    卢萍,卢青. LEA基因及Lea蛋白的研究进展[J].内蒙古师大学报自然科学(汉文)版,1999,28(2):138-142
    马凤翔,陈晓阳.低能离子束物理诱变技术在林木和园艺花卉育种中的应用[J].世界林业研究,2007a,20(1):38-42
    马凤翔,陈晓阳.激光技术在林木和园艺植物育种及基因工程中的应用[J].物理,2007b,36(8):637-642
    马洪双,夏新莉,尹伟伦.胡杨SCL7基因及其启动子片段的克隆与分析[J].北京林业大学学报,2011,33(1):1-10
    秦红霞,贾志平,张海超,等.银新杨中与DRE元件结合的转录因子的克隆及鉴定分析[J].生物工程学报,2005,21(6):906-910
    秦红霞,刘敬梅,宋玉霞.转AtDREB1A的银新杨APX和CAT活性检测[J].江西农业学报,2007,19(10):89-91
    沈义国,杜保兴,张劲松,等.山菠菜胆碱单氧化酶基因(CMO)的克隆与分析[J].生物工程学报.2001,1:1-5
    石磊,甘晓燕,陈虞超,等.梭梭甜菜碱醛脱氢酶基因克隆及序列分析[J].西北植物学报,2010,30(2):223-228
    石磊,甘晓燕,夏兴雷,等.梭梭CMO基因的克隆与植物表达载体的构建[J].西北植物学报,2010,30(8):1514-1519
    史胜青,张守攻,肖文发,等.梭梭小G蛋白基因HaRAN1克隆与表达分析[J].西北植物学报,2009,29(10):1939-1945
    苏晓华,张冰玉,黄烈健,等.转基因林木研究进展[J].林业科学研究,2003,16(1):95-103
    苏晓华,张冰玉,黄秦军,等.杨树基因工程育种[M].北京:科学出版社.2009
    唐先兵,赵恢武,林忠平.植物耐旱基因工程研究进展[J].首都师范大学学报(自然科学版),2003,23(3):47-51
    万春雁.桃胚发育、再生及花粉管通道法转基因的初步研究[D].西北农林科技大学,2009
    王丙峰,杨传平,王玉成,等.柽柳MnSOD基因的克隆及功能验证[J].分子植物育种,2007,5(5):709-714
    王超,杨传平,王玉成.白桦抗坏血酸过氧化物酶(APX)基因克隆及表达分析[J].东北林业大学学报,2009,37(3):79-88
    王风华,刘俊,童春义,等.电击法磁性纳米颗粒作为水稻转基因载体的研究[J].分析化学,2010,38(5):617-621
    王建革,苏晓华,纪丽丽,等.基因枪转多基因库安托杨的获得[J].科学通报,2006,51(23):2755-2760
    王兰岚,周奕华,宋桂英,等.一种将外源基因导入植物的新方法:激光微束穿刺法[J].激光生物学,1994,3(4):562-563
    王雷,周博如,吴丽丽,等.小黑杨环锌指蛋白基因的克隆与表达分析[J].植物生理学通讯,2009,45(12):1160-1166
    王美珍,王学敏,王赞,等.柠条GDP-甘露糖-3′,5′-异构酶基因的克隆、序列分析及其植物表达载体的构建[J].中国草地科学,2009,31(5):75-82
    王少峡,王振英,彭永康. DREB转录因子及其在植物抗逆中的作用.植物生理学通讯[J],2004,40(1):7-13
    王玉成,杨传平,刘桂丰,等.紫杆柽柳cDNA文库构建与硫氧还蛋白基因的克隆[J].分子植物育种,2004,2(5):667-673
    王云霄,张颖,江璐玎,等.麻疯树水通道蛋白新基因JcPIP干旱胁迫下的功能分析[J].热带亚热带植物学报,2008,16(4):289-295
    魏军亚,刘德兵,陈业渊,等.花粉管通道法介导PRSV-CP基因dsRNA转化番木瓜[J].西北植物学报,2008,28(11):2159-2163
    吴斌.霸王抗旱性的分子机理及相关基因克隆研究[D].中国林业科学研究院,2006
    武丽娟.水稻和八棱海棠中ERF类转录因子的克隆及功能研究[D].南京农业大学,2007
    席杰军,伍国强,包爱科,等.多浆旱生植物霸王液泡膜H+-PPase基因片段的克隆及序列分析[J].草业学报,2011,20(1):119-124
    徐纬英主编.杨树[M].哈尔滨:黑龙江人民出版社.1988
    许宁,赵南明,章力建,等.超声波介导的遗传转化[J].生物物理学报,1991,6(2):281-282
    闫新甫.转基因植物.北京:科学出版社.2003.81-106.
    杨传平,姜静,田梗,等.柽柳翻译起始因子(eIF-5A)基因的克隆及原核表达[J].植物生理学通讯,2005,41(4):433-438
    杨春霞,李火根,程强,等.南林895杨抗旱耐盐基因DREB1C的转化[J].林业科学,2009,45(2):17-21
    杨平,胡军,王玉成,等.紫杆柽柳谷胱甘肽硫转移酶基因的克隆及功能鉴定[J].农业生物技术学报,2007,15(1):76-80
    杨杞,白肖飞,高阳,等.沙冬青CBF/DREB1转录因子cDNA的克隆及序列分析[J].基因组学与应用生物学,2009,28(6):1043-1048
    叶霞,丛郁,陶建敏.超声波介导铁蛋白基因转化苹果的研究[J].西北植物学报,2006,26(10):2001-2005
    叶兴国,陈明,杜丽璞,徐惠君.小麦转基因方法及其评述[J].遗传,2011,33(5):422-430
    于丽丽,高彩球,王玉成,等.柽柳甘油醛-3-磷酸脱氢酶基因的克隆与表达分析[J].东北林业大学学报.2010,38(7):105-108
    于学宁,刘欣玲,董秀春,等.刺槐Na+/H+逆向转运蛋白RpNHX1基因的分离和生物信息学分析[J].分子植物育种,2007,5(6):775-784
    曾幼玲,张海波,兰海燕,等.盐桦BhNHX的克隆及其与CaM在胁迫下的协同表达[J].西北植物学报,2008,28(12):2408-2415
    张瑞萍.脱水素基因逆境表达模式与白桦遗传转化研究[D].东北林业大学,2009
    张守攻,韩素英,汪泉,等.小叶杨胆碱单氧化物酶(CMO)基因的克隆与转化杂种落叶松及表达[J].分子植物育种,2006,4(4):483-488
    张文元. sos1和sos2基因在杨树上的遗传转化及其功能的初步验证[D].中国林业科学研究院,2006
    张祥胜,夏帆,熊涛.低能离子束介导枸杞基因转化甘草技术参数的初步研究[J].草业科学,2007,24(8):55-58
    赵杏,郭琦,陈清清,等.杨树热激转录因子HsfA1d的克隆、表达及单核苷酸多态性分析[J].林业科学,2011,47(7):82-90
    赵咏梅,杨建雄,俞嘉宁.第3组LEA蛋白及其基因研究进展[J].西安文理学院学报,2006,9(4):27-30
    赵宇,蒋明义,张阿英,等.水分胁迫诱导玉米Zmrboh基因表达及ABA在其中的作用[J].南京农业大学学报,2008,31(3):28-30
    郑琼.欧美杨组培体系的建立和Trx基因的遗传转化[D].东北林业大学,2007
    钟宏启,孔繁瑞,孙威,等.通过花粉管途径建立泡桐转化系统的初探[J].遗传,1994,16(6):16-19
    胡阳,江莎,李洁,等.光强和光质对植物生长发育的影响[J].内蒙古农业大学学报:自然科学版,2009,30(4):296-303
    杨跃生,筒玉瑜,郑迎.铜在水稻愈伤组织培养再生植株中的促进作用[J].中国水稻科学,1999,13(2):95-98
    李会勇,尹钧,刘雷. Cu2+浓度对啤酒大麦幼胚组织培养与植株再生的影响[J].麦类作物学报,2003,23(2):27-29
    王树昌,于晓玲,赵平娟. Cu离子对巴西橡胶树组织培养的影响[J].热带农业工程,2010,34(6):28-30
    别晓敏,佘茂云,杜丽璞,等.植物多基因转化研究进展[J].中国农业科技导报,2010,12(6):18-23
    杨琳,付凤玲,李晚忱.农杆菌介导转基因植物T-DNA的整合方式[J].遗传,2011,33(12):1327-1334
    孟繁军.转基因杨的检测、整合机制与抗虫性研究[D].东北林业大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700