南林895杨转抗旱耐盐基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树在我国分布广泛,生长较快,适应性强,繁殖容易,并且其基因组小,在传统和分子操作上要比大多数树种简单,是林木育种研究的模式树种。DREB1C转录因子(Dehydration Responsive Element Binding)是一类与逆境胁迫相关的转录因子,它能够识别与干旱、高盐及低温等胁迫应答相关基因启动子区域中的DRE(dehydration responsive element)顺式作用元件并与之结合,从而启动下游抗逆基因的表达,提高植物的抗逆性。开展杨树抗干旱耐盐碱转DREB1C基因研究对于我国干旱、盐碱地区的造林绿化、扩大杨树的栽培区、改善生态环境等方面均具有重要的现实意义。
     本研究以南林895杨(美洲黑杨I-69×欧美杨I-45杂种F1中选育出的优良无性系)为受体材料,采用农杆菌(Agrobacterium tumefaciens)介导法转化抗逆转录因子DREB1C基因;同时,同源克隆拟南芥逆境胁迫诱导性启动子rd29A,构建植物表达载体pDR2-rd29A并转化杨树,主要试验结果如下:
     1.根据NCBI上报道的rd29A启动子序列设计引物,从拟南芥中同源克隆rd29A启动子,构建植物表达载体pBrd,并转化烟草进行活性验证。转基因烟草的GUS组织化学染色及PCR分析结果表明,在低温、干旱及高盐等胁迫诱导下,rd29A启动子可增强GUS基因表达,表明rd29A启动子可应用于植物抗逆基因工程研究。
     2.构建由逆境胁迫诱导型启动子rd29A启动目的基因DREB1C表达的植物表达载体pDR2-rd29A,双酶切鉴定结果表明,rd29A启动子成功地插入载体pDR2中;采用液氮冻融法将载体pDR2-rd29A导入农杆菌LB4404中,菌液PCR扩增出目的条带,证明该植物表达载体pDR2-rd29A已转入农杆菌LB4404中。
     3.进行选择性抗生素潮霉素的敏感性试验,分别对叶片分化及生根本底浓度进行敏感性试验,结果表明,3mg/L潮霉素(Hyg)可作为芽再生的临界筛选浓度;1.5mg/L Hyg可作为芽生根的筛选浓度。
     4.用农杆菌介导法将由两种启动子(组成型启动子35S和逆境胁迫诱导型启动子rd29A)启动的目的基因DREB1C导入南林895杨中。经过潮霉素筛选,得到潮霉素抗性的转35S::DREB1C基因的杨树80株,转rd29A::DREB1C基因的杨树40株。抗性植株的PCR与实时定量PCR分子检测结果,转35S::DREB1C基因杨树有30株呈阳性,转rd29A::DREB1C基因杨树有15株呈阳性,初步证明外源目的基因DREB1C已经整合到南林895杨基因组中。
     5.对转基因杨树植株的形态学观察表明,两类转基因植株形态正常,没有发生畸形突变,即没有引起植株的矮化现象。在干旱和高盐胁迫下,两类转基因植株均能正常生长,其生长势优于未转基因植株。这表明两类转基因植株的抗旱耐盐能力均强于对照植株。
Poplar has been recognized as a model tree species by Forest Genetists due to its fast growth, easy propagation, wide adaptation, and its small genome size. DREB1C transcription factor (Dehydration Responsive Element Binding) is correlated with stress and it can distinguish DRE (dehydration responsive element) cis-acting element in the promoter region of stress response genes about drought, high salt, low temperature and so on. Moreover, it can regulate downstream resistance gene’s expression in combination with DRE cis-acting element, sequentially enhance stress resistance of plant. In order to broaden cultivation of poplar, especially in drought and salt area, it is very important to develop transgenic polpar resistant to drought and salt.
     In this study, leaf disc of Polulus×euramericana cv.‘Nanlin89’was used as experiment material, adapting to Agrobacterium-mediated to introduce DREB1C gene. Meantime, stress-induced promoter rd29A was homologous cloned from Arabidopsis, and new expression vector was constructed and transferred into Nanlin895 in the same way. The main conclusions of this study were as following:
     1. Primers were designed according to sequence reported in NCBI, and then stress-induced promoter rd29A was cloned from Arobdopsis. Plant expression vector pBrd-GUS was constructed and transferred into tobacco in order to test the activity of rd29A promoter. PCR and GUS histochemical stain of transgenic tobacco showed that rd29A promoter was induced by low temperature, dehydration and high salt stress to increase expression of gene GUS. Therefore, rd29A promoter could be used in plant gene engineering for stress resistance improvement.
     2. The expression vector pDR2-rd29A was constructed by fusing DREB1C gene with the stress-induced promoter rd29A. The expression vectors were then introduced into Agrobacterium tumefaciens strain LBA4404 by freeze-thaw method and proved by enzyme digestion and PCR methods.
     3. Antibiotic sensitivity experiment of leaf regeneration and radication were made separatly. Result showed Hyg 3mg/L was critical concentration of leaf regeneration, and Hyg 1.5mg/L was critical concentration of radication.
     4. Leaf disc of Nanlin895 was used as experiment material. The expression vectors pDR2 and pDR2-rd29A containing the DREB1C gene under the control of the constitutive promoter CaMV 35S and the stress-induced promoter rd29A respectively were transferred into Nanlin895 by Agrobacterium-mediated method. 80 Hyg resistant plants with 35S::DREB1C gene and 40 resistant plants with rd29A::DREB1C gene were gained via strictly selection by Hyg. PCR and real-time PCR analysis of resistant plants proved 30 plants positive to 35S::DREB1C gene and 15 plants positive to rd29A::DREB1C gene. It could be concluded that DREB1C gene was probably integrated into genome of Nanlin895.
     5. Morphological observation of the transgenic plants showed that the growth characteristics of them were normal and Dwarf growth was not observed in this study. Two kinds of transgenic plant growed normally under drought and salt stress, and its growth was much better than the control plant, indicating that the tolerance of transgenic plants to drought and salt was better than that of the control plant.
引文
艾万东.高等植物调渗蛋白与耐旱耐盐基因工程.生物工程进展,1994,15(3):10-15
    陈观平,王慧中,施农农等.Na+/H+逆向转运蛋白与植物耐盐性关系研究进展.中国生物工程杂志,2006,26(5):101-106
    陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展.植物学通报,1999,16(5):555-560
    樊军锋,韩一凡,李玲等.MtlDPgutD 双价基因转化美洲黑杨×青杨的研究.林业科学,2002,38(6):30-35
    房丹.南林 895 杨抗虫转基因研究.南京林业大学研究生硕士学位论文.2005
    高世庆,徐惠君,程宪国等.转大豆 GmDREB 基因增强小麦的耐旱及耐盐性.科学通报,2005,23(50):2617-2625
    戈英.荧光 RT-PCR 检测新城疫病毒及其毒力鉴别.南京农业大学硕士学位论文,2004
    郭卫东,饶景萍,徐炎,等.抗旱基因 HDCS1 的植物表达载体构建.西北植物学报,1999,19(3):71-375
    郭岩,张莉,肖岗,曹守云,谷冬梅,田文忠,陈受宜.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.中国科学(C 辑),1997,27:151-155
    郭岩,张莉,肖岗等.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.中国科学(C辑),1997,27(2):151-155.
    郝贵霞等.豇豆蛋白酶抑制剂基因转化毛白杨的研究.植物学报,1999,41(12):1276-1282
    郝贵霞等.转水稻巯基蛋白酶抑制剂基因毛白杨的获得.高技术通讯,1999,(11):17-21
    贾彩虹,赵华燕等.抑制 4CL 基因表达获得低木质素含量的转基因毛白杨.科学通报,2004,49(7):662-666
    姜静等.小黑杨双价抗虫基因研究.植物生理学通讯,2004,(40):669-672
    李崇巍,贾志宽,林玲.几种苜蓿新品种抗旱性的初步研究.干旱地区农业研究,2002,20(4):21-25
    李继红,邵寒霜,李小娟.西瓜遗传转化体系优化的研究.华南热带农业大学学报,1999,5(2):50-59
    李永春,张宪银,薛庆中.蔗糖合酶基因启动子克隆及其转基因水稻植物中特异性表达.作物学报,2002,28(5):286-590
    刘强,赵南明,Yamaguchi-Shinozaki K,Shinozaki K.DREB 转录因子在提高植物抗逆性中的作用.科学通报,2000,45(1):11-16
    刘欣,李 云.转录因子与植物抗逆性研究进展.中国农学通报,2006,22(4):61-65
    刘凤华,孙仲序.细菌 mtl-D 基因的克隆及在转基因八里庄杨中的表达.遗传学报,2000,27(5):428-433
    刘俊君,彭学贤,王海云等.转基因烟草的甘露醇合成和耐盐性.生物工程学报,1996,12(2):206-210.
    刘振林,尹伟伦,戴思兰.菠菜甜菜碱脱氢酶基因同源片段的克隆与序列分析.分子植物育种,2006,4(1):35-40
    卢萍,卢青,杜荣骞.Lea 基因及 LEA 蛋白的研究进展.内蒙古师大学报(自然科学汉文版),1999,28(2):138-142
    路子显,常团结,刘翔等.植物亮氨酸拉链(bZIP)蛋白的研究进展.遗传,2001,23:564-570
    饶红宇等.杨树 NL-80106 转 Bt 基因植株的获得及抗虫性.植物资源与环境学报,2000,9(2):1-5
    石淑稳,周永明,孙学成.甘蓝型油菜遗传转化体系的研究.华中农业大学学报,1998,17(3):205-210
    王关林,方宏筠.植物基因工程.北京:科学出版社,2002
    王关林,万宏筠主编.植物基因工程原理与技术.北京:科学出版社,1998
    王忠华,舒庆尧,夏英武.基因工程在水稻改良方面的研究进展.生物技术通报,1999,15(2):5-8
    魏建华,赵华燕等.毛白杨 CCoAOMTcDNA 片段的克隆与转基因杨木质素含量的调控.植物学报,2001,43(11):1179-1183
    押辉远,秦广雍,霍裕平.Prd29A 及 DREB1A 的克隆和干旱诱导型植物表达载体的构建与鉴定.植物生理学通讯,2005,41(3):371-375).
    阳成波,印遇龙,黄瑞林等.实时定量 RT-PCR 原理及方法.免疫学杂志,2003,19(3):145-150
    杨传平,刘桂丰等.耐盐基因 Bet2A 转化小黑杨的研究.林业科学,2001,37(6):34-37
    俞嘉宁,张劲松等.小麦耐逆基因-TaLEA3 的克隆及在酵母中的功能分析.生物工程学报,2004,20(6):832-837
    张宁,司怀军,王蒂.拟南芥 rd29A 基因启动子克隆及其在马铃薯抗胁迫转基因中的应用.作物学报,2005,31(2):159-164
    张蓓,沈立松.实时荧光定量 PCR 的研究进展及其应用.国外医学临床生物化学与检验学分册,2003,24(6):327-329
    张冰玉,苏晓华等.转抗鞘翅目害虫基因银腺杨的获得及其抗虫性的初步研究.北京林业大学学报,2006,38(2):102-105
    张春晓,王文棋,蒋湘宁,陈雪梅.植物基因启动子研究进展.遗传学报,2004,31(12):1455-1464
    张建国,李吉跃,沈国舫.树木耐旱特性及其机理的研究.北京:中国林业出版社,2000.
    张可喜.日培育出强耐旱植物.中国科学报,1998,9:28
    张正斌,山仑.转抗旱基因作物的研究进展.世界科技研究与发展,1999,21(2):31-33
    赵恢武,刘晗,于海源,等.耐旱植物厚叶旋蒴苣苔 BDN1 脱水素基因的克隆及表达特性分析.科学通报,2000,45(15):1648-1654
    赵强等.豇豆胰蛋白酶抑制剂(CpTI)基因转化欧美杨的研究.生物技术通讯,2005,(4):54-58
    赵世民等.通过农杆菌介导法将兔防御素 NP-1 基因导入毛白杨(P. tomentosa).遗传学报,1999,26(6):711-714
    赵鑫等.杨树基因工程抗性育种研究进展.东北林业大学学报,2004,32(6):76-78
    朱晔荣,达来.抗冻蛋白基因转化植物的研究展望.内蒙古大学学报(自然科学版),2003,34(1):97-101
    Agarwal P K, Agarwal P, Reddy M K. Sopory S K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep, 2006, 25: 1263-1274
    Anne G, Leplé J C, Nadège M, et al. High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssptenebrionis. Molecular Breeding, 2003, 11: 103–110
    Arisi A C, Cornic G, et al. Over-expression of Fe-SOD in transformd poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen. Plant Physiol, 1998, 117: 565-574
    Atlen M D., Yarasaki K., Otme-Takagi M. et al. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17(18): 5484-5496
    Augustin S, Courtin C, et al. Genetics of resistance to transgenic Bacillus thuringiensis poplars in Chrysomela tremulae (Coleoptera: Chrysomelidae). J Econ Entomol, 2004 Jun,97(3):1058-64
    Chen B J, Wang Y, Hu Y L, Wu Q, Lin Z P.Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia.Plant Science,2005,168 :493-500
    Bondt A D, Eggermeont K, Druart P et al. Agrobacterium-mediated transformation of apple: an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep, 1996, 15: 549-554.
    Cathie M, Javier P. MYB transcription factors in Plants.Reviews,1997,13(2):225-229.
    Chattopadhyay S, Ang L H, Puente P, et al. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell, 1998, 10: 673-683
    Che D., Meagher R.B., et al. Expression of mercuric ion reductase in Eastern cottonwood (populus deltoids) confers mercuric ion reduction and resistance. Plant Biotecnol. J. 2003, 1: 311-319
    Chen M, Wang Q Y, Cheng X G., et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 2007, 353: 299–305
    Choi C. Y., Choi B. H., Park G. T., Rho H. M. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. Biol Chem, 272: 16934-16939
    Class S, Michoel B. The regulation of transcription factor activity in Plants. Trends in Plant Science, 1998, 3(10):378-383.
    Close T J, Meyer N C, Radik J. Nucleotide sequence of a gene encoding a 58.5 kilodaltonbarley dehydrin that lacks a serinen tract. Plant Physiol, 1995, 107(1): 289-290
    Xu D, Duan X L, Wang B Y, Hong B M, David Ho T H, Wu R. Expression of a late embryogenesis abundant protein gene,HVA1 ,from Barley confers tolerance to water deficit and salt stress in transgenie rice ,Plant physiol ,1996 ,110 :249-257
    Donahue, R.A., Davis, T.D et al. Growth, hotosynthesis and herbicide tolerance of genetically Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene super family during plant defense response. Plant Mol Biol, 2003, 51:21-37
    Fillatti., Sellmer, J., McCown, B., Haissig, B. and Comai, L. Agrobacterium- mediated transformation and egeneration of Populus. Mol Gen Genet, 1987, 6:192-199.
    Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H. and Ohme-Takagi, M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators and repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12: 393-404.
    Gallardo F, Fu J, Canton F R, et al. Expression of a conifer glutamine synthetase gene in transgenic poplars. Planta, 1999, 210: 19-26
    Gilmour S J, Zarka D G, Stockinger E J et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression.Plant J, 1998, 16: 433-442
    Gilmour, E.J.,Thomashow, M.F. Arabidopsis thaliana CBF1 encodes an AP2 domain containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA, 1997, 94: 1035–1040.
    Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D. and Thomashow, M.F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 24: 1854–1865.
    Gittins,J R., Hiles E R., Pellny T K., Biricolti S., James D J. The brassica napus extA promoter: a novel alternative promoter to CaMV35S for directing transgene expression to young stem tissues and load bearing regions of transgenic apple trees (Malus pumila Mill). Mol Breed, 2001, 7: 51-62
    Goddijn O S M, Verwoerd T C, Voogd E, Krutwagen Rwhh, De Graafpthm, Poels J. Inhibition of trehalase activity enhance trhalose accumulation in transgenic plants. Plant physiol, 1997, 113:181-190
    Liang H Y, Catharine M. Catranis et al. Enhanced resistance to the poplar fungal pathogen, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptides. Biotechnology Letters, 2002, 24: 383-389
    Liang H Y, Charles A. Maynard et al. Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Molecular Biology,2001, 45: 619-629
    Hao, D.Y., Ohme-Takagi, M. and Sarai, A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J. Biol. Chem, 1998, 273: 26857–26861.
    Holmstrom K O, Welin B, Maildal A, et al. Production of the Escherichia coli betaine-aldehyde dehydrogenase,an enzyme required for the synthesis of the osmoprotectant glycine betaine,in transgenic plants. Plant, 1994, 6: 749-758.
    Holmstrom K O, Welin B, Maildal et al. Drought tolerance in tobacco. Nature, 1996, 379:683-684 Hsieh T H, Lee J T, Charng Y Y, Chan M T. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 2002a, 130:618–626
    Hsieh T S, Lee J T, Yang P T, Chiu L H, Charng Y Y, Wang Y C, Chan M T. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol, 2002b, 129:1086–1094
    Hu, W.J., Harding, S.A. et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnol., 1999,17: 808-812
    Huang B, Jin L G, Liu J Y. Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum). Journal of Plant Physiology, 2006, 10:1-10
    Imai R, Moses M S, Bray E A. Expression of an ABA induced gene of tomato in transgenic tobacco during periods of water deficit, Journal of Experimental Botany ,1995 ,46(290) :1077-1084
    Jaglo K R, Kleff S , Amundsen K L et al . Components of the Arabidopsis C-repeat/ dehydration responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001,127 (3): 910-917
    Jaglo Ottosen K R, Gilmour S J , Zarka D G et al . Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104-106
    Doorsselaere J V., Baucher M., Chognot E., et al. A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase activity. The Plant Journal, 1995, 8(6):855-864
    Kasuga M, Liu Q , Miura S et al . Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotech, 1999, 17: 287-291
    Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol, 2004, 45:346–350
    Kasuga, M., Liu, Q., Miura, S, Yamaguchi-Shinozaki, K. and Shinozaki, K. Improving plant drought,salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Nat. Biotechnol, 1999, 17: 287-291.
    Kavi Kisher P B, Hong Z, Miao G H, Hu C A, Verma D P S. Overexpression of ?1- pyrroline-5-carboxylate synthetase increase s proline production and confers osmotolerance in the transgenic plant. Plant Physiol, 1995, 108: 1387-1394
    Kishor P B K, Hong Z , Miao G, Hu CA , Verma D P S. Over expression of pyrroline-5- carboxylase synthase increase proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995, 108: 1367-1394
    Liu Q, Zhang G Y, Chen S Y. Structure and regulation function of plant transcription factors. Chinese Science Bulletin,2001,46(4):271~178
    Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 1998, 10: 1391–1406.
    Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406.
    Lown J M, Davery M R, Power J B, et al. A study of some factors affecting Agrobacterium transformation and plant regeneration of dendranthema grandiflora Tzelev (Syn Chrysan themum morifolium Ramat). Plant Cell Tiss org Cult. 1993, 33: 170-180
    Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Iawton K A, Dangl J L, Dietrich R A. The transcriptome of Arabidosis thallana during systemic acquired resistance. Nat Gene, 2000, 26(4):403~410.
    Mark F. Davis, Gerald A. et al. Assessment of Populus wood chemistry following the introduction of a Bt toxin gene. Tree Physiology, 2006, 26: 557–564
    Delledonne M, Allegro G, Belenghi B et al. Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Molecular Breeding, 2001, 7: 35–42
    McNabb H S. A field trial of transgenic hybrid Poplar trees: establishment and growth the second season. Agroculture Research institute, 1991, 9: 155-159
    McCoun B.H, McCabe D.E, Russesell D.K. Stable transformation of populus and incorporation of pest resistance by electric dischange particle acceleration. Plant cell Report, 1991, 9(10): 590-594
    Mckersie B D, Chen Y, De Beus M, Bowley S R, Bowler C, Inze D, D Halluin K, Botterman J. Superoxide dismutase enhance tolerance of freezing stress in transgenic alfalfa (Medicago Satival). Plant physiol, 1993, 103:1155-1163
    Medina J, Bargues M, Terol J et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol, 1999,119 (2) : 463-470
    Meilan R., Han K. H et al. The CP4 transgene provides high levels of tolerance to Roundup? herbicide in field-grown hybrid poplars. Can. J. For. Res, 2002, 32(6): 967-976
    Mentag R, Luckevich M, Morency M J, Seguin A. Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol, 2003, 23(6):405-11.
    Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Physiol, 2004, 45(3): 346-350.
    Mohamed R., Meilan R,. Ostry M E et al. Bacterio-opsin gene overexpression fails to elevate fungal disease resistance in transgenic poplar (populus).Can.J.For.Res, 2001, 31: 268-275
    Okamuro J.K., Caster B., Villarroel R., Montagu, M.V. Jofuku, K.D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. USA 1997, 94:7076–7081.
    Olsen A.N., Ernst H.A., Leggio L.L., Skriver K., NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 2005, 10:79–87.
    Pellegrinesclii A, Reynolds M, Yamagnclii-Sliinozaki K, et al. Stress-induced expression in wlieat of the Arabidopsis thaliana DREBlA gene delays water stress symptoms under greenhouse conditions. Genome, 2004, 47: 493-500
    Qin F, Li J, Zhang G Y, Zhao J, Chen S Y, Liu Q. Isolation and structural analysis of DRE-binding transcription factor from maize. Acta Bot Sin, 2003, 45: 331-339
    Rathinasabapathi B, McCue K F, Gage DA, Hanson A D. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit-peptides are targeted to tobacco chloroplasts where they confer betaine sldehyde resistanceplant. 1994, 193:155-162.
    Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcription factors. Biol. Chem. 1998, 379: 633–646.
    Riechmann J.L., Heard J., Martin G., Reuber L., Jiang C.-Z., Keddie J., Adam L., Pineda O., Ratcliffe O.J., Samaha R.R., Creelman R., Pilgrim, M., Broun P., Zhang J.Z., Ghandehari D., Sherman B.K., Yu G.-L. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105–2110.
    Romero C, Belles J M, Vaya J L, Serrano R, Culianez Macia F A. Expression of the yeast trehalose-6-phosphate syntase gene in transgenic phenotypes include drought tolerance. Plant, 1997, 201:293-297
    Rugh C L., Senecoff J F., et al. Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotechnol, 1998, 16: 925-928
    Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun, 2002, 290: 998–1009.
    Oh S J, Song S K, Kim Y S, et al. Arabidopsis CBF3/DREB1A and ABF3 in Transgenic Rice Increased Tolerance to Abiotic Stress without Stunting Growth. Plant Physiology, 2005, 138: 341–351
    Selth L A, Dogra S C, Rasheed M S, et al. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell, 2005, 17:311-325
    Shen Y C,Zhang W K,He S J,Zhang J S,Liu Q, Chen S Y. An EREBP/AP2-type protein in Triticumaestivun was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor AppI Genet, 2003a, 106: 923-930
    Shen Y G, Yan G Q, Zhang W K, Du B X. Novel halophyte EREBP/AP2-type binding protein improves salt tolerance in transgenic tobacco. Acta Bot Sin, 2003b, 45: 82-87
    Shinwari Z K, Nakashima K, Miura S et al. An Arabidopsis gene family encoding DRE/ CRT binding proteins involved in low temperature responsive gene expression. Biochem Biophys Res Commun, 1998,250 (1) :161-170
    Singh K,Foley R C,Onate-Sm,et al.Transcription factors in Plant denfense and stress responses[J].Curr OPin Plant Biol,2002,5(5):430 一 436.
    Sridevy S, Peter G. Conditioning promoter regeneration and transformation in apple leaf explants. Plant Cell Tissue and Organ Culture, 1998, 53: 1-11.
    Stracke R , Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 2001, 4: 447-456
    Tarczynski M C, Jensen R G, Bohne H J. Stress protection of transgenic tobacco by production of the osmolte mannitol. Science, 1993, 259:508-511
    Thomashow M F. PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50: 571–599.
    Tran L, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive Cis-element in the early responsive to dehydration stress promoter. Plant Cell, 2004, 16:2481-2498
    Uuboizet JG, Sakuma Y, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB gene in rice, Oryza sativa L., encode transcription activator that function in drought-,high-salt- and cold-responsive gene expression. Plant J, 2003, 33: 751-763
    Wang W X, Tzfira T, et al. Plant tolerance to water and salt stress: the expression pattern of a water stress responsive protein (BspA) in transgenic aspen plants. Jerusalem, Isreal: in plant biotechnology in the 21st century, 14-19June, 1998
    Welin B V, Olson A, Nylander M, Palva E T. Characterization and differential expression of dhn/lea/rab like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol, 1994, 26(1):131-144
    Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R . Expression of a late embryogenesis abundant protein gene, HVAl, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110: 249-257
    Xue G P. An AP2 domain in transcription factor HvCBF1 activates expression of cold-responsive gene in barley through interaction with a (G/a) (C/t) CGAC motif. Biochim Biophys Acta, 2002, 1577: 63-72
    Yamaguchi-Shinozaki K, Shinozaki K.A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress.Plant Cell, 1994, 6: 251-264.
    Zhang Z L, xing P, Zou X, et al. A rice WRKY gene encodes a transcriptional repressor of gibberellin signaling pathway in aleurone cell. Plant Physiol, 2004, 134:1500-1513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700