南海环流数值模拟和南海及邻近海域对南海季风爆发的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分两部分,第一部分主要探讨了南海及邻近海域对南海夏季风爆发的影响,第二部分用较高分辨率的POM模式模拟了南海月平均环流。
    在第一部分里,利用历史海洋和大气资料分析了南海季风建立的大尺度背景场和南海季风爆发前后的大气环流演变特征、探讨了南海季风爆发的年际变化与热带海洋海温异常的关系;利用1998年南海季风试验中的现场观测资料,分析了南海季风爆发前后南海一个测站(6°15'N,110°E)的海面热通量和SST的变化特征和变化机制;并用区域气候模式对南海海洋在南海季风爆发中的作用作了数值实验研究,得到了以下几点主要结果:
    1、南海季风爆发前,孟加拉湾和中南半岛的对流和降水释放的潜热,会促使200hPa南亚高压向中南半岛西北部移动,对南海季风的爆发可能具有触发作用。
    2、南海季风爆发早晚与前期(特别是春季)大气环流异常有很好的关系,前期大气环流异常基本上决定了南海季风爆发的早晚。印度洋上的赤道西风和越赤道气流异常对南海季风爆发的影响显著。
    3、热带海温异常可以通过影响前期季风区的异常环流来影响南海季风的爆发,一种可能过程是:关键海区的海温异常(正或负)所引起的对流异常(上升或下沉),会使得亚洲季风的横向(东西)和侧向(南北)两个辐散环流分量出现异常,从而引起南海季风的提前或推迟爆发。与南海季风爆发有显著相关的海区往往位于这两个季风环流分量的上升或下沉区。赤道中东太平洋可以通过Walker的异常影响南海季风的爆发。
    4、合成分析表明,南海海温北高南低的分布对应着季风爆发早,整个南海海温偏高时,对应着季风爆发晚。但从相关分析来看,前期南海海温异常与南海季风爆发早晚的关系并不显著。仅在季风爆发前4侯,南海的南部才出现较显著的正相关(海温高,季风爆发晚),这种正相关很可能是一种响应信号,而不具有主导作用。
    5、1998年南海季风爆发前,南海南部站点(6°15'N,110°E)SST急剧升高;季风爆发后,SST持续下降。爆发前的增温主要原因有两个:一是风速降低导致的潜热输送的减小;二是风速降低导致的海洋混合过程减弱,出现海表薄层跃层。风速的变化在其中起了重要作用。爆发后的降温主要是由云量增加导致的短波辐射的大幅度降低引起的;南海季风爆发前,海面净得热,海面净热通量的变化主要由潜热输送的变化引起的。爆发后,海面净失热;在整个观测时段,海面净热
    
    通量对SST的变化有决定性的作用。但各分量对SST变化的相对贡献有所不同,对SST变化有主要贡献的只有潜热和短波辐射。并且在季风爆发前后又有所不同。具体来说,南海季风爆发前,潜热对SST变化贡献最大,短波辐射次之。季风爆发后,短波辐射对SST变化贡献最大,潜热次之。海洋动力过程中,水平平流对SST变化的影响很小夹卷过程是对SST变化的一种重要修正,它是导致几次短暂降温的主要原因。但它不频繁发生。
    6、区域气候模式模拟结果表明,南海增温可以使南海季风的爆发提前并使季风的爆发现象更明显,它主要通过以下三种途径影响南海季风的爆发:南海增温可在其西侧的中南半岛、孟加拉湾产生气旋差值环流,使得位于该处的印缅槽和季风低压加强,促使印度洋上的赤道西风加强北抬,使得南海季风提前爆发。 通过加强南海与其以南地区的热力差异,促使越赤道气流的提前出现;南海海温增加,会导致南海地区的大气湿度增加,湿度增加会导致大气出现不稳定,有利于对流的出现和季风的爆发。南海海温的作用与合成分析的结果是不一致的,在实际的大气环流异常中,南海海温的作用很可能被掩盖。
    
    在第二部分里,利用较高分辨率的POM模式模拟了南海的月平均环流较好地模拟出了南海环流的基本特征,并得到了以下几点有意义的结果:
    1、黑潮流套常年存在,但有明显的季节变化:冬季较弱,春季有所加强,夏、秋季流套向南海的西伸较显著,平均达到117(-118(E,8、9月份可以达到116(E附近。模拟出了黑潮分离流环的形成和脱离过程。
    2、在一年的大部分月份里没有黑潮的直接分支进入南海,在黑潮流套比较强的月份,看不到明显的分支,但在10、11、12月、1月这几个黑潮流套比较弱的月份,则有明显的分支进入南海。
    3、冬季有一部分黑潮水进入台湾海峡;而夏季台湾海峡中的北向流水主要来自南海暖流水的一部分,没有明显的黑潮水流入。
    4、夏季吕宋海峡的流向在垂向上有差异,在海峡南部,上层为流入,下层为流出;北部上层为流出,下层为流入;与上层的流速相比,下层要弱得多。
    5、模拟出了黑潮主轴东侧的暖涡和台湾岛东南角的深层气旋涡。
The thesis consists of two parts. The first part deals with influences of the South China Sea and its adjacent oceans on onset of South China Sea summer monsoon (SCSSM). In the second part, an ocean model POM with higher resolution is used to simulate the ocean circulation in the South China Sea.
    In the first part, atmospheric and oceanic datasets are used to analyse the large-scale circulation background during SCSSM set up and the evolutionary characteristics of atmospheric circulation before/after summer monsoon onset in the South China Sea. The relationship between the interannual variability of SCSSM onset and SST anomaly (SSTA) in the tropical oceans is also discussed. Observational data in situ taken in SCSMEX98 are used to analyse the variation of SST and surface heat flux at (6(15'N,110(E) during the onset period of SCSSM in 1998. Numerical study is also performed with a regional climate model (NCAR/ReGcm2) to study the impact of the South China Sea on SCSSM onset. The results obtained are as follows:
     1. Before SCSSM onset, latent heat flux released by convection and precipitation over the Bay of Bangle and Indo-China Peninsula made the South Asian High at 200hPa shift to the northwest of Indo-China peninsula, which may trigger onset of the SCSSM.
     2. A close relationship exists between SCSSM onset and the atmospheric circulation anomalies in spring, which basically control the early/late onset of the SCSSM. The impacts of the anomalies of equatorial westerly over the Indian Ocean and cross-equator flow on the SCSSM are significant.
    3. SSTA in the adjacent tropical oceans can affect SCSSM onset, by the way of affecting the atmospheric circulation over the monsoon region. One possible process is as follows: positive (negative) SST anomaly in the key regions gives rise to positive (negative) convection anomalies, inducing anomalies of the two divergent cells (longitudinal/latitudinal) of the Asian monsoon, with the result of earlier (later) onset of the SCSSM. The key regions close correlating to onset of SCSSM are always in the ascending or descending areas of the two components of the monsoon circulation. The mid- and eastern Pacific can affect onset of SCSSM through changing the Walker circulation.
    4. Composite analysis shows that the pattern with positive SSTA in the north of SCS and negative in the south corresponds to earlier onset of SCSSM, while the pattern with positive SSTA in the whole SCS basin is associated with later onset of SCSSM. But there is no significant correlation between the previous (April) SSTA
    
    and the onset time of the SCSSM from correlation analysis, only when 4 pentads before onset of SCSSM appears prominent positive correlation over the south of the SCS. This positive correlation may be a response signal and does not mean a leading role for SCSSM onset.
    5. Before onset of the SCSSM in 1998, SST at the southern station (6°15'N,110°E) increased abruptly, and decreased continuously after that. There are two main reasons for the increasing of SST before SCSSM onset. One is due to decrease of latent heat flux transition induced by weaker winds. The other reason is owing to weakening of oceanic mixing process as a result of wind speed decrease. The change of wind speed plays an important role in SST increasing. The decreasing of SST after SCSSM onset is mainly because the increased cloud leads to the depression of the short wave radiation largely. Before (after) monsoon onset, sea surface gains (loses) heat by transition of latent heat flux. During the observation period, the net heat flux through sea surface plays a leading role in variation of SST, but other components play different roles in SST change. In details, the latent heat made significant contribution to SST change before SCSSM onset, and the short wave radiation played a secondary role. After monsoon onset, the short wave radiation contributed more to the variation of SST than latent heat. In the process of ocean dynamics, advection term is too small and negligible. Entrainment process also plays
引文
1. 丁一汇、马鹤年(1996):东亚季风的研究现状,何金海主编,亚洲季风研究的新进展,气象出版社,1-13。
    2. 丁一汇、赵深铭等,北半球夏季全球热带和副热带200hPa平均散射环流的研究,气象学报,1987,4(1),120-127。
    3. 仇德忠,杨天鸿,郭忠信(1984):夏季南海北部一支向西流动的海流。热带海洋,第3卷,第4期:65 -73。
    4. 方文东,方国洪(1998):南海南部海洋环流研究的新进展。地球科学进展,第13卷,第2期:166 -171。
    5. 方文东,郭忠信,黄羽庭(1997):南海南部海区的环流观测研究。科学通报,第42卷,第21期:2264-2271。
    6. 毛明,王文质,黄企洲,傅孙成等(1992):南海环流的三维数值模拟。热带海洋,第11卷,第4期:34-40。
    7. 王佳(1985):南中国海定常环流的一种模型。山东海洋学院学报,第15卷,第3期:22 -31。
    8. 王赐震、李许花、戚建华等,1998。中国近海异常海温数值预报模式研究。海洋学报,20(2),27-34。
    9. 卢孟明,南海夏季季风爆发早晚之年际变化机制探讨,第四届东亚及西太平洋气象与气候研讨会论文摘要汇编,1999,111-114。
    10. 朱乾根、胡江林(1993):青藏高原大地形对夏季大气环流和亚洲夏季风影响的数值试验,南京气象学院学报,16,120-129。
    11. 何金海、罗京佳(1996):南海季风爆发和亚洲夏季风推进特征机器形成机制的探讨,何金海主编,亚洲季风研究的新进展,气象出版社,74-81。
    12. 余志豪、蒋全荣编译,1994。厄尔尼诺,反厄尔尼诺和南方涛动。南京,南京大学出版社。59-61
    13. 张学洪、俞永强、刘辉,1998。冬季北太平洋海表热通量异常和海气相互作用。大气科学,22(4),511-521
    14. 李立,苏纪兰,许建平(1997):南海的黑潮分离流环。热带海洋,第16卷,第2期:40 -57。
    15. 李荣风,黄企洲,王文质(1994):南海上层海流的数值模拟。海洋学报,第16卷,第4期:13-22。
    16. 李崇银、吴静波,1998南海夏季风的分析研究,南海季风爆发和演变及其与海洋的相互作用,北京:气象出版社,1999,25-29。
    17. 李崇银、张利平,南海夏季风活动及其影响,大气科学,1999,23(2),257-266。
    18. 杨修群、黄士松(1989):马斯克林高压的强度变化对大气环流影响的数值试验,气象学报,9,125-138。
    19. 杨海军,刘秦玉(1998):南海海洋环流研究综述。地球科学进展,第13卷,第4期:364 -367。
    20. 邱章、黄企洲,1994。南沙群岛海区温跃层时空分布的分析。见:中国科学院南沙综合科学考察队,南沙群岛海区物理海洋学研究论文集。北京,海洋出版社。
    21. 陈隆勋(1976):南半球气流对南海和北太平洋西部大气环流的影响,大气科学(试刊),16-27。
    陈隆勋、王予辉,1996。南海和西太平洋暖池表面海温对东亚季风影响的数值模拟。见:
    
    22. 何金海等主编,亚洲季风研究的新进展,北京,气象出版社。184-198
    23. 罗会邦,南海夏季风爆发及相关雨带演变特征,南海季风爆发和演变及其与海洋的相互作用,北京:气象出版社。1999,25-29。
    24. 金祖辉,TBB资料揭示的南海夏季风爆发的气候特征,南海季风爆发和演变及其与海洋的相互作用,北京:气象出版社。1999,57-65。
    25. 赵永平等,南海-热带印度洋海温年际变异与南海季风关系的初步分析,南海季风爆发和演变及其与海洋的相互作用,北京:气象出版社,1999,117-120。
    26. 郭品文,亚洲热带夏季风爆发的特征、机制及南海海气耦合低频振荡,南京气象学院博士学位论文
    27. 陶诗言等(1983):1997年夏季季风试验期间东亚地区夏季风爆发的观测研究,大气科学,7,347-355。
    28. 梁建茵等,1992。南海海温异常对七月份中国气候的影响及数值试验。热带气象,8,134-141
    29. 梁建茵等,南海西南季风强度变化特征及其与海温的耦合关系分析,南海季风爆发和演变及其与海洋的相互作用,北京:气象出版社。1999,133-139。
    30. 章基嘉等,1994。1991年江淮暴雨期间环流异常的动力延伸预报试验,气象学报,52(2)。
    31. 阎俊岳,南海西南季风爆发的气候特征,气象学报,1997,55(2),176-184。?
    32. 黄企洲,王文质等(1992):南海海流和涡旋概况。地球科学进展,第7卷,第5期:1-9。
    33. 蒲书箴,于惠苓,蒋松年(1992):巴士海峡和南海东北部黑潮分支。热带海洋,第11卷,第2期:1-8。
    34. 蔡树群,苏纪兰(1995):南海环流的一个两层模式。海洋学报,第17卷,第2期:12-19。
    35. C.K?berle and S.G.H. Philander,1994.On the processes that control seasonal variations of sea surface temperatures in the tropical Pacific Ocean.Tellus,46A,481-496
    36. Chang, C.P., and G.T.Chen,1994:Development of low-level southwesterlies over the South China Sea: A comparison between May and June. Mon. Wea. Rev.,(submitted).
    37. Fang, Y. et al. (1996): Adi Barotropic Ocean Model for Simulation of Kuroshio Intrusion Into China Southeastern Waters. Chin. J. Oceanol. Limnol., 14 (4): 357-366.
    38. Hamage,C.S.,1975:Monsoon Meteorology.Academic Press, New York.
    39. He,J.H.and L.Z.Chen,1988:The southern hemisphere midlatitude quasi40 day periodic oscillation with its effect on the northern hemisphere summer monsoon circulation. Acta Meteorologica Sinica,2,331-339.
    40. He,Y.H.,C.H.Guan,Z.J.Gan,1992:Heat oscillation in the upper ocean of the South China sea.Acta Oceanologica Sinica,11,375-388.
    41. Krishnanurti, T. N., Tropical east-west circulation during the northern summer, J.Atmos.Sci.,1971,28,1342-1347.
    42. Lau K.-M.,Song Yang,Climatology and interannual variability of the southeast Asian Summer monsoon, Advances in Atmospheric Sciences,1997,14,141-162.
    43. Lau,K.-M.and L.Peng,1990:Origin of low frequency (intraseasonal)oscillations in the tropical atmosphere. Part III: Monsoon dynamics. J. Atmos. Sci.,47,1443-1462.
    44. Miao,J.H.,and K.-M. Lau,1991:Low frquency (30-60 day) oscillation of summer monsoon rainfall over the East Asia.Sci.Atmos.Sinica,15,63-71(in Chinese).
    45. Miao,J.H.et al.,1985:The abrupt variation of atmospheric equilibrium and northward jump of subtropical high forced by the thermodynamics and the seasonal variation.Sci. Sinica,28,87-96(in Chinese).
    
    
    46. Micheal.J.Mcphaden and Stanley P.Hayes,1991.On the variability of winds, sea surface temperature, and surface layer heat content in the western equatorial Pacific.Journal of Geophysical Research,96,supplement,p3331-3342
    47. Micheal.J.Mcphaden,1982.Variability in the central equatorial Indian Ocean, PartⅡ:Oceanic heat and turbulent energy balances. Journal of Marine Research,40(2), 403-417
    48. Murakami T., Longxun Chen and An Xie, Relationship among seasonal cycles, low-frequency oscillations and transent disturbances as revealed from outgoing long wave radiation data,Mon.Wea.Rev.,1986,114,1456-1465.
    49. Orgill,M.,1967:Some aspects of the onset of the summer monsoon over South East Asia.Report to U.S.Army,Colorado State University,75 pp.
    50. R.E.Ronca and D.S.Battisti,1997.Anomalous sea surface temperatures and local air-sea energy exchange on intraannual timescales in the Northeastern subtropical Pacific.Journal of Climate ,10,102-117
    51. Richard S.Lindzen and Sumant Nigam,1987.On the role of sea surface temperature gradients In forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 40(17),2418-2436
    52. Shenn-Yu Chao,Ping-Tung Shaw and Sunny Y.Wu,1996.El Nino modulation of the South China Sea circulation. Prog. Oceanog. vol. 38,51-93
    53. Tao Shiyan and Chen Longxun,A review of recent research on East Asian summer monsoon in China, Monsoon Meteorollgy, Oxford University Press,1987,60-92.
    54. Webster, D. J. and S. Yang, Monsoon and ENSO, Selectively interactive systems, Quart.J.Roy.Meteor.Soc.,1992,118,877-926.
    55. Webster, P. J. and V. O. Magana et al., Monsoon: Processes, Predictability, and the prospects for prediction, J. Geophys. Res.,1998, 103(C7),14451-14510.
    56. Webster,P.J.,1994:The role of hydrological processes in ocean-atmosphere interaction.Rev.in Geophysics(in press)?.
    57. Yuan, Y. et al. (1998): Numerical Calculation of the Kuroshio East of Taiwan and the Currents East of The Ryukyu Islands during Early Sunner of 1996. Proceedings of Japan-China Joint Symposiun on CSSCS. PP: 97-108.
    58. Zhu Qiangen,He Jinhai and Wang Panxing, A study of circulation difference between East-Asian and Indian summer monsoons and their interactions, Adv. Atmos. Sci., 1986, 3(4),466-477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700