北部湾主要鱼类摄食生态及食物关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋鱼类的摄食生态和食物关系是海洋生态营养动力学的重要内容,而北部湾为热带、亚热带半封闭海湾,是中越两国渔民传统的作业海域,在该海域开展主要鱼类摄食生态和食物关系研究,具有重要的学术和实践价值。本研究通过2008年10月至2009年9月的北部湾主要渔港逐月采样,结合2010年2月北部湾海域现场拖网调查,以传统胃含物分析方法为基础,并结合碳、氮稳定同位素技术对北部湾海域主要鱼类的饵料组成、营养级和摄食习性随长度的变化进行研究,主要结果如下:
     (1)北部湾带鱼(Trichiurus lepturus)捕食种类包括鱼类、头足类、底栖甲壳类以及浮游动物等43种饵料生物。摄食强度与饱满指数的季节差异十分显著(P<0.001),食物多样性全年平均为1.97。带鱼在达到50%性成熟肛长值190 mm时出现食性转换。
     (2)北部湾珠带鱼(Trichiurus margarites)捕食种类包括鱼类、头足类、底栖甲壳类以及浮游动物等33种饵料生物。其中,蓝圆鲹为最主要的种类。珠带鱼的平均饱满指数在各月份之间变动显著。珠带鱼平均饱满指数随性腺发育呈正相关,而空胃率则呈负相关。不同肛长组间的饵料生物质量与个数、摄食习性差异极显著。
     (3)带鱼主要摄食少鳞犀鳕、蓝圆鲹和中国毛虾,珠带鱼主要摄食少鳞犀鳕、银腰犀鳕和中国毛虾。虽然两种带鱼属种类在北部湾均有分布,但两者的食性重叠却相对较低。
     (4)北部湾多齿蛇鲻(Saurida tumbil)捕食种类包括鱼类、头足类以及虾类等饵料生物,其中可鉴定出的鱼类种类有17种,主要为蓝圆鲹、少鳞犀鳕、长颌棱鳀和条鲾等。多齿蛇鲻摄食强度、饱满指数和成熟系数的月份差异十分显著,而以Brillouin指数表征的各月份营养多样性则无显著差异。一年中呈现3个产卵高峰期(3-4月、6月及11月),产卵期间摄食强度没有降低,仍然强烈索饵。随着体长的增长,北部湾多齿蛇鲻饵料生物个数变化较小,但平均单个饵料生物质量却明显增加。聚类分析表明,北部湾多齿蛇鲻各体长组间食物组成相近,其中136~255mm各体长组相似性系数均大于60%。
     (5)北部湾宝刀鱼(Chirocentrus dorab)既摄食小型中上层鱼类,又摄食底栖鱼类、虾蟹类和头足类,属于广食性动物食性鱼类。以相对重要性指数百分比(%IRI)为指标,表明鱼类为其最主要饵料(99.7%),其中优势饵料生物为犀鳕属、小公鱼属、小沙丁鱼属和圆鲹属等。宝刀鱼摄食强度和饱满指数的月份差异十分显著(P<0.001),而以Brillouin指数表征的各月份营养多样性则无显著差异。雌性性腺成熟度指数显示北部湾宝刀鱼1年中呈现1个产卵高峰期(5—8月),与北部湾中上层水温高峰趋势相符,表明宝刀鱼产卵高峰与水温密切相关,且产卵期间摄食强度没有降低。随着叉长的增长,北部湾宝刀鱼饵料生物个数变化较小,但平均单个饵料生物重量却明显增加。以δ15N计算所得宝刀鱼各叉长组的平均营养级为3.4。
     (6)斑鳍白姑鱼(Pennahia pawak)鳞片的年轮显示为空白型窄带,边缘增长率MGI计算结果表明,年轮主要在9-11月形成,为一年一个周期;性腺成熟指数GSI表明繁殖期为4-8月份,年轮形成于繁殖期之后。Logistic生长方程为最适生长模型,主要参数分别为:L∞= 220.32 mm,K = 0.58,t0 = 0.905。摄食种类包括鱼类、甲壳类计27种饵料生物,其中甲壳类占43.0%,鱼类占57.0%。摄食的优势种类有少鳞犀鳕(6.55%)、银腰犀鳕(6.80%)、中国毛虾(5.27%)。摄食强度与饱满指数的季节差异十分显著(P<0.001),食物多样性无季节性显著差异(P>0.05)。北部湾斑鳍白姑鱼食性转换的体长值为130mm,略大于50%性成熟体长115mm。
     (7)δ13C值随着生物栖息水层的深度而增加,饵料生物中的中上层鱼类蓝圆鲹和底栖鱼类粗纹鲾分别具有最低(-17.830‰)和最高值(-14.925‰)。带鱼δ13C值与肛长不呈明显线性相关,反映其在各个生长阶段于各水层均有摄食活动。根据食物质量比例及δ15N计算的北部湾带鱼营养级平均值和周年平均值均为3.7。真空冷冻干燥与恒温烘干进行样品预处理δ13C差异不显著,而δ15N则差异极显著。
Marine fish feeding ecology and food relationships are the main contents of marine ecotrophic dynamics studies. The Beibu Gulf of the South China Sea, a tropical and subtropical semi-closed bay, is the traditional fishing ground of China and Vietnam. Studies on the fish ecology and foraging associations in this sea area are of significant academic and practical value. Based on monthly sampling in the main fishing ports of the Beibu Gulf from October 2008 to September 2009 and on the fishery-dependent trawl survey in February 2010,stomach contents analysis and stable isotope analysis were used to study the prey category,trophic position and ontogenetic feeding habit shifts of the main fishes in the Beibu Gulf,South China Sea. The main results are as follows:
     (1) Trichiurus lepturus mainly feeds on 43 species of prey. Among them, Bregmaceros rarisquamosu was the principal prey component of the diet, accounting for 37.99% of the contents on the Index of Relative Importance. Small pelagic fish, Decapterus maruadsi, and crustacean, Acetes chinensis, with the percentages of 16.42% and 10.03%, respectively, were also relatively important in the diet of this fish, whereas the other 40 prey species, including pisces, cephalopoda, benthic crustacean and zooplankton, were only present in lower percentages.
     Since Decapterus maruadsi and Anchoviella heteroloba appeared throughout the Beibu Gulf area year-round, they could serve as index species for the largehead hairtail migration and fishing ground distribution. The feeding intensity and stomach fullness indexes differed significantly from month to month (P<0.001). However, niche width, measured by Shannon-Weiner diversity index H′, indicated no significant seasonal differences (P>0.05). H′reached its peak in autumn and had an average value of 1.97. Cluster analysis, measured with Bray-Curties similarity index, revealed a clear diet shift at preanal length 190mm, i.e. at 50% of maturity length. It was concluded that ontogenetic development was synchronized with the changes in feeding habits from small benthic, zooplankton and pelagic fishes for juvenile largehead hairtail to predominantly larger fish and cephalopoda for adult hairtail.
     (2) Stomachs of 666 hairtail, Trichiurus margarites Li 1992, ranging in size from 121 mm to 561 mm in preanal length (PL), were sampled monthly in the Beibu Gulf of the South China Sea, and analysis of their stomach contents showed Decapterus maruadsi to be the primary prey components of the diet, averaging 23% by number, 34% by weight and 49% by Index of Relative Importance (IRI). Small benthic fish, Bregmaceros rarisquamosus and B. nectabanus, and crustacean, Acetes chinensis, with IRI percentages of 8%, 4% and 3%, respectively, were also relatively essential in the diet of this fish, whereas the other 30 species of prey were only present in comparatively lower percentages. The research findings revealed that the mean repletion index varied considerably by month, while trophic diversity, calculated by Brillouin index Hz, proved to be relatively consistent throughout the year. Mean repletion index increased in accordance with the gonad maturity stages of hairtail. On the other hand, the proportion of empty stomachs decreased with the stages, being the highest at Stage I with 60.9% and the lowest at StageⅥwith 41.6%. The 14 PL classes demonstrated significant differences with respect to prey weight and numbers. The tendency of mean prey number and weight increased with the body size. Using PRIMER 5.2 software, the cluster analysis, based on IRI values for the above PL classes, showed that the feeding habits of hairtail were relatively heterogeneous among different sizes. In conclusion, the diet of hairtail, T. margarites varied significantly by month and ontogenetic development. These findings may later assist in the development and improvement of marine ecosystem modeling for the Beibu Gulf, South China Sea.
     (3) As each curve of trophic diversity calculated with the Brillouin index reached an asymptote, the number of stomachs examined in this study was sufficient to describe the monthly and ontogenetic diet shifts for Trichiurus lepturus and T. margarites. T. lepturus is a general omnivore, feeding mainly on Bregmaceros rarisquamosu, Decapterus maruadsi and Acetes chinensis, while T. margarites preys primarily on D. maruadsi, B. rarisquamosus, B. nectabanus and A. chinensis. Both species showed distinct ontogenetic diet shifts in the studied periods. Even though the two examined hairtail feed on similar resources in the same habitat, the diet overlap was relatively low. The results in this study indicated that hairtail played an important role in controlling small pelagic and benthic fish population in the Beibu Gulf area. This trophic correlation may later assist in the establishment of marine ecosystem modeling for the Beibu Gulf of the South China Sea.
     (4) Stomachs of 749 greater lizardfish, ranging in size from 124 mm to 375 mm in standard length (SL), were sampled monthly in the Beibu Gulf of the South China Sea, and analysis of their stomach contents showed Decapterus maruadsi to be the primary prey components of the diet, averaging 9.7% by number, 55.5% by weight and 34.9% by percentage of Index of Relative Importance (IRI). Small benthic fish, Bregmaceros rarisquamosus and pelagic fish, Thryssa setirostris and Leiognathus riviulatus, with IRI percentages of 26.6%, 4.3% and 2.5%, respectively were also relatively essential in the diet of this fish, whereas the other species of prey were only present in comparatively lower percentages. The research findings revealed that the mean repletion index and mean maturity coefficient varied considerably by month, while trophic diversity, calculated by Brillouin index Hz, proved to be relatively consistent throughout the year. Mean repletion index (RI) was highest (RI = 7.61%) at the stage ofⅥ-Ⅱindicating that this group of greater lizardfish reverted from StageⅥto StageⅡincreased their food input to compensate for energy loss during reproduction. On the other hand, the proportion of empty stomachs reached its peak with 61.5% while mean RI reached the second highest position with 5.98% at StageⅤ, indicating that during the reproduction periods from March to April, and in June and November, greater lizardfish cease feeding until digestion of the prior meal was completed or near completion. The 12 SL classes demonstrated significant differences with respect to prey weight but showed relative consistency in prey numbers. The tendency of mean prey weight increased with the body size following the improvement of the feeding organs and swimming ability of greater lizardfish. Using PRIMER 5.2 software, the cluster analysis, based on IRI values for the above SL classes, showed that the feeding habits of greater lizardfish were generally homogeneous among different sizes, and particularly among the 136~255mm SL classes, with similarities of more than 60%. In conclusion, the diet of greater lizardfish, Saurida tumbil varied significantly by month and ontogenetic development. These findings may later assist in the development and improvement of marine ecosystem modeling for the Beibu Gulf, South China Sea.
     (5) A total of 645 (344 stomachs with contents) dorab wolf-herring, ranging in size from 193 mm to 782 mm in fork length, were randomly sampled through trawl and gillnet commercial fishing. The results showed that the dorab wolf-herring of the Beibu Gulf was omnivorous and predated not only on small pelagic fish but also on benthic fish, shrimps, crabs and squids. Pisces were the primary prey components of the diet with a percentage of Index of Relative Importance (%IRI) of 99.7%. Among these, 24 species were identified. Genera such as Bregmaceros sp., Thryssa sp., Sardinella sp. and Decapterus sp. were dominant in the dorab wolf-herring food constituent. The small fish, Stolephorus zollingeri, Bregmaceros rarisquamosus, Sardinella jussieu, Decapterus maruadsi, Stolephorus commersoni and Caranx mate, were also relatively important in the diet of this fish, with the weight percentages of 10.27%, 9.36%, 4.72%, 4.11%, 2.77% and 2.73%, respectively, whereas the other species prey were only present in lower percentages. The research findings revealed that the mean repletion index and vacuity coefficient varied considerably by month, while trophic diversity, calculated by Brillouin index Hz, proved to be relatively consistent throughout the year. The spawn peak, from May to August, was recognized by the female gonad somatic index (GSI). Furthermore, the peak periods were consistent with the surface water temperature,20m and 30m layers provided by France CATSAT fisheries remote sensing system. It can be safely concluded that spawning and reproduction of dorab wolf-herring, one of the pelagic fishes, correlate with the sea surface temperature. Mean repletion index (RI) was highest (RI = 2.50%) at the stage ofⅤindicating that this group of dorab wolf-herring maintained strong feeding intensity during the reproduction periods. Meanwhile the vacuity coefficient was almost lowest (VC = 0.75%) at the stage ofⅥ-Ⅱindicating that the fish reverting from StageⅥto StageⅡincreased their food input to compensate for energy loss during reproduction. The 12 fork -length classes demonstrated significant differences with respect to prey weight and prey numbers. The tendency of mean prey weight and number increased with the body size following the improvement of the feeding organs and swimming ability of dorab wolf-herring. Using PRIMER 5.2 software, the cluster analysis, based on %IRI values for the above fork-length classes, showed that the feeding habits of dorab wolf-herring could be classified into three groups: under 380mm, between 381 to 530mm, and above 531mm. The absence of a significant linear correlation between the fork length andδ13C lead to the conclusion that dorab wolf-herring were feeding all the water layers during the major part of their biological
     life cycle. With an average value of 3.4, the trophic level of dorab wolf-herring calculated byδ15N varied not significantly from the fork length. It can be concluded that stable isotope analysis will play an import role in evaluating the fish feeding ecology and in constructing the marine food web.
     (6) The annulus of Pennahia pawak in the scales were of the vacant type, which indicated that they formed once a year, during September– November by monthly changes in the marginal growth increment (MGI )of the scales, just after the spawning had occurred from April to August. A maximum likelihood estimation procedure was used to fit the von Bertalanffy, Logistic, Gompertz and generalized von Bertalanffy growth functions to the length-at-age data. ARSS indicated that there were no significant differences in growth between sexes in the four growth models (P>0.05), and the Logistic growth function was selected as the most appropriate growth model according to Akaike’s Information Criterion (AIC), AIC differences( ) and Bayesian information criterion(BIC.The estimated parameters for Logistic growth function were LΔi∞= 220.32 mm,K = 0.58,t0 = 0.905. P. pawak showed rapid growth before the 3rd year, after which the growth tended to slow down; therefore, the starting age of 3 was proposed the best stage of exploitation and utilization for this resource. Pennahia pawak preyed mainly on benthic organisms. Analysis of their stomach contents showed that by Index of Relative Importance (IRI), fish and crustacean were the primary prey components of the diet, accounting for 57.0% and 43.0%, respectively. Bregmaceros rarisquamosus, B. nectabanus and Acetes chinensis were the dominant species in the 27 prey species, making up 6.55%, 6.80% and 5.27% respectively. Solenocera crassicorni and Thryssa setirostris also appeared in all seasons. The feeding intensity and repletion index differed significantly according to seasons (p<0.001), while food diversity had no considerably shifts during the whole year (p>0.05). Cluster analysis based on %IRI values showed that the feeding habits of P. pawak shifted at the standard length of 130mm, which is a little bigger than the 50% sex maturity length (115mm).
     (7) Small pelagic fish,Decapterus maruadsi,Sardinella jussieu,Stolephorus heteroloba,benthic Bregmaceros rarisquamosus and cephalopoda,Loligo chinensis, were also relatively important in the diet of this fish,with the weight percentages of 26.19%,10.21%,9.94%,7.20% and 6.07%,respectively,whereas the other species prey were only present in lower percentages. Theδ13C signatures increased negative (depleted) values for pelagic species to more enriched values for benthic species. As expecte, D. maruadsi displayed the lowest value (-17.830‰) while benthic Leiognathus lineolatus displayed the highest value (-14.925‰). The absence of a significant linear correlation between the preanal length andδ13C leads to the conclusion that T. lepturus are feeding all the water layers during the major part of their biological life cycle. Both the average trophic level and its annual mean value were calculated by prey weight percentages andδ15N are 3.7. The trophic level of T. lepturus varied not significantly with the preanal length,despite the fact that in the same sea area T. margarites and T. minor increased notably. Two samples of dehydration undertaken prior to the analytical determination of stable isotope ratios were tested and resulted in the observation that vacuum freeze-drying and drying in an oven at constant temperature showed significant variance inδ15N but not inδ13C. Undoubtedly,SIA will play an import role in evaluating the fish feeding habits and trophic positions. At the same time,the following three key points should be taken into account: (a) SIA must be combined with the stomach contents analysis; (b) an appropriate baseline organism has to be selected and its exact trophic position determined; (c) attention needs to be paid to the uncertainty of SIA application in the ontogenetic diet shifts and trophic position variations.
引文
[1]殷名称.鱼类生态学[M].北京:农业出版社, 1995.
    [2]沈国英,施并章.海洋生态学[M].北京:科学出版社, 2002.
    [3] Hyslop E J. Stomach contents analysis—a review of methods and their application[J]. Journal of Fish Biology. 1980, 17(4): 411-429.
    [4] Cortes E. A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes[J]. Canadian Journal of Fisheries Aquatic Science. 1997, 54(3): 726-738.
    [5] Post D M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions[J]. Ecology. 2002, 83(3): 703-718.
    [6] Steele J H. Assessment of some linear food web methods[J]. Journal of Marine Systems Skill Assessment for Coupled Biological/physical Models of Marine Systems. 2009, 76(1-2): 186-194.
    [7]窦硕增.鱼类胃含物分析的方法及其应用[J].海洋通报. 1992, 11(2): 28-31.
    [8]窦硕增.鱼类摄食生态研究的理论及方法[J].海洋与湖沼. 1996, 27(5): 556-561.
    [9]唐启升.海洋食物网与高营养层次营养动力学研究策略[J].海洋水产研究. 1999, 20(2): 1-6.
    [10]薛莹,金显仕.鱼类食性和食物网研究评述[J].海洋水产研究. 2003, 24(2): 76-87.
    [11]李忠义,金显仕,庄志猛,等.稳定同位素技术在水域生态系统研究中的应用[J].生态学报. 2005, 25(11): 3052-3060.
    [12]于灏,吴莹,张经.特定化合物同位素分析技术在海洋食物网研究中的应用[J].质谱学报. 2006, 27(2): 122-128.
    [13]纪炜炜,李圣法,陈雪忠.鱼类营养级在海洋生态系统研究中的应用[J].中国水产科学. 2010, 17(4): 878-887.
    [14]林景祺,杨纪明.烟台、威海和青岛沿岸当年生鲐鱼幼鱼的摄食习性[J].海洋水产研究. 1980, 1(1): 1-15.
    [15]王复振.带鱼产卵期的食性[M].中国动物学会三十周年学术讨论会论文摘要汇编,北京:科学出版社, 1965.
    [16]王复振,陈永寿.大黄鱼产卵期的食性[J].海洋渔业. 1984, 6(3): 109-111.
    [17]韦晟.黄海带鱼(Trichiurus haumela Forskal)的摄食习性[J].海洋水产研究. 1980, 1(1): 49-57.
    [18]陈亚瞿,朱启琴.东海带鱼摄食习性、饵料基础及与渔场的关系[J].水产学报. 1984, 8(2): 135-145.
    [19]秦忆芹.东海外海绿鳍马面鲀摄食习性的研究[J].水产学报. 1981, 5(3): 245-251.
    [20]张其永,杨甘霖.闽南-台湾浅滩渔场狗母鱼类食性的研究[J].水产学报. 1986, 10(2): 213-222.
    [21]周婉霞,薄治礼.浙江近海蓝圆鲹食性的研究[J].东海海洋. 1986, 4(2): 65-74.
    [22]周婉霞,胡杰,溎彦,等.浙江北部海区青石斑鱼摄食习性的研究[J].水产科技情报. 1983, 10(1): 19-21.
    [23]窦硕增,杨纪明.渤海南部半滑舌鳎的食性及摄食的季节性变化[J].生态学报. 1992, 12(4): 368-376.
    [24]李军.渤海鲈鱼食物组成与摄食习性的研究[J].海洋科学. 1994, 18(3): 39-44.
    [25]柏怀萍.象山港黑鲷的摄食习性[J].宁波大学学报:理工版. 1999, 12(4): 42-47.
    [26]张波.东、黄海带鱼的摄食习性及随发育的变化[J].海洋水产研究. 2004, 25(2): 6-12.
    [27]林龙山,张寒野,李惠玉,等.东海带鱼食性的季节变化[J].中国海洋大学学报. 2006, 36(6): 932-936.
    [28]薛莹,金显仕,张波,等.黄海中部小黄鱼摄食习性的体长变化与昼夜变化[J].中国水产科学. 2004, 11(5): 420-425.
    [29]张波,金显仕,戴芳群.长江口两种重要石首鱼类的摄食习性[J].动物学报. 2008, 54(2): 209-217.
    [30]郭斌,张波,金显仕.黄海海州湾小黄鱼幼鱼的食性及其随体长的变化[J].中国水产科学. 2010, 17(2): 289-297.
    [31]颜云榕,陈骏岚,侯刚,等.北部湾带鱼的摄食习性[J].应用生态学报. 2010, 21(3): 749-755.
    [32]颜云榕,王田田,侯刚,等.北部湾多齿蛇鲻摄食习性及随生长发育的变化[J].水产学报. 2010, 4(7): 55-64.
    [33]张学健,程家骅,沈伟,等.黄海南部黄鮟鱇摄食生态[J].生态学报. 2010, 30(12): 3117-3125.
    [34] Figueiredo M, Morato T, Barreiros J P, et al. Feeding ecology of the white seabream, Diplodus sargus, and the ballan wrasse, Labrus bergylta, in the Azores[J]. Fisheries Research. 2005, 75(1-3): 107-119.
    [35] Miyake Y, Wade E. The abundance ratio of 15N/14N in marine environments[J]. Records of Oceanographic Works in Japan. 1967, 9: 32-59.
    [36] Deniro M J, Epstein S. Influence of diet on the distribution of carbon isotopes in animals[J]. Geochimica et Cosmochimica Acta. 1978, 42(5): 495-506.
    [37]蔡福龙,陈英,许丕安,等.海水和海洋食物链网传递~(137)Cs、~(60)Co规律的研究[J].海洋学报. 1984, 6(1): 72-80.
    [38]王明亮,洪阿实.海洋生物样品中的氮同位素分析[J].海洋环境科学. 1992, 11(1): 74-79.
    [39]洪阿实,李文权. ^15N稳定同位素示踪技术在海水养殖研究中的应用[J].海洋学报. 1994, 16(4): 73-81.
    [40] Minagawa M, Wada E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between [delta]15N and animal age[J]. Geochimica et Cosmochimica Acta. 1984, 48(5): 1135-1140.
    [41]王娜.脂肪酸等生物标志物在海洋食物网研究中的应用——以长江口毗邻海域为例[D].上海:华东师范大学, 2008.
    [42] Vander Zanden J M, Joseph B R. Variation inδ15N andδ13C trophic fractionation: implications for aquatic food web studies[J]. Limnology and Oceanography. 2001, 46(8): 2061-2066.
    [43]尚玉昌.动物行为学[M].北京:北京大学出版社, 2009.
    [44] Strieck F. Untersuchungen uber den geruchs-und geschmackssinn der elritze(Phoxinus laevis)[J]. Zeitschrift fürVergleichende Physiologie. 1924, 2: 122-154.
    [45]周洪琪.鱼类摄食行为的化学感觉调节[J].海洋渔业. 1988, 10(6): 263-265.
    [46]李大勇,何大仁.光照对真鲷仔,稚,幼鱼摄食的影响[J].台湾海峡. 1994, 13(1): 26-31.
    [47]单保党,何大仁.黑鲷化学感觉发育和摄食关系[J].厦门大学学报:自然科学版. 1995, 34(5): 835-839.
    [48]单保党,何大仁.黑鲷视觉发育与摄食的关系[J].台湾海峡. 1995, 14(2): 169-173.
    [49]邱丽华,秦克静.光照对大泷六线鱼仔鱼摄食量的影响[J].动物学杂志. 1999, 34(5): 4-8.
    [50] Kolasinski J, Frouin P, Sallon A, et al. Feeding ecology and ontogenetic dietary shift of yellowstripe goatfish Mulloidichthys flavolineatus (Mullidae) at Reunion Island, SW Indian Ocean[J]. Marine Ecology Progress Series. 2009, 386: 181-195.
    [51]林龙山,严利平,凌建忠,等.东海带鱼摄食习性的研究[J].海洋渔业. 2005, 27(3): 187-192.
    [52]郭旭鹏,李忠义,金显仕,等.采用碳氮稳定同位素技术对黄海中南部鳀鱼食性的研究[J].海洋学报. 2007, 29(2): 98-104.
    [53]王新安.半滑舌鳎摄食机理的研究[D].青岛:中国海洋大学, 2007.
    [54]张波.黄海中部高眼鲽的摄食及随体长的变化[J].应用生态学报. 2007, 18(8): 1849-1854.
    [55]施兆鸿,马凌波,高露姣,等.人工育苗条件下银鲳仔稚幼鱼摄食与生长特性[J].海洋水产研究. 2007, 28(4): 38-46.
    [56]孙光.真鲷仔稚鱼对饵料生物的选择性[J].水产学报. 1992, 16(1): 67-70.
    [57]张波,唐启升,金显仕,等.东海和黄海主要鱼类的食物竞争[J].动物学报. 2005, 51(4): 616-623.
    [58]童玉和,郭学武.两种岩礁鱼类的食物竞争实验[J].中国水产科学. 2009, 16(4): 541-549.
    [59]郭学武,唐启升.鱼类摄食量的研究方法[J].海洋水产研究. 2004, 25(1): 68-78.
    [60] Garrison L P, Jason S. Link D P K, Cieri M D, et al. An expansion of the MSVPA approach for quantifying predator–prey interactions in exploited fish communities [J]. ICES Journal of Marine Science. 2010, 67(5): 856-870
    [61] Sturdevant M V, Sigler M F, Orsi J A. Sablefish predation on juvenile pacific salmon in the coastal marine waters of southeast Alaska in 1999[J]. Transactions of the American Fisheries Society. 2009, 138(3): 675-691.
    [62]孙耀,张波.斑鰶的摄食,生长与生转换效率:现场胃含物法在室内的应用[J].海洋水产研究. 1999, 20(2): 12-16.
    [63] Brett J R, Higgs D A. Effect of temperature on the rate of gastric digestion in fingerling sockeye salmon, Oncorhynchus nerka[J]. Journal of the Fisheries Research Board of Canada. 1970, 26: 1769-1779.
    [64]陈绍勇,林昭进,等.南沙珊湖礁生态系生物体中δ13C的分布[J].海洋科学. 2001, 25(6): 4-7.
    [65]孙耀,刘勇,张波,等. Eggers胃含物法测定赤鼻棱鳀的摄食与生态转换效率[J].生态学报. 2003, 23(6): 1216-1221.
    [66]孙耀,于淼,刘勇,等.现场胃含物法测定鲐的摄食与生态转换效率[J].水产学报. 2003, 27(3): 245-250.
    [67] Steele J H. The Structure of Marine Ecosystems [M]. Oxford London: Blackwell Scientific Publication, 1974.
    [68]张其永,林秋眠,林尤通,等.闽南-台湾浅滩渔场鱼类食物网研究[J].海洋学报. 1981, 3(2): 275-290.
    [69]韦晟,姜卫民.黄海鱼类食物网的研究[J].海洋与湖沼. 1992, 23(2): 182-192.
    [70]张雅芝,陈锦坤.东山湾鱼类食物网研究[J].台湾海峡. 1994, 13(1): 52-61.
    [71]邓景耀,杨纪明.渤海主要生物种间关系及食物网的研究[J].中国水产科学. 1997, 4(4): 1-7.
    [72]张月平.南海北部湾主要鱼类食物网[J].中国水产科学. 2005, 12(5): 621-631.
    [73] Sherwood G D, Rose A G. Stable isotope analysis of some representative fish and invertebrates of the Newfoundland and Labrador continental shelf food web[J]. Estuarine, Coastal and Shelf Science. 2005, 63(4): 537-549.
    [74] Potier M, Marsac F, Cherel Y, et al. Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[J]. Fisheries Research. 2007, 83(1): 60-72.
    [75] Mateo M A, Serrano O, Serrano L, et al. Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes[J]. Oecologia. 2008, 157(1): 105-115.
    [76] Budge S M, Wooller M J, Springer A M, et al. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis[J]. Oecologia. 2008, 157(1): 117-129.
    [77]蔡德陵,孟凡. ^13C/^12C比值作为海洋生态系统食物网示踪剂的研究:崂山湾水体生物食物网的营养关系[J].海洋与湖沼. 1999, 30(6): 671-678.
    [78]蔡德陵,洪旭光,毛兴华,等.崂山湾潮间带食物网结构的碳稳定同位素初步研究[J].海洋学报. 2001, 23(4): 41-47.
    [79]蔡德陵,李红燕,唐启升,等.黄东海生态系统食物网连续营养谱的建立:来自碳氮稳定同位素方法的结果[J].中国科学:C辑. 2005, 35(2): 123-130.
    [80]万祎,胡建英,安立会,等.利用稳定氮和碳同位素分析渤海湾食物网主要生物种的营养层次[J].科学通报. 2005, 50(7): 708-712.
    [81]李忠义,左涛,戴芳群,等.运用稳定同位素技术研究长江口及南黄海水域春季拖网渔获物的营养级[J].中国水产科学. 2010, 30(1): 103-109.
    [82] Neira S, Moloney C L, Cury P, et al. Mechanisms affecting recovery in an upwelling food web: The case of the southern Humboldt[J]. Progress in Oceanography. 2009, 83(1-4Sp. Iss. SI): 404-416.
    [83] Samhouri J F, Levin P S, Harvey C J. Quantitative Evaluation of Marine Ecosystem Indicator Performance Using Food Web Models[J]. Ecosystems. 2009, 12(8): 1283-1298.
    [84] Haputhantri S S K, Villanueva M C S, Moreau J. Trophic interactions in the coastal ecosystem of Sri Lanka: An ECOPATH preliminary approach[J]. Estuarine, Coastal and Shelf Science. 2008, 76(2): 304-318.
    [85]仝龄,Pauly D.渤海生态通道模型初探[J].应用生态学报. 2000, 11(3): 435-440.
    [86]陈作志,邱永松,贾晓平.北部湾生态通道模型的构建[J].应用生态学报. 2006, 17(6): 1107-1111.
    [87]陈作志,邱永松,贾晓平,等.基于Ecopath模型的北部湾生态系统结构和功能[J].中国水产科学. 2008, 15(3): 460-468.
    [88]刘玉,姜涛,王晓红,等.南海北部大陆架海洋生态系统Ecopath模型的应用与分析[J].中山大学学报:自然科学版. 2007, 46(1): 123-127.
    [89]林群,金显仕,郭学武,等.基于Ecopath模型的长江口及毗邻水域生态系统结构和能量流动研究[J].水生态学杂志. 2009, 2(2): 28-36.
    [90] Cheng J H, Cheung W, Pitcher T J. Mass-balance ecosystem model of the East China Sea[J]. Progress in Natural Science. 2009, 19(10): 1271-1280.
    [91] Li Y K, Chen Y, Olson D, et al. Evaluating ecosystem structure and functioning of the East China Sea Shelf ecosystem, China[J]. Hydrobiologia. 2009, 636(1): 331-351.
    [92] Jennings S, Barnes C, Sweeting C J, et al. Application of nitrogen stable isotope analysis in size-based marine food web and macroecological research[J]. Rapid Communicationsin Mass Spectrometry. 2008, 22(11): 1673-1680.
    [93] Elton C. Animal Ecology[M]. New York: Macmillan, 1927.
    [94] Lindeman R L. The trophic-dynamic aspect of ecology [J]. Ecology. 1942, 23(4): 399-417.
    [95] Odum W E, Heald E J. The Detritus-based Food Web of An Estuarine Mangrove Community[M]. Estuarine Research, Cronin L E, New York: Academic Press, 1975, 265-286.
    [96] Pauly D, Christensen V, Dalsgaard J, et al. Fishing down marine food webs[J]. Science. 1998, 279(5352): 860-863.
    [97] The University of Wisconsin Sea Grant Institute and the Center. About Fish Bioenergetics 3.0[Z]. http://limnology.wisc.edu/research/bioenergetics/bioenergetics.html, 2010.
    [98] Sibert J. AD Model Builder introduction[Z]. http://admb-project.org/, 2010.
    [1]韦晟.黄海带鱼(Trichiurus haumela Forskal)的摄食习性[J].海洋水产研究, 1980(1): 49-57.
    [2]张波.东、黄海带鱼的摄食习性及随发育的变化[J].海洋水产研究, 2004, 25(2): 6-12.
    [3]邓景耀,赵传絪.海洋渔业生物学[M].北京:农业出版社, 1991.
    [4]卢伙胜,颜云榕,侯刚等.北部湾渔业资源调查与监测报告. [R]湛江:广东海洋大学, 2008
    [5]王复振.带鱼产卵期的食性[M].中国动物学会三十周年学术讨论会论文摘要汇编,北京:科学出版社, 1965.
    [6]张波,唐启升,金显仕.黄海生态系统高营养层次生物群落功能群及其主要种类[J].生态学报, 2009, 29(3): 1099-1111.
    [7]林景祺.带鱼[M].北京:农业出版社, 1985.
    [8]张其永,林秋眠,林尤通,等.闽南-台湾浅滩渔场鱼类食物网研究[J].海洋学报, 1981, 3(2): 275-290
    [9]陈亚瞿,朱启琴.东海带鱼摄食习性、饵料基础及与渔场的关系[J].水产学报, 1984, 8(2): 135-145.
    [10]林龙山,张寒野,李惠玉,等.东海带鱼食性的季节变化[J].中国海洋大学学报, 2006, 36(6): 932-936.
    [11]张月平.南海北部湾主要鱼类食物网[J].中国水产科学, 2005, 12(5): 621-631.
    [12]国家技术监督局.海洋调查标准——海洋生物调查.北京,标准出版社. 1991.
    [13]上海水产学院,中国科学院动物研究所,中国科学院海洋研究所.南海鱼类志[M].北京:科学出版社, 1962.
    [14]陈清潮,蔡永贞,马兴明.南沙群岛至华南沿岸的鱼类-Ⅰ[M].北京:科学出版社,1997.
    [15]张世义.中国动物志硬骨鱼纲鲟形目海鲢目鲱形目鼠鱚目[M].北京:科学出版社,2001
    [16]宋海棠,俞存根,薛利建,等.东海经济虾蟹类[M].北京:海洋出版社, 2006.
    [17]黄宗国.中国海洋生物种类及分布[M].北京:海洋出版社, 2008.
    [18]邓景耀,孟田湘,任胜民.渤海鱼类食物关系的初步研究[J].生态学报, 1986, 6(4): 356-364.
    [19]邓景耀,杨纪明.渤海主要生物种间关系及食物网的研究[J].中国水产科学, 1997, 4(4):1-7.
    [20]薛莹,金显仕,张波,等.南黄海三种石首鱼类的食性[J].水产学报, 2005, 29(2): 178-187.
    [21]张波,金显仕,戴芳群.长江口两种重要石首鱼类的摄食习性[J].动物学报, 2008, 54(2): 209-217.
    [22] Hyslop EJ. Stomach contents analysis—a review of methods and their application. Journal of Fish Biology,1980,17: 411–429
    [23] Pinkas L,Oliphant MS.,Iverson LK. Food habits of albacore,bluefin tuna,and bonito in California waters. State of California The Resources Agency Department of Fish and Game: Fish Bulletin,1971,152: 1-105
    [24]殷名称.鱼类生态学[M].北京:农业出版社, 1995.
    [25] Magurran AE. Ecological Diversity and its Measurements. Princeton: Princeton University Press,1998
    [26] Monteiro P,Bentes L,Coelho R,et al. Age and growth,mortality,reproduction and relative yield per recruit of the bogue,Boops boops Linne′,1758 (Sparidae),from the Algarve (south of Portugal) longline fishery. Journal of Applied Ichthyology,2006,22: 345-352
    [27] Htun-Han M. The reproductive biology of the dab Limanda limanda (L.) in the North Sea: gonosomatic index,hepatosomatic index and condition factor. Journal of Fish Biology,1978,13: 369-378
    [28]张波,金显仕,唐启升.长江口及邻近海域高营养层次生物群落功能群及其变化[J].应用生态学报, 2009, 20(2): 344-351.
    [29]薛莹,金显仕,张波,等.黄海中部小黄鱼摄食习性的体长变化与昼夜变化[J].中国水产科学, 2004, 11(5): 420-425.
    [30]水产部南海水产研究所.南海北部底拖网鱼类资源调查报告(海南岛以东)(第五册)[R].广州:南海水产研究所,1966
    [31]张波.黄海中部高眼鲽的摄食及随体长的变化[J].应用生态学报,2007,18(8): 1849-1854
    [1] Li C S. Hairtail fishes from Chinese coastal waters (Trichiuridea)[J]. Marine Sciences. 1992, 4(3): 212-219.
    [2]卢伙胜. 2006~2007年北部湾渔业资源调查与评估报告[Z]. 2008.
    [3] Martins A S, Haimovici M. Distribution, abundance and biological interactions of the cutlassfish Trichiurus lepturus in the southern Brazil subtropical convergence ecosystem[J]. Fisheries Research. 1997, 30(3): 217-227.
    [4] Bakhoum S A. Diet overlap of immigrant narrow-barred Spanish mackerel Scomberomorus commerson (Lac., 1802) and the largehead hairtail ribbonfishTrichiurus lepturus(L., 1758) in the Egyptian Mediterranean coast[J]. Animal Biodiversity and Conservation. 2007, 30(2): 147-160.
    [5] Bittar V T, di Beneditto A P M. Diet and potential feeding overlap between Trichiurus lepturus (Osteichthyes: Perciformes) and Pontoporia blainvillei (Mammalia: Cetacea) in northern Rio de Janeiro, Brazil[J]. Zoologia. 2009, 26(2): 374-378.
    [6] Martins A S, Haimovici M, Palacios R. Diet and feeding of the cutlassfish Trichiurus lepturus in the subtropical convergence ecosystem of southern Brazil[J]. Journal of the Marine Biological Association of the United Kingdom. 2005, 85(5): 1223-1229.
    [7]韦晟.黄海带鱼(Trichiurus haumela Forskal)的摄食习性[J].海洋水产研究. 1980(1): 49-57.
    [8]张波.东、黄海带鱼的摄食习性及随发育的变化[J].海洋水产研究. 2004, 25(2): 6-12.
    [9] Chiou W, Chen C, Wang C, et al. Food and feeding habits of ribbonfish Trichiurus lepturus in coastal waters of south-western Taiwan[J]. Fisheries Science. 2006, 72(2): 373-381.
    [10]林龙山,张寒野,李惠玉,等.东海带鱼食性的季节变化[J].中国海洋大学学报. 2006, 36(6): 932-936.
    [11] Liu Y, Cheng J, Chen Y. A spatial analysis of trophic composition: a case study of hairtail ( Trichiurus japonicus ) in the East China Sea[J]. Hydrobiologia. 2009, 632(1): 79-90.
    [12]陈大刚.渔业资源生物学[M].北京:农业出版社, 1997.
    [13] Davis T. Seasonal changes in gonad maturity, and abundance of larvae and early juveniles of barramundi, Lates calcarifer (Bloch), in Van Diemen Gulf and the Gulf of Carpentaria[J].Marine and Freshwater Research. 1985, 36(2): 177-190.
    [14] Htun-Han M. The reproductive biology of the dab Limanda limanda (L.) in the North Sea: seasonal changes in the ovary[J]. Journal of Fish Biology. 1978, 13(3): 351-359.
    [15]黄宗国.中国海洋生物种类及分布[M].北京:海洋出版社, 2008.
    [16]宋海棠,俞存根,薛利建,等.东海经济虾蟹类[M].北京:海洋出版社, 2006.
    [17]陈清潮.南沙群岛至华南沿岸的鱼类(一)[M].北京:科学出版社, 1997.
    [18]上海水产学院,中国科学院动物研究所,中国科学院海洋研究所.南海鱼类志[M].北京:科学出版社, 1962.
    [19]张世义.中国动物志硬骨鱼纲鲟形目海鲢目鲱形目鼠鱚目[M].北京:科学出版社, 2001.
    [20] Hurtubia J. Trophic diversity measurement in sympatric predatory species[J]. Ecology. 1973, 54(4): 885-890.
    [21] Adams C F, Pinchuk A I, Coyle K O. Seasonal changes in the diet composition and prey selection of walleye pollock ( Theragra chalcogramma ) in the northern Gulf of Alaska[J]. Fisheries Research. 2007, 84(3): 378-389.
    [22] Figueiredo M, Morato T, Barreiros J P, et al. Feeding ecology of the white seabream, Diplodus sargus, and the ballan wrasse, Labrus bergylta, in the Azores[J]. Fisheries Research. 2005, 75(1-3): 107-119.
    [23] Pielou E C. The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology. 1966, 13: 131-144.
    [24] Pielou E C. An Introduction to Mathematical Ecology[M]. New York: Wiley-Interscience, 1969: 286.
    [25] Koen Alonso M, Alberto Crespo E, Anbal Garca N, et al. Fishery and ontogenetic driven changes in the diet of the spiny dogfish, Squalus acanthias , in Patagonian Waters, Argentina[J]. Environmental Biology of Fishes. 2002, 63(2): 193-202.
    [26] Hyslop E J. Stomach contents analysis—a review of methods and their application[J]. Journal of Fish Biology. 1980, 17: 411-429.
    [27] Pinkas L, Oliphant M S, Iverson L K. Food habits of albacore, bluefin tuna, and bonito in California waters[J]. State of California The Resources Agency Department of Fish and Game: Fish Bulletin. 1971, 152: 1-105.
    [28] Hacunda J S. Trophic relationships among demersal fishes in a coastal area of the gulf of Maine[J]. Fisheries Bulletin. 1981, 79: 775-788.
    [29] Labropoulou M, Machias A, Tsimenides N, et al. Feeding habits and ontogenetic diet shift of the striped red mullet, Mullus surmuletus Linnaeus, 1758[J]. Fisheries Research. 1997, 31(3): 257-267.
    [30] Morato T, Santos R S, Andrade J P. Feeding habits, seasonal and ontogenetic diet shift of blacktail comber, Serranus atricauda (Pisces: Serranidae), from the Azores, north-eastern Atlantic[J]. Fisheries Research. 2000, 49(1): 51-59.
    [31] Field J G, Clarke K R, Warwick R M. A pratical strategy for analysis of multispecies distribution patterns[J]. Marine Ecolgoy Progress Series. 1982, 8: 37-52.
    [32] Clarke K R, Gorley R N. PRIMER 5 for Windows, version 5.2.9[M]. Plymouth, UK: PRIMER-E, Ltd., 2002.
    [33] Zar J H. Biostatistical Analysis[M]. New Jersey: Prentice Hall, 1996.
    [34] Maia A, Queiroz N, Correia J, et al. Food habits of the shortfin mako, Isurus oxyrinchus , off the southwest coast of Portugal[J]. Environmental Biology of Fishes. 2006, 77(2): 157-167.
    [35] Potier M, Marsac F, Cherel Y, et al. Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[J]. Fisheries Research. 2007, 83(1): 60-72.
    [36]林龙山,严利平,凌建忠,等.东海带鱼摄食习性的研究[J].海洋渔业. 2005, 27(3): 187-192.
    [37] Bowman R E, Bowman E W. Diurnal variation in the feeding intensity and catchability of silver hake (Merluccius bilinearis)[J]. Canadian Journal of Fisheries and Aquatic Science. 1980, 37: 1565-1572.
    [1]卢伙胜,颜云榕,侯刚. 2006~2007年北部湾渔业资源调查与评估报告[R].湛江:广东海洋大学, 2008.
    [2] Li C. Hairtail fishes from Chinese coastal waters (Trichiuridea)[J]. Marine Sciences. 1992, 4(3): 212-219.
    [3] Martins A S, Haimovici M. Distribution, abundance and biological interactions of the cutlassfish Trichiurus lepturus in the southern Brazil subtropical convergence ecosystem[J]. Fisheries Research. 1997, 30(3): 217-227.
    [4] Bakhoum S A. Diet overlap of immigrant narrow-barred Spanish mackerel Scomberomorus commerson (Lac., 1802) and the largehead hairtail ribbonfish Trichiurus lepturus (L., 1758) in the Egyptian Mediterranean coast[J]. Animal Biodiversity and Conservation. 2007, 30(2): 147-160.
    [5] Bittar V T, di Beneditto A P M. Diet and potential feeding overlap between Trichiurus lepturus (Osteichthyes: Perciformes) and Pontoporia blainvillei (Mammalia: Cetacea) in northern Rio de Janeiro, Brazil[J]. Zoologia. 2009, 26(2): 374-378.
    [6] Martins A S, Haimovici M, Palacios R. Diet and feeding of the cutlassfish Trichiurus lepturus in the Subtropical Convergence Ecosystem of southern Brazil[J]. Journal of the Marine Biological Association of the United Kingdom. 2005, 85(5): 1223-1229.
    [7]韦晟.黄海带鱼(Trichiurus haumela Forskal)的摄食习性[J].海洋水产研究. 1980, 1(1): 49-57.
    [8]张波.东、黄海带鱼的摄食习性及随发育的变化[J].海洋水产研究. 2004, 25(2): 6-12.
    [9] Chiou W, Chen C, Wang C, et al. Food and feeding habits of ribbonfish Trichiurus lepturus in coastal waters of south-western Taiwan[J]. Fisheries Science. 2006, 72(2): 373-381.
    [10]林龙山,张寒野,李惠玉,等.东海带鱼食性的季节变化[J].中国海洋大学学报. 2006, 36(6): 932-936.
    [11] Liu Y, Cheng J, Chen Y. A spatial analysis of trophic composition: a case study of hairtail (Trichiurus japonicus) in the East China Sea[J]. Hydrobiologia. 2009, 632(1): 79-90.
    [12]颜云榕,陈骏岚,侯刚,等.北部湾带鱼的摄食习性[J].应用生态学报. 2010, 21(3): 749-755.
    [13]黄宗国.中国海洋生物种类及分布[M].北京:海洋出版社, 2008.
    [14]宋海棠,俞存根,薛利建,等.东海经济虾蟹类[M].北京:海洋出版社, 2006.
    [15]陈清潮.南沙群岛至华南沿岸的鱼类(一)[M].北京:科学出版社, 1997.
    [16]上海水产学院,中国科学院动物研究所,中国科学院海洋研究所.南海鱼类志[M].北京:科学出版社, 1962.
    [17]张世义.中国动物志硬骨鱼纲鲟形目海鲢目鲱形目鼠鱚目[M].北京:科学出版社, 2001.
    [18] Hurtubia J. Trophic Diversity Measurement in Sympatric Predatory Species[J]. Ecology. 1973, 54(4): 885-890.
    [19] Adams C F, Pinchuk A I, Coyle K O. Seasonal changes in the diet composition and prey selection of walleye pollock (Theragra chalcogramma) in the northern Gulf of Alaska[J]. Fisheries Research. 2007, 84(3): 378-389.
    [20] Figueiredo M, Morato T, Barreiros J P, et al. Feeding ecology of the white seabream, Diplodus sargus, and the ballan wrasse, Labrus bergylta, in the Azores[J]. Fisheries Research. 2005, 75(1-3): 107-119.
    [21] Pielou E C. The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology. 1966, 13: 131-144.
    [22] Pielou E C. An introduction to Mathematical Ecology[M]. New York: Wiley-Interscience, 1969: 286.
    [23] Koen Alonso M, Alberto Crespo E, Anbal Garca N, et al. Fishery and ontogenetic driven changes in the diet of the spiny dogfish, Squalus acanthias, in Patagonian Waters, Argentina[J]. Environmental Biology of Fishes. 2002, 63(2): 193-202.
    [24] Hyslop E J. Stomach contents analysis—a review of methods and their application[J]. Journal of Fish Biology. 1980, 17(4): 411-429.
    [25] Pinkas L, Oliphant M S, Iverson L K. Food habits of albacore, bluefin tuna, and bonito in California waters[J]. State of California The Resources Agency Department of Fish and Game: Fish Bulletin. 1971, 152: 1-105.
    [26] Hacunda J S. Trophic relationships among demersal fishes in a coastal area of the gulf of Maine[J]. Fisheries Bulletin. 1981, 79: 775-788.
    [27] Labropoulou M, Machias A, Tsimenides N, et al. Feeding habits and ontogenetic diet shift ofthe striped red mullet, Mullus surmuletus Linnaeus, 1758[J]. Fisheries Research. 1997, 31(3): 257-267.
    [28] Morato T, Santos R S, Andrade J P. Feeding habits, seasonal and ontogenetic diet shift of blacktail comber, Serranus atricauda (Pisces: Serranidae), from the Azores, north-eastern Atlantic[J]. Fisheries Research. 2000, 49(1): 51-59.
    [29] Field J G, Clarke K R, Warwick R M. A pratical strategy for analysis of multispecies distribution patterns[J]. Marine Ecolgoy Progress Series. 1982, 8: 37-52.
    [30] Clarke K R, Gorley R N. PRIMER 5 for Windows, version 5.2.9[M]. Plymouth, UK: PRIMER-E, Ltd., 2002.
    [31] Schoener T W. Nonsynchronous spatial overlap of lizards in patchy habitats[J]. Ecology. 1970(51): 408-418.
    [32] Zar J H. Biostatistical Analysis[M]. New Jersey: Prentice Hall, 1996.
    [33] Fritz E S. Total diet comparison in fishes by Spearman Rank correlation coefficients[J]. Copeia. 1974(1): 210-214.
    [34]林龙山,严利平,凌建忠,等.东海带鱼摄食习性的研究[J].海洋渔业. 2005, 27(3): 187-192.
    [35] Munekiyo M, Kuwahara A. Food habits of ribbon fish in the western Wakasa Bay[J]. Bulletin of the Japanese Society of Scientific Fisheries. 1985, 51(6): 913-919.
    [36] Portsev P I. The feeding of cutlass fish, Trichiurus lepturus (Trichiuridae), off the west coast of India[J]. Journal of Echthyology. 1980, 20(5): 60-65.
    [37] Narasimham K A. Occurrence of early juveniles of ribbon fish, Trichiurus lepturus Linnaeus in the Kakinada area with notes on their food[J]. Indian Journal of Fish. 1972, 19: 210-214.
    [38] Farnsworth E J, Ellison A M. Scale-Dependent Spatial and Temporal Variability in Biogeography of Mangrove Root Epibiont Communities[J]. Ecological Monographs. 1996, 66(1): 45-66.
    [39] Macpherson E. Resource Partitioning in a Mediterranean Demersal Fish Community[J]. Marine Ecology Progress Series. 1981, 4: 183-193.
    [1]南海水产研究所.南海北部底拖网鱼类资源调查报告(海南岛以东)第四册[R]广州:南海水产研究所, 1966.
    [2]卢伙胜,颜云榕,侯刚等. 2009年度南海渔业资源调查报告[R]湛江:广东海洋大学, 2010.
    [3]张其永,徐旭才.闽南-台湾浅滩渔场多齿蛇鲻种群年龄和生长特性[J].台湾海峡, 1988(3): 256-263.
    [4]徐旭才,张其永.多齿蛇鲻鳞片年轮形成的研究[J].厦门大学学报:自然科学版, 1989, 28(2): 208-210.
    [5]舒黎明,邱永松.南海北部多齿蛇鲻生物学分析[J].中国水产科学, 2004, 11(2): 154-158.
    [6]刘金殿,卢伙胜,朱立新,等.北部湾多齿蛇鲻雌雄群体组成、生长、死亡特征的差异[J].海洋渔业, 2009, 31(3): 243-253.
    [7] Bakash A A. Reproductive Biology of Lizard Fish, Saurida tumbu (Forskal) in the Jizan Region of the Red Sea[J]. Marine Sciences, 1996, 7: 169-178.
    [8]黄梓荣,陈作志.南沙群岛西南陆架区多齿蛇鲻的资源变动[J].海洋湖沼通报, 2005(3): 50-56.
    [9] Yamada U, Tagawa M, Mako H. On the feeding activity of the lizard-fish, Saurida tumbi (BLOCH), in the East China Sea [J]. Bulletin of the Seikai Regional Fisheries Research Laboratory, 1966, 34: 11-25.
    [10] Rao K V S. Food and feeding of lizardfishes (Saurida spp.) from northwestern part of Bay of Bengal[J]. Indian Journal of Fisheries, 1981, 28(1&2): 47-64.
    [11]张其永,杨甘霖.闽南-台湾浅滩渔场狗母鱼类食性的研究[J].水产学报, 1986, 10(2): 213-222.
    [12]张月平,章淑珍.南沙群岛西南陆架海域主要底层经济鱼类的食性[J].中国水产科学, 1999, 6(2): 57-60.
    [13]张月平.南海北部湾主要鱼类食物网[J].中国水产科学, 2005, 12(5): 621-631.
    [14]陈大刚.渔业资源生物学[M].北京:农业出版社, 1997.
    [15] Davis T. Seasonal changes in gonad maturity, and abundance of larvae and early juveniles ofbarramundi, Lates calcarifer (Bloch), in Van Diemen Gulf and the Gulf of Carpentaria[J]. Marine and Freshwater Research, 1985, 36(2): 177-190.
    [16]上海水产学院,中国科学院动物研究所,中国科学院海洋研究所.南海鱼类志[M].北京:科学出版社, 1962.
    [17]成庆泰,郑葆珊.中国鱼类系统检索[M].北京:科学出版社, 1987.
    [18]宋海棠,俞存根,薛利建,等.东海经济虾蟹类[M].北京:海洋出版社, 2006.
    [19]黄宗国.中国海洋生物种类及分布[M].北京:海洋出版社, 2008.
    [20]邓景耀,杨纪明.渤海主要生物种间关系及食物网的研究[J].中国水产科学, 1997, 4(4): 1-7.
    [21] Adams C F, Pinchuk A I, Coyle K O. Seasonal changes in the diet composition and prey selection of walleye pollock ( Theragra chalcogramma ) in the northern Gulf of Alaska[J]. Fisheries Research, 2007, 84(3): 378-389.
    [22] Figueiredo M, Morato T, Barreiros J P, et al. Feeding ecology of the white seabream, Diplodus sargus, and the ballan wrasse, Labrus bergylta, in the Azores[J]. Fisheries Research, 2005, 75(1-3): 107-119.
    [23] Hurtubia J. Trophic Diversity Measurement in Sympatric Predatory Species [J]. Ecology, 1973, 54(4): 885-890.
    [24] Pielou E C. The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology, 1966, 13: 131-144.
    [25] Pielou E C. An Introduction to Mathematical Ecology[M]. New York: Wiley-Interscience, 1969.
    [26] Koen Alonso M, Alberto Crespo E, Anbal Garca N, et al. Fishery and ontogenetic driven changes in the diet of the spiny dogfish, Squalus acanthias, in Patagonian Waters, Argentina[J]. Environmental Biology of Fishes, 2002, 63(2): 193-202.
    [27] Hyslop E J. Stomach contents analysis—a review of methods and their application[J]. Journal of Fish Biology, 1980, 17(4): 411-429.
    [28]殷名称.鱼类生态学[M].北京:农业出版社, 1995.
    [29] Field J G, Clarke K R, Warwick R M. A pratical strategy for analysis of multispecies distribution patterns[J]. Marine Ecolgoy Progress Series, 1982, 8: 37-52.
    [30] Pinkas L, Oliphant M S, Iverson L K. Food habits of albacore, bluefin tuna, and bonito inCalifornia waters[J]. State of California The Resources Agency Department of Fish and Game: Fish Bulletin, 1971, 152: 1-105.
    [31] Hacunda J S. Trophic relationships among demersal fishes in a coastal area of the gulf of Maine[J]. Fisheries Bulletin, 1981, 79: 775-788.
    [32] Morato T, Santos R S, Andrade J P. Feeding habits, seasonal and ontogenetic diet shift of blacktail comber, Serranus atricauda (Pisces: Serranidae), from the Azores, north-eastern Atlantic[J]. Fisheries Research, 2000, 49(1): 51-59.
    [33] Htun-Han M. The reproductive biology of the dab Limanda limanda (L.) in the North Sea: seasonal changes in the ovary[J]. Journal of Fish Biology, 1978, 13(3): 351-359.
    [34] Clarke K R, Gorley R N. PRIMER 5 for Windows, version 5.2.9 [M]. Plymouth, UK: PRIMER-E, Ltd., 2002.
    [35]范金城,梅长林.数据分析[M].北京:科学出版社, 2002.
    [36] Pauly D, Christensen V, Dalsgaard J, et al. Fishing down marine food Webs[J]. Science, 1998, 279(5352): 860-863.
    [37]万祎,胡建英,安立会,等.利用稳定氮和碳同位素分析渤海湾食物网主要生物种的营养层次[J].科学通报, 2005, 50(7): 708-712.
    [38] Magurran A E. Ecological Diversity and Its Measurements[M]. Princeton: Princeton University Press, 1998.
    [39]颜云榕,陈骏岚,侯刚,等.北部湾带鱼的摄食习性[J].应用生态学报, 2010, 21(3): 749-755.
    [40] Cortés E, Gruber S H. Diet, feeding habits and estimates of daily ration of young lemon sharks, Negaprion brevirostris (Poey)[J]. Copeia, 1990: 204-218.
    [41] Liu Y, Cheng J, Chen Y. A spatial analysis of trophic composition: a case study of hairtail ( Trichiurus japonicus ) in the East China Sea[J]. Hydrobiologia, 2009, 632(1): 79-90.
    [1]殷名称.鱼类生态学[M].北京:农业出版社, 1995.
    [2] Pauly D, Christensen V, Dalsgaard J, Froese R, Torres J F. Fishing Down Marine Food Webs[J]. Science. 1998, 279(5352): 860-863.
    [3] Shreeve R S, Collins M A, Tarling G A, Main C E, Ward P, et al. Feeding ecology of myctophid fishes in the northern Scotia sea[J]. Marine Ecology Progress Series. 2009, 386: 221-236.
    [4] Kolasinski J, Frouin P, Sallon A, Rogers K, Bruggemann, H J, et al. Feeding ecology and ontogenetic dietary shift of yellowstripe goatfish Mulloidichthys flavolineatus (Mullidae) at Reunion Island, SW Indian Ocean[J]. Marine Ecology Progress Series. 2009, 386: 181-195.
    [5] Wells R J D, Cowan Jr J H, Fry B. Feeding ecology of red snapper Lutjanus campechanus in the northern Gulf of Mexico[J]. Marine Ecology Progress Series. 2008, 361: 213-225.
    [6] Watanabe H, Kubodera T, Yokawa K. Feeding ecology of the swordfish Xiphias gladius in the subtropical region and transition zone of the western North Pacific[J]. Marine Ecology Progress Series. 2009, 396: 111-122.
    [7] Wells R J D, Rooker J R. Feeding ecology of pelagic fish larvae and juveniles in slope waters of the Gulf of Mexico[J]. Journal of Fish Biology. 2009, 75(7): 1719-1732.
    [8] Wilson M T, Jump C M, Duffy-Anderson J T. Comparative analysis of the feeding ecology of two pelagic forage fishes: Capelin Mallotus villosus and walleye pollock Theragra chalcogramma[J]. Marine Ecology Progress Series. 2006, 317: 245-258.
    [9]韦晟.黄海带鱼(Trichiurus haumela Forskal)的摄食习性[J].海洋水产研究. 1980, 1(1): 49-57.
    [10]陈亚瞿,朱启琴.东海带鱼摄食习性、饵料基础及与渔场的关系[J].水产学报. 1984, 8(2): 135-145.
    [11]张波.东、黄海带鱼的摄食习性及随发育的变化[J].海洋水产研究. 2004, 25(2): 6-12.
    [12]颜云榕,陈骏岚,侯刚,卢伙胜,金显仕.北部湾带鱼的摄食习性[J].应用生态学报. 2010, 21(3): 749-755.
    [13]颜云榕,王田田,侯刚,卢伙胜,金显仕.北部湾多齿蛇鲻摄食习性及随生长发育的变化[J].水产学报. 2010, 4(7): 55-64.
    [14]张波,金显仕,戴芳群.长江口两种重要石首鱼类的摄食习性[J].动物学报. 2008, 54(2): 209-217.
    [15]朱国平,周应祺,许柳雄,姜文新.大西洋西部大眼金枪鱼摄食生态的初步研究[J].水产学报. 2007, 31(1): 23-30.
    [16] Blaber S J M, Milton D A, Rawlinson N J F, Tiroba G, Nichols P V. Diets of lagoon fishes of the Solomon Islands: Predators of tuna baitfish and trophic effects of baitfishing on the subsistence fishery[J]. Fisheries Research. 1990, 8(3): 263-286.
    [17]国家技术监督局.海洋调查标准——海洋生物调查[M].北京,标准出版社. 1991.
    [18]陈大刚.渔业资源生物学[M].北京:农业出版社, 1997.
    [19] Davis T. Seasonal changes in gonad maturity, and abundance of larvae and early juveniles of barramundi, Lates calcarifer (Bloch), in Van Diemen Gulf and the Gulf of Carpentaria[J]. Marine and Freshwater Research. 1985, 36(2): 177-190.
    [20]上海水产学院,中国科学院动物研究所,中国科学院海洋研究所.南海鱼类志[M].北京:科学出版社, 1962.
    [21]成庆泰,郑葆珊.中国鱼类系统检索[M].北京:科学出版社, 1987.
    [22]宋海棠,俞存根,薛利建,姚光展.东海经济虾蟹类[M].北京:海洋出版社, 2006.
    [23] Adams C F, Pinchuk A I, Coyle K O. Seasonal changes in the diet composition and prey selection of walleye pollock (Theragra chalcogramma ) in the northern Gulf of Alaska[J]. Fisheries Research. 2007, 84(3): 378-389.
    [24] Figueiredo M, Morato T, Barreiros J P, et al. Feeding ecology of the white seabream, Diplodus sargus, and the ballan wrasse, Labrus bergylta, in the Azores[J]. Fisheries Research. 2005, 75(1-3): 107-119.
    [25] Hurtubia J. Trophic Diversity Measurement in Sympatric Predatory Species[J]. Ecology. 1973, 54(4): 885-890.
    [26] Pielou E C. The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology. 1966, 13: 131-144.
    [27] Pielou E C. An Introduction to Mathematical Ecology[M]. New York: Wiley-Interscience, 1969: 286.
    [28] Koen Alonso M, Alberto Crespo E, Anbal Garca N, et al. Fishery and ontogenetic driven changes in the diet of the spiny dogfish, Squalus acanthias, in Patagonian Waters,Argentina[J]. Environmental Biology of Fishes. 2002, 63(2): 193-202.
    [29] Hyslop E J. Stomach contents analysis—a review of methods and their application[J]. Journal of Fish Biology. 1980, 17: 411-429.
    [30] Morato T, Santos R S, Andrade J P. Feeding habits, seasonal and ontogenetic diet shift of blacktail comber, Serranus atricauda (Pisces: Serranidae), from the Azores, north-eastern Atlantic[J]. Fisheries Research. 2000, 49(1): 51-59.
    [31] Htun-Han M. The reproductive biology of the dab Limanda limanda (L.) in the North Sea: seasonal changes in the ovary[J]. Journal of Fish Biology. 1978, 13(3): 351-359.
    [32]万祎,胡建英,安立会,安伟,杨敏,等.利用稳定氮和碳同位素分析渤海湾食物网主要生物种的营养层次[J].科学通报. 2005, 50(7): 708-712.
    [33] Minagawa M, Wada E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between [delta]15N and animal age[J]. Geochimica et Cosmochimica Acta. 1984, 48(5): 1135-1140.
    [34] Deniro M J, Epstein S. Influence of diet on the distribution of carbon isotopes in animals[J]. Geochimica et Cosmochimica Acta. 1978, 42(5): 495-506.
    [35] Post D M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions[J]. Ecology. 2002, 83(3): 703-718.
    [36] Mariotti A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements[J]. Nature. 1983, 303(5919): 685-687.
    [37] Vander Zanden J M, Joseph B R. Variation inδ15N andδ13C trophic fractionation: implications for aquatic food web studies[J]. Limnology and Oceanography. 2001, 46(8): 2061-2066.
    [38]郭旭鹏,李忠义,金显仕,戴芳群.采用碳氮稳定同位素技术对黄海中南部鳀鱼食性的研究[J].海洋学报. 2007, 29(2): 98-104.
    [39]范金城,梅长林.数据分析[M].北京:科学出版社, 2002.
    [40] Field J G, Clarke K R, Warwick R M. A pratical strategy for analysis of multispecies distribution patterns[J]. Marine Ecolgoy Progress Series. 1982, 8:37-52.
    [41] Clarke K R, Gorley R N. PRIMER 5 for Windows, version 5.2.9 [M]. Plymouth, UK: PRIMER-E, Ltd., 2002.
    [42] Sherwood G D, Rose A G. Stable isotope analysis of some representative fish andinvertebrates of the Newfoundland and Labrador continental shelf food web[J]. Estuarine, Coastal and Shelf Science. 2005, 63(4): 537-549.
    [43] Tieszen L L, Boutton T W, Tesdahl K G. Fractionation and turnover of stable carbon isotopes in animal tissues: implications forδ13C analysis of diet[J]. Oecologia. 1983, 57(1): 32-37.
    [44] Lorrain A, Paulet Y, Chauvaud L. Differentialδ13C andδ15N signatures among scallop tissues: implications for ecology and physiology[J]. Journal of Experimental Marine Biology and Ecology. 2002, 275(1): 47-61.
    [45] Liu Y, Cheng J, Chen Y. A spatial analysis of trophic composition: a case study of hairtail (Trichiurus japonicus ) in the East China Sea[J]. Hydrobiologia. 2009, 632(1): 79-90.
    [46] Miyake Y, Wade E. The abundance ratio of 15N / 14N in marine environments[J]. Records of Oceanographic Works in Japan. 1967, 9: 32-59.
    [1]张汉科.闽中渔场白姑鱼的年龄与生长特性[J].台湾海峡, 1987, 6(3): 269-274.
    [2]胡雅竹,钱世勤.白姑鱼年龄和生长的研究[J].海洋渔业, 1989, 11(4): 158-162.
    [3]陈作志,邱永松,黄梓荣.南海北部白姑鱼生长和死亡参数的估算[J].应用生态学报, 2005, 16(4): 712-716.
    [4] Yamaguchi A, Todoroki T, Kume G. Reproductive cycle, sexual maturity and diel-reproductive periodicity of white croaker, Pennahia argentata (Sciaenidae), in Ariake Sound, Japan [J]. Fisheries Research, 2006, 82(1-3): 95-100.
    [5]张波,金显仕,戴芳群.长江口两种重要石首鱼类的摄食习性[J].动物学报, 2008, 54(2): 209-217.
    [6] Han, Z Q, Gao T X, Zhuang Z M, et al. Genetic variation among white croaker populations[J]. Journal of Ocean University of China, 2008, 7(1): 72-76.
    [7]Han Z, Shui B, Wang Z, Miao Z, Gao T. Analysis of genetic structure of white croaker using amplified fragment length polymorphism (AFLP) markers[J]. African Journal of Biotechnology, 2009, 18:4308-4315
    [8]Han Z, Gao T, Yanagimoto T, Sakurai Y. Deep phylogeographic break among white croaker Pennahia argentata (Sciaenidae, Perciformes) populations in North-western Pacific[J]. Fisheries Science, 2008, 74: 770-780
    [9] Yamada H, Yamada U. Descriptive morphology of juvenile stages of two sciaenids, Miichthys miiuy and Pennahia macrocephalus , from the East China Sea[J]. Ichthyological Research, 1999, 46(1): 93-99.
    [10] Yan Y R, Wu Y F , Lu H S, et al. Using otolith weight to predict the age of Pennahia macrocephalus in the mouth of the Beibu Gulf[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(2): 342-349.
    [11]国家技术监督局.海洋调查规范[S].北京:中国标准出版社. 1992.
    [12]苏锦祥.鱼类学与海水鱼类养殖[M].北京:农业出版社, 1982:276-279.
    [13]上海水产学院,中国科学院动物研究所,中国科学院海洋研究所.南海鱼类志[M].北京:科学出版社, 1962.
    [14]成庆泰,郑葆珊.中国鱼类系统检索[M].北京:科学出版社, 1987.
    [15]宋海棠,俞存根,薛利建,姚光展.东海经济虾蟹类[M].北京:海洋出版社, 2006.
    [16] Pinkas L, Oliphant M S, Iverson L K. Food habits of albacore, bluefin tuna, and bonito in California waters[J]. State of California The Resources Agency Department of Fish and Game: Fish Bulletin. 1971, 152: 1-105.
    [17] Monteiro P, Bentes L, Coelho R, et al. Age and growth, mortality, reproduction and relativeyield per recruit of the bogue, Boops boops Linne′, 1758 (Sparidae), from the Algarve (south of Portugal) longline fishery[J]. Journal of Applied Ichthyology, 2006, 22: 345-352
    [18]高天翔.青岛近海青鳞鱼年龄、生长与死亡特征的研究[J].海洋湖沼通报,1993,4: 86-92.
    [19]张其永,李福振,杜金瑞.厦门杏林湾鲻鱼年龄和生长的研究[J].水产学报,1981,5 (2): 121-132.
    [20]费鸿年,张诗全.水产资源学[M].北京:中国科学技术出版社,1990: 156-285.
    [21]Cerrato, R.M. Interpretable statistical tests for growth comparisons using parameters in the von Bertalanffy equation[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1990,47: 1416-1426
    [22] Bozdogan H. Model selection and Akaike's Information Criterion (AIC):The general theory and its analytical extensions[J]. Psychometrika, 1987, 52(3): 345-370.
    [23] Burnham K P, Anderson D R. Model Selection and Multi-model Inference: a Practical Information-theoretic Approach[M]. New York: Springer, 2002: 49-89.
    [24]Schwarz G. Estimating the Dimension of a Model[M]. Annals of Statistics, 1978, 6: 461-464.
    [25] Imai C, Sakai H, Katsura K, et al. Growth model for the endangered cyprinid fish Tribolodon nakamurai based on otolith analyses[J]. Fish Science, 2002, 68(4): 843-848.
    [26] QuinnⅱJ T, Deriso R B. Quantitative Fish Dynamics[M]. London: Oxford University Press, 1999.
    [27] Chen Y, Jackson A D, Harvey H H. A comparison of von Bertalanffy and polynomial functions in the modeling fish growth data [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49: 1228-1235.
    [28] Wayne A . Hubert, Geroge T. Baxter and Mark Harrington .Comparison of age determinations based on scales, otoliths and fin rays for cutthroat trout from Yellowstone Lake [J]. Northwest Science. 1987, 61(l) : 32-36.
    [29]南海水产研究所.南海北部底拖网鱼类资源调查报告(海南岛以东)第四册.[R].广州:南海水研究所,1966: 1-298
    [30]陈佩熏.梁子湖鲤鱼鳞片年轮的标志及形成时期[J].水生生物集刊,1959(3):255-261
    [31]邓中粦,余志堂,许蕴玕等.汉江主要经济鱼类的年龄和生长[M].鱼类学论文集(第一辑),科学出版社,1981:97-118
    [32]张其永,张雅芝.闽南—台湾浅滩二长棘鲷年龄和生长研究[J].水产学报, 1983,(02): 131-143
    [33]Carlander K D. A history of scale age and growth studies of North American freshwater fish. In: Summerfelt R C. and Hall G E.,Age and Growth in Fish[M]. Iowa State University Press,Ames. 1987: 1-21
    [34] Per Sparre, Siebren C.Venema.热带渔业资源评估导论[M].北京:中国农业科技出版社, 1992:52-56
    [35]Hou G, Lu H S, Feng B, Zhu J F. Age and growth of crimson sea bream Paragyrops edita Tanaka in Beibu Gulf [J]. Journal of Ocean University of China. 2008, 7(4): 457-465
    [36] Newman, S.J, Cappo, M., Williams, D.M. Age, growth, mortality rates and corresponding yield estimates using otoliths of the tropical red snappers, Lutijanus erythropterus, L. melabarius and L. sebae, from the Great Barrier Reef[J]. Fisheries research, 2000, 48:1-14
    [37]Hilborn R, and Waters C J. Quantitave Fisheries Stock Assessment, Choice, Dynamics and Uncertainty[M]. Chapman and Hall, New York, 1992: 409-433.
    [38] Urban H J. Modeling growth of different developmental stages in bivalves[J]. Marine Ecology Progress Series, 2002, 238:109-114.
    [39] Morales-Nin B, Moranta J. Life history and fishery of the common dentex (Dentex dentex) in Mollorca (Balearic Islands, western Mediterranean) [J]. Fisheries Research, 1997, 30(1-2): 67-76.
    [40]Shono H, 2000.Efficiency of the finite correction of Akaike’s information criteria[J]. Fisheries Science 66: 608-610.
    [41]Imai C, Sakai H, Katsura K, Honto W, Hida Y and Takazawa T. Growth model for the endangered cyprinid fish Tribolodon nakamurai based on otolish analyses[J]. Fisheries Science, 2002, 68:843-848.
    [42]Porch C E, Wilson C A, and Nieland D L. A new growth model for red drum (Sciaenops ocellatus) that accommodates seasonal and ontogenic changes in growth rates. [J] Fishery Bulletin, 2002, 100:149-152.
    [43] Granda V P, Masuda Y, and Matsuoka T. Age and growth of the yellowbelly threadfin bream Nemipterus bathybius in Kagoshima Bay, southern Japan[J]. Fisheries Science, 2004 70:497-506.
    [44] Monteiro P, Bentes L, Coelho R, et al. Age and growth, mortality, reproduction and relative yield per recruit of the bogue, Boops boops Linne′, 1758 (Sparidae), from the Algarve (south of Portugal) longline fishery[J]. Journal of Applied Ichthyology, 2006, 22: 345-352.
    [45]张波,金显仕,戴芳群.长江口两种重要石首鱼类的摄食习性[J].动物学报, 2008, 54(2): 209-217.
    [46]颜云榕,陈骏岚,侯刚,等.北部湾带鱼的摄食习性[J].应用生态学报, 2010, 21(3): 749-755.
    [1]韦晟.黄海带鱼(Trichiurus haumela Forskal)的摄食习性[J].海洋水产研究. 1980(1): 49-57.
    [2]邓景耀,赵传絪.海洋渔业生物学[M].北京:农业出版社, 1991.
    [3]颜云榕,陈骏岚,侯刚,等.北部湾带鱼的摄食习性[J].应用生态学报. 2010, 21(3): 749-755.
    [4] Bakhoum S A. Diet overlap of immigrant narrow-barred Spanish mackerel Scomberomorus commerson(Lac., 1802) and the largehead hairtail ribbonfish Trichiurus lepturus(L., 1758) in the Egyptian Mediterranean coast[J]. Animal Biodiversity and Conservation. 2007, 30(2): 147-160.
    [5] Liu Y, Cheng J, Chen Y. A spatial analysis of trophic composition: a case study of hairtail (Trichiurus japonicus) in the East China Sea[J]. Hydrobiologia. 2009, 632(1): 79-90.
    [6]陈亚瞿,朱启琴.东海带鱼摄食习性、饵料基础及与渔场的关系[J].水产学报. 1984, 8(2): 135-145.
    [7]林龙山,张寒野,李惠玉,等.东海带鱼食性的季节变化[J].中国海洋大学学报. 2006, 36(6): 932-936.
    [8]张波.东、黄海带鱼的摄食习性及随发育的变化[J].海洋水产研究. 2004, 25(2): 6-12.
    [9]王复振.带鱼产卵期的食性[M].中国动物学会三十周年学术讨论会论文摘要汇编,北京:科学出版社, 1965.
    [10] Deniro M J, Epstein S. Influence of diet on the distribution of carbon isotopes in animals[J]. Geochimica et Cosmochimica Acta. 1978, 42(5): 495-506.
    [11] Minagawa M, Wada E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between [delta]15N and animal age[J]. Geochimica et Cosmochimica Acta. 1984, 48(5): 1135-1140.
    [12] Satterfield F R, Finney B P. Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years[J]. Progress In Oceanography. 2002, 53(2-4): 231-246.
    [13] Estrada J A, Lutcavage M, Thorrold S R. Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis[J]. MarineBiology. 2005, 147(1): 37-45.
    [14] Stowasser G, Mcallen R, Pierce G J, et al. Trophic position of deep-sea fish--Assessment through fatty acid and stable isotope analyses[J]. Deep Sea Research Part I: Oceanographic Research Papers. 2009, 56(5): 812-826.
    [15]万祎,胡建英,安立会,等.利用稳定氮和碳同位素分析渤海湾食物网主要生物种的营养层次[J].科学通报. 2005, 50(7): 708-712.
    [16]郭旭鹏,李忠义,金显仕,等.采用碳氮稳定同位素技术对黄海中南部鳀鱼食性的研究[J].海洋学报. 2007, 29(2): 98-104.
    [17]卢伙胜,欧帆,颜云榕,等.应用氮稳定同位素技术对雷州湾海域主要鱼类营养级的研究[J].海洋学报. 2009(3): 167-174.
    [18]李忠义,左涛,戴芳群,等.运用稳定同位素技术研究长江口及南黄海水域春季拖网渔获物的营养级[J].中国水产科学. 2010(1): 103-109.
    [19]李红燕.稳定碳、氮同位素在生态系统中的应用研究——以无定河、黄东海生态系统为例[D].青岛:中国海洋大学, 2004.
    [20]蔡德陵,李红燕,唐启升,等.黄东海生态系统食物网连续营养谱的建立:来自碳氮稳定同位素方法的结果[J].中国科学:C辑. 2005, 35(2): 123-130.
    [21]国家技术监督局.海洋调查标准——海洋生物调查[S].北京,中国标准出版社, 1991.
    [22]殷名称.鱼类生态学[M].北京:农业出版社, 1995.
    [23] Post D M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions[J]. Ecology. 2002, 83(3): 703-718.
    [24] Mariotti A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements[J]. Nature. 1983, 303(5919): 685-687.
    [25] Eacute A, Mariotti. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements[J]. Nature. 1983, 303.
    [26] Vander Zanden J M, Joseph B R. Variation inδ15N andδ13C Trophic Fractionation: Implications for Aquatic Food Web Studies [J]. Limnology and Oceanography. 2001, 46(8): 2061-2066.
    [27] Davenport S R, Bax N J. A trophic study of a marine ecosystem off southern Australia using stable isotopes of carbon and nitrogen[J]. Canadian Journal of Fisheries and Aquatic Sciences. 2002, 59: 514-530.
    [28]林龙山,严利平,凌建忠,等.东海带鱼摄食习性的研究[J].海洋渔业. 2005, 27(3): 187-192.
    [29]张其永,林秋眠,林尤通,等.闽南-台湾浅滩渔场鱼类食物网研究[J].海洋学报. 1981, 3(2): 275-290.
    [30]张月平.南海北部湾主要鱼类食物网[J].中国水产科学. 2005, 12(5): 621-631.
    [31] Hecky R E, Hesslein R H. Contributions of Benthic Algae to Lake Food Webs as Revealed by Stable Isotope Analysis[J]. Journal of the North American Benthological Socity. 1995, 14(4): 631-653.
    [32] Bodin N, Le Loc'H F, Hily C. Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues[J]. Journal of Experimental Marine Biology and Ecology. 2007, 341(2): 168-175.
    [33] Sherwood G D, Rose A G. Stable isotope analysis of some representative fish and invertebrates of the Newfoundland and Labrador continental shelf food web[J]. Estuarine, Coastal and Shelf Science. 2005, 63: 537-549.
    [34] Tieszen L. L.,Boutton T. W.,Tesdahl K. G.,等. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for未13C analysis of diet[J]. Oecologia. 1983, 57(1): 32-37.
    [35] Lorrain A, Paulet Y, Chauvaud L, et al. Differential [delta]13C and [delta]15N signatures among scallop tissues: implications for ecology and physiology[J]. Journal of Experimental Marine Biology and Ecology. 2002, 275(1): 47-61.
    [36] Miyake Y, Wade E. The abundance ratio of 15N/14N in marine environments[J]. Records of Oceanographic Works in Japan. 1967, 9: 32-59.
    [37] Pauly D, Christensen V, Dalsgaard J, et al. Fishing Down Marine Food Webs[J]. Science. 1998, 279(5352): 860-863.
    [38]曾庆飞,孔繁翔,张恩楼,等.稳定同位素技术应用于水域食物网的方法学研究进展[J].湖泊科学. 2008, 20(1): 13-20.
    [39] Bosley K L, Wainright S C. Effects of preservatives and acidification on the stable isotope ratios (15N:14N, 13C:12C) of two species of marine animals[J]. Canadian Journal of Fisheries and Aquatic Sciences. 2001, 56(11): 2181-2185.
    [40] Wada E, Terazaki M, Kabaya Y, et al. 15N and 13C abundance in the Antarctic Ocean withemphasis on the biogeochemical structure of the food web[J]. Deep Sea Research. 1987, 34(5-6): 829-841.
    [41] Kling G W, Fry B, O'Brien W J. Stable Isotopes and Planktonic Trophic Structure in Arctic Lakes [J]. Ecology. 1992, 73(2): 561-566.
    [42] Lin H, Kao W, Wang Y. Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan[J]. Estuarine, Coastal and Shelf Science. 2007, 73(3-4): 527-537.
    [43] Carlier A, Riera P, Amouroux J, et al. Benthic trophic network in the Bay of Banyuls-sur-Mer (northwest Mediterranean, France): An assessment based on stable carbon and nitrogen isotopes analysis[J]. Estuarine, Coastal and Shelf Science. 2007, 72(1-2): 1-15.
    [44] Jennings S, Greenstreet S, Hill L, et al. Long-term trends in the trophic structure of the North Sea fish community: evidence from stable-isotope analysis, size-spectra and community metrics[J]. Marine Biology. 2002, 141(6): 1085-1097.
    [45] Pasquaud S, Elie P, Jeantet C, et al. A preliminary investigation of the fish food web in the Gironde estuary, France, using dietary and stable isotope analyses[J]. Estuarine, Coastal and Shelf Science. 2008, 78(2): 267-279.
    [46] Leakey C D B, Attrill M J, Jennings S, et al. Stable isotopes in juvenile marine fishes and their invertebrate prey from the Thames Estuary, UK, and adjacent coastal regions[J]. Estuarine, Coastal and Shelf Science. 2008, 77(3): 513-522.
    [47] Carabel S, Dominguez E G, Verisimo P. An assessment of sample processing methods for stable isotope analyses of marine food webs[J]. Journal of Experimental Marine Biology and Ecology. 2006, 336(2): 254-261.
    [48] Abdelwahed W, Degobert G, Stainmesse S, et al. Freeze-drying of nanoparticles: Formulation, process and storage considerations[J]. Advanced Drug Delivery Reviews2006 Supplementary Non-Thematic Collection. 2006, 58(15): 1688-1713.
    [49] Badalamenti F, Anna G D, Pinnegar J K, et al. Size-related trophodynamic changes in three garget fish species recovering from intensive trawling[J]. Marine Biology. 2002, 141: 561-570.
    [50] Zhou Q, Xie P, Xu J, et al. Seasonal variations in stable isotope ratios of two biomanipulation fishes and seston in a large pen culture in hypereutrophic Meiliang Bay, Lake Taihu[J].Ecological EngineeringLake Taihu Eutrophication: Control Countermeasures and Recycling Exploitation. 2009, 35(11): 1603-1609.
    [51] Takai N, Hirose N, Osawa T, et al. Carbon source and trophic position of pelagic fish in coastal waters of south-eastern Izu Peninsula, Japan, identified by stable isotope analysis[J]. 2007, 73(3): 593-608.
    [52]李忠义,金显仕,庄志猛,等.稳定同位素技术在水域生态系统研究中的应用[J].生态学报. 2005, 25(11): 3052-3060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700