磷脂酶Dα1基因调控植物抗旱性的作用途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水资源严重短缺,干旱灾害日益严重,已经成为制约农业和社会发展的重要因素。发展节水农业,提高有限水资源的利用效率,是缓解水资源危机,实现农业可持续发展的必由之路。加强作物抗旱与高效用水机理的研究,发掘植物抗旱节水基因资源,增强作物自身的水分利用效率和抗旱性潜力,是生物性节水技术开发的核心目标。磷脂酶D(Phospholipase D,PLD),是植物中存在的一类重要的跨膜信号转导酶类,参与植株的生物与非生物逆境胁迫反应。
     本研究利用农杆菌介导法将PLD1基因的超表达载体和RNA干涉载体转化入84k杨(银白杨×腺毛杨),通过对转基因株系进行PCR检测及Southern blot分析,证明目的基因片段已经整合到84K杨的染色体中,成功获得PLD1基因超表达(OE)植株以及PLD1基因RNA干涉(RNAi)植株。
     将OE型植株、RNAi型植株及野生型(WT)植株三种材料在温室中利用盆栽实验,进行水分胁迫处理和表型抗旱性鉴定。结果发现,与WT相比,OE型植株抗旱性较提高,RNAi型植株抗旱性则下降,表明PLD1基因对植物的抗旱性有正调节作用。
     在水分胁迫处理后对三种基因型植株的渗透调节能力、气孔调节特性、细胞膜脂质组和信号离子流速进行测定,分析PLD1基因调控植物抗旱性的作用途径,主要结果如下:
     (1)水分胁迫处理后,三种基因型之间饱和渗透势与渗透调节能力没有显著差异,表明PLD1基因不是通过参与植物的渗透调节途径提高植株的抗旱性。
     (2)水分胁迫条件下,与WT相比,OE型植株的气孔导度下降幅度较大,蒸腾失水速率减小,RNAi型植株气孔导度下降幅度较小,蒸腾失水速率高。这一结果表明,PLD1基因通过参与水分胁迫条件下的气孔调节作用影响植物的抗旱性。
     (3)利用非损伤微测技术检测三种基因型植株根部分生区域Ca~(2+)、H~+、K~+三种信号离子的流速,发现水分胁迫条件下,OE型植株的Ca~(2+)流速明显高于RNAi型植株,同时OE型植株H~+的内流流速也大于RNAi型植株,进一步证明PLD1基因参与干旱信号的转导途径。通过本研究,可以初步推定植物中存在这一信号转导途径:胞外水分胁迫信号—跨膜信号转导酶PLD1—Ca~(2+)—气孔调节—调控抗旱性。抑制PLD1的表达,使其参与的信号转导途径部分受阻,气孔调节受到抑制,导致蒸腾失水量大,植株抗旱性减弱。
     (4)在水分胁迫条件下三种基因型细胞膜脂质组学分析发现,PLD1酶在活体条件下优先水解PC,导致OE型植株中PC含量较RNAi型植株显著降低,PA含量则明显提高,这种脂质组成变化不利于细胞膜的稳定性。但是,从植株生长量、净光合速率、气孔导度、蒸腾速率的变化来看,超表达PLD1增强了植株的抗旱性。PLD酶兼具脂质降解和信号转导双重功能。这一结果表明,在水分胁迫条件下,PLD1酶的信号转导功能发挥主导作用。
With aggravating water resource crisis, drought has become an important factor of restrictingagricultural and social development in China. Developing water-saving agriculture to improve water useefficiency (WUE) is the only way to achieve sustainable agricultural development. Enhancing WUE anddrought tolerance of crop cultivars by exploring gene recourses on the basis of mechanism studies onhigh WUE and drought tolerance of plants is the main goal of biological water saving. Phospholipase D(PLD), found widely in diverse plants, is a class of important transmembrane signaling enzymes, andhave been reported to be involed in many biotic and abiotic stress responses.
     In this research, Agrobacterium tumefaciens-mediated method was adopted to respectivelytransform the overexpression vector and RNAi vector of PLD1gene into Poplar84K(P.alba×P.glandulos). The result of PCR test and southern blot analysis of transgenic plants showedthat the target gene fragment had been integrated into the chromosome of Poplar84K, and obtain thesurvival super-expressed plants and RNAi plants with PLD1gene.
     The three genotypes of OE, RNAi, and wild type (WT) were treated with drought stress in thegreenhouse to evaluate the droght resistance phenotypically. The results showed that, compared with WT,drought resistance was increased in OE type transgenic plants, while decreased in RNAi type transgenicplants, indicating that PLD1gene positively regulates drought resistance of palnts.
     To clarify the function pathways of PLD1gene in regulating plant drought resitance, osmoticadjustment ability, stomatal regulation trait, the signal ion flux, and the membrane lipidomics weremeasured and analyzed after the plants were treated with water stress. The main results are as follows.
     (1) No significant differences in saturated osmotic potential and osmotic adjustment ability wereshown among the three genotypes after water stress treatment, indicating that PLD1gene is notinvolved in the osmoregulation ways to improve plant drought resistance.
     (2) Under water stress, compared with WT plants, OE type transgenic plants shew increase in thestomatal conductance, while RNAi type transgenic plants shew decrease in stomatal conductance.Stomatal conductance reduction may lead to a decrease in transpiration rate under water stress, whichcontrol effectively water loss through transpiration. This suggests that PLD1gene regulate droghtresistance of plants through the pathway of stomatal regulation.
     (3) Ca~(2+), H~+, and K~+fluxes in roots of the three genotype after water stress treatment weresimultaneneously measured by using the Non-invasive Micro-test Technique. The results show that theefflux of Ca~(2+)and influxes of H~+in OE type transgenic plants were promoted, in contrast, that in RNAitype transgenic plants were inhibited. This further supports that PLD1gene is involved in droughtsignal transduction pathways. Through this study, one signal transduction pathway in plant may bespeculated as: extracellular water stress signal-transmembrane signal transduction enzymePLD1-Ca~(2+)-stomatal regulation-Regulation drought resistance. Based on this, inhibition of PLD1expression blocked the signal transduction pathway to some extent, then the stomatal regulation was inhibited, which resulted in large amount of water loss through transpiration and decrease in droughtresistance of plants.
     (4) Lipidomic analysis of the cell membrane in two transfer genotypes under water stressconditions found that PLD1enzyme selectively hydrolyze PC in vivo, leading to a lower level of PCand a higher level of PA in OE type transgenic plant than that in RNAi type transgenic plants. Suchvariation in lipid composition can not stabilize cell membrane under stress. However, results of plantgrowth, net photosynthetic rate, stomatal conductance, transpiration rate indicated that overexpression ofPLD1enhanced the drought resistance of plants. PLD enzymes play both lipid degradation role andsignal transduction role in living organism. This result imlies that, under water stress conditions, thesignal transduction role PLD1enzymes plays contributed dominantly.
引文
1陈尚谟.旱区农田水分利用效率探讨[J].干旱地区研究,1995,13(1):14-19.
    2陈少裕.膜脂过氧化与植物逆境胁迫[J].植物通报,1989,6(4):211-217.
    3陈兆波.生物节水研究进展及发展方向[J].中国农业科学,2007,40(7):1456-1462.
    4陈助锋,承载力.从静态到动态的转变[J].中国人口、资源与环境,2003,(1):13-16.
    5崔德才,温孚江.磷脂酶D(PLD)在植物信号转导中的作用[J].山东农业学报(自然科学版),2000,31(2):115-119.
    6杜金友,陈晓阳,李伟,高琼.林木抗旱的渗透调节及其基因工程研究进展.西北植物学报,2004,24(6):1154-1159.
    7房丹.南林895杨抗虫转基因研究[硕士学位论文].南京:南京林业大学,2005.
    8樊军锋,韩一凡,李玲等.MtlD/gutD双价基因转化美洲黑杨×青杨的研究.林业科学,2002,38(6):30-35.
    9樊军锋,李玲,韩一凡.84K杨叶片外植体再生系统的建立[J].西北林学院学报,2002,17(2):333-336.
    10费贯清.盐生植物抗盐适应特征的研究[硕士学位论文].兰州:兰州大学,2005.
    11范海延,崔娜,邵美妮,许玉凤.植物应答逆境胁迫的蛋白质组学研究进展.生物技术通报,2009(10):136-142.
    12高峰,许建中.我国农业水资源状况与水价理论分析[J].灌溉排水学报,2003,22(6):27-32.
    13高智谋,曹君,潘月敏,吴向辉,章战华.哈茨木霉Th-1对棉花枯萎病菌和黄萎病菌的拮抗机制研究[J].棉花学报,2007,19(3):168-172.
    14郭北海.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达[J].植物学报,2000,42(6):279-283.
    15郭秀林.2001.ABA与Ca2+/CaM信使系统关系[J].西北植物学报,21(6):1283-1287.
    16韩琳娜,周春江等.转BG2基因黑杨植株的获得[J].山东农业大学学报(自然科学版),2004,35(3):375-378.
    17何钢,周再魁,袁靖,等.用农杆菌Ri诱导金银花发根培养的研究[J].中南林业科技大学学报,2008,28(5):77-80.
    18胡张华,吴关庭.农杆菌介导的水稻转化及bar基因稳定遗传[J].植物生理与分子生物学学报,2005,31:126-134.
    19黄国勤.我国水资源面临的问题与对策[J].中国生态农业学报,2001,9(4):123-125.
    20黄亚丽,蒋细良,田云龙等,根癌农杆菌介导的哈茨木霉菌遗传转化的研究[J].生物工程杂志,2008,28(3):38-43.
    21季琨,胡瑞法,张林秀等.中国农业科技投资经济[M].北京:中国农业出版社.2000.
    22姜文来.应对我国水资源问题适应性战略研究[J].科学对社会的影响,2010(2):24-29.
    23靳琳,张灿.我国水资源面临的问题及保护对策口[J].生态经济,1996,(1):25-29.
    24景蕊莲.作物抗旱节水研究进展[J].中国农业科技导报,2007,9(1):1-5.
    25柯世省.光合作用研究历程中的重大事件[J].生物学通报,2003,38(8):59-60
    26雷川华,吴运卿.我国水资源现状、问题与对策研究[J].节水灌溉,2007(4):41-43.
    27李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,18(1):37-44.
    28李勇,卢萍,韩冰.植物的磷脂酶D.内蒙古林业科技[J],2009,35(1):46-48.
    29李云霞,张建生,吴永华,等.5种景天科地被植物抗旱性比较研究[J].干旱区资源与环境,2010,24(2):183-186.
    30刘欣,李云.转录因子与植物抗逆性研究进展.中国农学通报,2006,22(4):61-65
    31刘斌,李红双,王其会等.反义磷脂酶Dγ基因转化毛白杨的研究[J].遗传,2002,24(1):40-44.
    32刘涛.我国水资源面临的形势与可持续利用对策研究[J].生态经济,2004, S1:49-51.
    33刘文.我国农业水资源分析[J].生态经济,2007,1:63-66.
    34逯明辉,娄群峰,陈劲枫.黄瓜的冷害及耐冷性[J].植物学通报,2004,21:578-586.
    35梅旭荣,罗远培.缺水与我国粮食生产:问题、潜力与对策[J].科技导报,2000,6:31-34.
    36邱德有,黄璐琦.代谢组学研究—功能基因组学研究的重要组成部分[J].分子植物育种,2004,2(2):165-177.
    37邱全胜,李林,梁厚果等.水分胁迫对小麦根细胞质膜氧化还原系统的影响[J].植物生理学报,1994,20:145-151.
    38秦欣.厚荚相思组织培养与农杆菌介导遗传转化研究[硕士毕业论文].广西:广西大学,2008.
    39山仑.加速发展我国节水农业[J].求是杂志,2005,22:42-43.
    40山仑.旱地农业技术发展趋向[J].中国农业科学,2002,35(7):848-855.
    41司建华,常宗强,苏永红,等.胡杨叶片气孔导度特征及其对环境因子的响应[J].西北植物学报,2008,28(1):0125-0130.
    42苏金,朱汝财.透胁迫调节的转基因表达对植物抗旱耐盐性的影响[J].植物学报,18(2):129-136.
    43隋聚艳,蔡小超.浅谈我国水资源利用的现状及对策[J].科技信息,2010(1):389-367.
    44万小荣,李玲.发根农杆菌Ri质粒rolB基因研究进展[J].亚热带植物科学,2001,30(3):63-68.
    45王国则,茅林春,潘炘.植物磷脂酶D对环境胁迫的响应和传导信号的功能[J].西北农林科技大学学报,2005,33(2),147-154.
    46王国泽,贾晋,莎娜.植物磷脂酶D的分子生物学研究进展[J].安徽农业科学,2009,37(21):9885-9887.
    47王国泽.磷脂酶D感应和接受低温胁迫的功能及在黄瓜冷害中的作用[博士学位论文].浙江:浙江大学,2006.
    48王海燕,孙磊.磷脂酶D调控植物抗逆性的机理研究进展[J].中国农学通报,2011,27(21):13-17.
    49王启明,徐心诚,吴诗光,等.干旱胁迫对不同品种大豆开花期生理生化特性的影响[J].作物杂志,2005,3:16-18.
    50王瑞霞,高庆荣,崔德才,化斌. PLD基因的基本功能及在植物中的利用研究现状[J].西北植物学报,2004,24(8):1537-1542.
    51王涛,梅旭荣,钟秀丽等.磷脂酶D参与植物的低温驯化过程[J].植物学报,2010,45,541-547.
    52王涛,钟秀丽,梅旭荣,张燕卿.基于电喷雾电离串联质谱技术的植物脂质组学研究进展[J].生物化学与生物物理进展,2010,37(10):1074-1081.
    53王玮,张枫,李德全.外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响[J].作物学报,2002,28(1):121-126.
    54王跃华,孙雁霞,吴洁等.发根农杆菌Ri质粒T-DNA对杜仲的遗传转化研究[J].西南农业学报,2008,21(1):134-137.
    55徐平丽,单雷,柳展基等.农杆菌介导抗虫CpTI基因的花生遗传转化及转基因植株的再生[J].中国油料作物学报,2003,25(2):5-8.
    56闫旭宇,李玉中,李玲.植物中的磷脂酶D信号转导[J].植物生理学通讯,2006,42(6):1183-1189.
    57杨传平,刘桂丰,梁宏伟.耐盐基因Bet-A转化小黑杨的研究[J].林业科学,200l,37(6):34-38.
    58杨鹏辉,李贵全,郭丽等.干旱胁迫对不同抗旱大豆品种花荚期质膜透性的影响[J].干旱地区农业研究,2003,21(3):127-130.
    59袁琳,克热木·伊力,张利权. NaCI胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报,2005,29:985-991.
    60张冰玉,苏晓华等.转抗鞘翅目害虫基因银腺杨的获得及其抗虫性的初步研究.北京林业大学学报,2006,38(2):102-105.
    61张充,蒋继志,廖祥儒.植物中的磷脂酶D[J].植物生理学通,2005,41(5):691-696.
    62张继澍.植物生理学[M].北京:高等教育出版社,2006,445.
    63张立军,樊金娟,朊燕晔,关义新.聚乙二醇在植物渗透胁迫生理研究中的应用[J].植物生理学通,讯,2004,40(3):361-365.
    64张林刚,邓西平.小麦抗旱性生理生化研究进展[J].干旱地区农业研究,2000,18(3):87-92.
    65张媛华, G蛋白、PTKs和PLC/PLD通过调节保卫细胞H2O2、NO水平介导光/暗调控的气孔运动[博士学位论文].西安:陕西师范大学,2010.
    66张正斌,徐萍,董宝娣,等.水分利用效率-未来农业研究的关键问题[J].世界科技研究与发展,2005,27(1):52-61.
    67赵黎芳,张金政,张启翔,石雷,鲁韧强.水分胁迫下扶芳藤幼苗保护酶活性和渗透调节物
    68郑风荣,李德全.磷脂酶D(PLD)基因的结构、表达及其表达产物在信号转导中的作用[J].植物学报,2002,19(2):156-163.
    69钟秀丽,崔德才,李玉中.磷脂酶D的细胞信号转导作用.植物生理与分子生物学学报[J],2005,31(5):451-460.
    70朱学艺,张承烈.植物响应水分胁迫的主要功能蛋白[J].西北植物学报,2003,23(3):503-508.
    71诸葛强,王婕琛,陈英等.豇豆胰蛋是酶抑制泰J(CpTI)抗虫转基因新疆杨的获得[J].分子植物育种,2003, l(4):491-496.
    72邹维华.反义磷脂酶Dγ基因与几丁质酶基因转化杨树的研究[硕士学位论文].泰安:山东农业大学,2004.
    73Anyia A O, Herzog H. Water use efficiency, leaf area and leaf gas exchange of cowpeas under midseason drought [J]. European Journal of Agronomy,2004,20:327-339.
    74Austin-Brown S, Chapman KD (2002). Inhibition of phospholipase D by N-acylethanolamines [J]. Plant Physiol,129: l892-l898.
    75Bacon M A. Water Use Efficiency in Plant Biology [M]. New York: CRC Press,2004.
    76Bota J, Flexas J, Medrano H. Genetic variability of photosynthesis and water use in Balearic grapevine cultivar [J]. Annals of Applied Biology,2001,138:353-361.
    77Brügger B, Erben G, Wieland GRFT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry [J]. J Cell Biol.,1997,94:2339–2344.
    78Cohen I, Knopf J A, Irihimovitch V, et al. A proposed mechanism for the inhibitory effects of oxidative stress on rubisco assembly and its subunit expression [J]. plant phycology,2005,137:376-387.
    79Dai A G, Treberth K E, Qian T T. A global dataset of palmer drought severity index for1870-2002: relationship with soil moisture and effects of surface warming [J]. American Meteorological Society,2004,5:1117-1130.
    80Devaiah S P, PanX Q, Hong Y Y, et al. Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis [J]. Plant J.,2007,50:950-957.
    81Hanahan D J, Chaikoff I L. A new phosphorus-containing lipids of the carrot [J]. J. Biol.Chem.,1947,168:233-240.20312-20317.
    82Han XL, Gross RW. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry [J]. Anal Biochem,2002,295:88–100.
    83Jackson R B, Sperry J S, Dawson T E. Root water uptake and transport: using physiological processes in global predictions [J]. Trends in plant Science,2000(5):482-489.
    84Jenkins GH, Fisette PL, Anderson RA (1994). Type I phosphatidylinositol4-phosphate5-kinase isoforms are specificially stimulated by phosphatidic acid [J]. J Biol Chem,269:11547-11554.
    85Katagiri T, Takahashi S, Shinozaki K. Involvement of a novel Arabidopsis phospholipaseD, AtPLD, in dehydration-inducible accumulation of phosphatidic acid in stress signaling[J]. Plant J,2001,26:595-605.
    86LeeS, SuhS, KImS, CrainRC, KwakJM, NamHG, LeeY. Systemic elevation of phosphatidicacid and lysophos-pholipid levels in wounded plants [J]. Plant J,1997,12:547-556
    87Lemmon MA, Ferguson KM. Signal-dependent membrane targeting by pleckstrin homology(PH) domains [J]. Biochem J.2000,350:1-18.
    88Levitt J. Response of plants to environmental stresses water, radiation, salt and other stresses [M]. New York: Academic Press,1980:325-358.
    89Li W, Li M, Zhang W, Welti R, Wang X.The plasma membrane-bound phospholipase Ddelta enhances freezing tolerance in Arabidopsis thaliana [J]. Nat Biotechnol.2004,22(4):427-433.
    90Li Y, Han B, Li WQ. Suppression of Phospholipase D Enhances the Membrane DamageInduced by UV-B Irradiation [J]. Plant Diversity and Resources,2011,33(3),28-34.
    91Meijer. HJG, Arisz SA, Himbergen JAJ, Musgrave A, MunnikT(2001). Hyperosmotic stressrapidly generates lysophosphotidic acid in Chlamydomonas [J]. Plant J,25:541-548.
    92Mishra G, Zhang W, Deng F, Zhao J, Wang X. A bifurcating pathway directs abscisic acideffects on stomatal closure and opening in Arabidopsis [J]. Science.2006Apr14;312(5771):264-266.
    93Munnik T, Meijer HJ, ter Riet B, Hirt H, Frank W, Bartels D, Grave A (2000). Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate [J]. Plant J,22:147-l54.
    94Pappan K, Austin-Brown S, Chapman K D, et a1. Substrate selectivities and lipid modulation of phospholipase D, β and γ from plants[J] Arch Biochem Biophys,1998,353:131-140.
    95Pappan K, Qin W, Dyer J H, et a1. Molecular cloning and functional analysis of polyphospho-Inositide-dependent phospholipase D, PLDβ from Arabidopsis[J]. Biol Chem,1997,272:7055-7061.
    96Pappan K, Wang X. Molecular and biochemical properties and physiological roles of plantphospholipase D [J]. Biochem Biophysical Acta,1999,1439(2):151-166.
    97Pappan K, Zheng S, Wang X. Identification and characterization of a novel phospholipaseD that requires polyphosphoinositide and submicromolar calcium for activity in Arabidopsis[J]. Biol Chem,1997,272:7048-7054.
    98Park J, Gu Y, Lee Y, Yang Z, Lee Y. Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation [J]. Plant Physiol.2004Jan;134(1):129-36.
    99Qin C, Wang X M. The Arabidopsis phospholipase D family: characterization of a Ca2+independent and phosphatidylcholine selective PLDδ1with distinct regulatory domains [J]. PlantPhysiol,2002,128:1057-1068.
    100Qin W, Pappan K, Wang X. Molecular heterogeneity of phospholipase D (PLD): cloning ofPLD γ and regulation of plant, β, and γ by polyphosphoinositides and calcium [J]. J Biol Chem,1997,272:28267-28273.
    101Ritchie S, Gilroy S(2000). Abscisic acid stimulation of phospholipase D in the barley aleurone is G-protein-mediated and localized to the plasma membrane [J]. Plant P siol,124:693-702.
    102Ryu SB, Karlsson BH, Ozgen M, Palta JP(1997). Inhibition of phospholipase D by lysophosphatidylethanolam ine, a lipid-derived senescence retardant [J]. Proc Natl Acad Sci USA.94:12717-l272l.
    103Ryu SB, Wang X(1996). Activation of phospholipase D and the possible mechanism of activation in wound-induced lipid hydrolysis in caster bean leaves [J]. Biochim Biophys Acta,1303:243-250.
    104Sang YM, Cui DC, Wang XM (2001b). Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis [J]. Plant Physio1.126: l449-1458.
    105Sang YM, Zheng SQ, Li WQ, Huang BR, Wang XM (2001a). Regulation of plant water loss by manipulating the expression of phospholipase D [J]. Plant J,28(2):135-144.
    106Sivamani E, Bahicldin A, Wraith J M, et al. Improved biomass producitivity and water useefficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA Y1gene [J]. Plant Science,2000,156:227-233.
    107van der Luit AH, Piatti P, van Doom A, M usgrave A, Felix G, Boiler T, Munnik T(2000). Elicitation of suspension cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate [J]. Plant Physiol,123: l507-l5l6.
    108Voloudakis A E, Kosmas S A, Tsakas S, et al. Expression of selected drought related genes and physiological responses of greek cotton varieties [J]. Functional Plant Biology,2002,29:1237-1245.
    109Wang C, Wang X. A novel phospholipase D of Arabidopsis that is activated by oleic acidand associated with the plasma membrane [J]. Plant Physiol,2001,127:1102-1112.
    110Wang X M. The role of phosphlipase D in signal cascades [J]. PlantPhysiology,1999,120:645-651.
    111Wang X(2005). Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses [J]. Plant Physiol.2005Oct;139(2):566-73.
    112Wang X, Xu L, et al. Cloning and phosphadity lcholine-hydrolyzing phospholipase D fromcaster bean [J]. J. Biol. Chem.,1994,269:20312-20317.
    113Wang X. Multiple forms of phospholipase D in plant: the gene family, catalytic and regulatory properties, and cellular function [J]. Prog Lipid Res,2000,39:109-149.
    114Wang X. Plant phospholipase [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.2001.52:211–31.
    115Wanjie S W, Welti R, Moreau R A, et al. Identification and quantification of glycerolipidsin cotton fibers: reconciliation with metabolic pathway predictions from DNA databases [J].Lipids,2005,40(8):773-785.
    116Welti R, Li WQ, Li MY, Sang YM, Biesiada H, Zhou HE, Rajashekar CB, Williams TD,Wang XM (2002). Profiling membrane lipids in plant stress responses: Role of phospholipase D in freezing-induced lipid changes in Arabidopsis [J]. J Biol Chem,277(35):31994-32002.
    117Wissing J B, Grabo P, Kornak B. Purification and characterization of mu1tip1e forms of phosphatidylinositol-specific phospholipase D from suspension cultured Catharanthus roseus cell [J]. Plant Sci,1996,117:17-31.
    118Zhang H, Oweis T. Water-yield relations and optimal irrigation scheduling of wheat in theMediterranean region [J]. Agricultural Water Management,1999,38:295-311.
    119Zhang W, Yu L, Zhang Y, Wang X.Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species [J].Biochim Biophys Acta,2005,17(36):1-9.
    120Zhang W, Qin C, Zhao J, Wang X. Phospholipase D alpha1-derived phosphatidic acid interacts with ABI1phosphatase2C and regulates abscisic acid signaling [J]. Proc Natl Acad Sci U S A.2004Jun22,101(25):9508-13.
    121Zhang W, Wang C, Qin C.The oleate-stimulated phospholipase D, PLDdelta, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis [J]. Plant Cell.2003,15(10):2285-2295.
    122Zhang YY, Zhu HY. Phospholipase D1and Phosphatidic Acid Regulate NADPH OxidaseActivity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure inArabidopsis [J]. Plant Cell,2009August,21(8):2357–2377.
    123Zhao J, Wang X. Arabidopsis phospholipase Dalpha1interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors [J]. Biol Chem.,2004,279(3):1794-800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700