一种无缆自动返回式采水器的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋环境污染监测、海水化学与地质调查和生物采样,大多数情况下需要现场采集水样。有时需要在不同深度依次采样,获取梯度剖面的现场水体信息,以保证分析结果的统一性、规范性和类比性。近几十年来,水体取样和保存技术迅速发展,各式各样的采水器纷纷问世并获得成功应用。常规CTD葵花式采水器(CTD rosette sampler)(配备尼斯金采样瓶(Niskin bottle)或郭福洛采样瓶(Go-Flo bottle))和船用吸泵均为目前广泛使用的梯度水样采集装置。但其应用各有一定缺陷。因此,设计一种既适用于大型科考船又适用于小型船只、采样深度可精确控制、采水操作简便、无沾污的采水器在海洋科学研究中有较大实用意义。
     本课题所设计的无缆自动返回式采水器(a New Auto-Returned Column Water Sampling Device-‘ARWAD’)是一种新型垂直剖面采水器,该采水器外挂四个1.5L卡盖式结构的HOUSKIN采水瓶。为采水器加载适当重量的配置体,使其在水中受到负浮力下潜。采水是在释放配置体后,采水器受到正浮力上升的过程中依次完成的。
     本文的主要内容为:
     (1)本课题详述了该无缆自动返回式采水器的机械机构与密封方案。采水器的主壳体为硬铝合金圆柱状防水耐压设计,外挂四个卡盖式结构的采水瓶,其机械机构主要包括①配置体的悬挂与释放机构;②采水瓶关闭采水机构;
     (2)详述该采水器的控制系统,包括硬件设计方案和软件设计,并对控制系统进行了调试。控制系统装置于主体的防水耐压仓内,以单片机为核心,装载压力传感器获知水深。下位机程序控制在到达指定深度时释放配置体和关闭各采样瓶,上位机程序实现在甲板上的自检、设定配置体的释放深度和各采水瓶的关闭采样深度;
     (3)用解析法和经验公式对该采水器承压零件尺寸进行设计,同时用数值计算方法对其强度校核;
     (4)为保证采水器的采水精度和确保其工作安全,对采水器进行水动力学计算,确定阻力及阻力系数等参数,使采水器在上升采水过程中最大速度小于2.0m/s,以为外形设计提供参考;
     (5)采水器采样性能验证。现场采集水样后,在实验室测定悬浮颗粒物的质量浓度和体积浓度分布。在采集水样的同时,应用激光粒度仪获取现场悬浮物粒径分布信息。通过与激光粒度仪现场测定结果对比,证明该自动返回式采水器采水深度准确,质量较好。
     该采水器使用时无需钢丝绳,而是装载压力传感器获知水深,由此避免了使用绞车和由钢丝绳计量深度带来的深度误差;采样时也无须连接电缆,节省电力;自由下潜和上升,无需配备绞车深度补偿设施,避免出现深度逆变现象。主要应用于驾驶小规模船只在较浅水域(湖泊或河口)采水,亦可用于大型科考船,其结构轻便、造价低廉以及操作方便等性能使其成为CTD葵花式采水器和泵采系统的有益补充。
Capable of collecting water samples from chosen locations and discrete depths is essential for charactering the vertical and horizontal distribution of the physicochemical and biological elements of most types of water column. Sampling could be defined as a process of selecting a portion of material small enough in volume in selected location to be transported conveniently, handled and latterly analyzed in the laboratory. In some circumstances, it is demanded to sample in columned water at distinct depths to obtain vertical distribution information. Various qualified devices or samplers have been developed and come into wide use in recent decades.
     In most circumstances, either a conventional CTD rosette sampler equipped with Niskin (or Go-Flo) bottles or a shipboard pumping system whch are employed for accurate water sampling still have disadvantages in the application. It is essential to design a new kind of sampling device which is suitable for different size of ships.
     I describe here a new type of Auto-Returned WAter sampling Device (ARWAD) which is designed primarily for collection of column water in shallow systems (gulf, lakes or estuaries), with operations conducted even from a small boat. Pre-set each bottle’s sampling depth on the deck, the ARWAD is launched carrying 4 or more 1.5-liter Niskin bottles. Attached with adjustable weight, ARWAD falls deep in the water under its own gravity with no oceanographic wire attached to. Trapping each bottle water sample at determined depth is done during the retrieve process, after casting away the weight attachment.
     (1) The mechanical design and the seal method are presented in the paper. The mechanical system for ARWAD consists of①weight attachment loading and unloading system, and②bottle firing mechanical system.
     (2) The control system for the ARWAD is designed based on the utilization of a single-chip microcomputer SST89C54. The hardware circuit and software method design are presented. The ARWAD interfaces with high performance pressure transmitter to provide accurate sampling capability, depending on user requirements. The MCU program is to control the weight attachment loading and unloading process and bottle firing system; the PC program is to pre-set weight attachment unloading depth and each bottle firing depth.
     (3) Mechanical components are designed, and their mechanical strength is verified both in analytic method and FEM (Finite Element Method).
     (4) For controlling its rising speed of the ARWAD (with no more than 2.0m/s) to make sure the depth accuracy, FEM method is utilized to calculate the sampler’s resistance coefficient and its maximum rising speed.
     (5) The ARWAD sampling device has been tested in natural body (in Jiaozhou Bay) in April, 2008 by collecting column samples for suspended solids materials analysis later in laboratory. For comparison purposes, a LISST was used to obtain vertical profiler data of particle size distribution (PSD) at the same site after the ARWAD sampling is done. The sample results (ARWAD laboratory measurements) and LISST data have good correlation, which means ARWAD works quite well.
     There is no hydrowire attached to the ARWAD, so the depth recording error brought by vane and hydrowire is eliminated to minimal. A present commonly used CTD rosette is often fixed to the end of an electromechanical cable, and the water sampling bottles are closed when desired by electrical command from on deck. Unlike a CTD rosette, the ARWAD is free to fall vertically, which eliminates the need for motion compensated winch systems and performs its duty to trap column water by command directly from control system in the pressure case. Larger volumes of water may be obtained by using larger water sample bottles. ARWAD could be used as a complement of traditional CTD sampler or pump with its benefits including small size, low cost to construct and operation, and ease of deployment in a small boat.
引文
[1]巴切勒.G K.流体动力学引论[M].沈青,贾复译.北京:科学出版社,1997.392.
    [2]毕玲玲,白洁,赵忠生,李延刚,袁志伟.胶州湾夏季悬浮颗粒物组成特征研究[J].海洋环境科学,2007,26(6):518-522.
    [3]边宇枢,高志慧,贠超.6自由度水下机器人动力学分析与运动控制[J] .机械工程学报,2007,43(7):87-92.
    [4]陈卓如,金朝铭.工程流体力学[M].哈尔滨:哈尔滨工业大学出版社,1987.449.
    [5]程宗辉.LY12CZ铝合金飞机构件腐蚀行为研究.哈尔滨工程大学,2006.
    [6]董涛,杨庆保.自持式剖面循环探测漂流浮标水下运动过程实例分析[J].海洋技术,2006,25(1):20-23.
    [7]国家海洋局.海洋监测规范,GB/T 17378.3-1998.
    [8]耿燕.汽车外流场数值模拟湍流模型的研究.河海大学,2007.
    [9]韩光,陶建华.新型航空海水温度、盐度、深度探头运动特性的计算方法和实验验证[J].水动力学研究与进展,2001,15(4):467-471.
    [10]韩霜,王欢,蔡庆华,邓红兵,吴钢.香溪河库湾春季水华期间悬浮颗粒物粒度动态的初步研究[J].水生生物学报,2006,30(1):123-125.
    [11]何燧源.环境污染物分析监测[M].北京:化学工业出版社,2001.48-60.
    [12]侯正田.现场自动过滤萃取采样技术[J].海洋技术,2000,19(3), 44-55.
    [13]胡志强,林扬,谷海涛.水下机器人粘性类水动力数值计算方法研究[J] .机器人,2007,29(2:)145-150.
    [14]黄银水,陶建华.线圈释放式温、盐、深探头运动特性的数值计算方法研究[J].海洋技术,2003,22(1):45-48.
    [15]机械工程手册,第四卷,22-4.机械工业出版社,1982.
    [16]蒋伟华.基于O形橡胶圈密封的高压容器设计和研究.浙江大学,2006.
    [17] L.普朗特等.流体力学概论[M].郭永怀,陆士嘉译.北京:科学出版社,1984.179.
    [18]李殿璞,赵爱民,迟岩.水下机器人运动控制和仿真的数学模型[J] .哈尔滨工程大学学报,1997,18(3):22-30.
    [19]李力平.SJC6-15型CTD专用卡盖式采水器[J].海洋技术,2003,22(4):37-39.
    [20]李晔,刘建成,徐玉如,庞永杰.带翼水下机器人运动控制的动力学建模[J] .机器人,2005,27(2):128-131.
    [21]刘占军,邓忠林.X形变截面橡胶密封圈应力有限元分析[J].润滑与密封,2007,32(2):127-129.
    [22]卢博,李赶先,黄韶健,张福生.中国黄海、东海和南海北部海底浅层沉积物声学物理性质之比较[J].海洋技术,2005,24(2):28-33.
    [23]吕明志,高敦岳,傅立敏.计算机数值仿真在汽车外流场分析方面的应用研究[J].计算机辅助设计与图形学学报,2002,14(2):181-184.
    [24]施里希廷(Schlichting,H).边界层理论上册[M].徐燕侯等译.北京:科学出版社,1988.16,128.
    [25]孙涛,黄银水,陶建华.抛弃式温盐探头运动状态的数值模拟及其实验验证[J].海洋通报,2002,21(2):69-76.
    [26]谭晶,杨卫民,丁玉梅,李建国,杨维章,鲁选才,唐斌.矩形橡胶密封圈的有限元分析[J].润滑与密封,2007,32(2):36-39.
    [27]王华侨.结构有限元分析中的网格划分技术及其应用实例[J].CAD/CAM与制造业信息化[J],2005,42-47.
    [28]王伟,邓涛,赵树高.橡胶Mooney—Rivlin模型中材料常数的确定[J].特种橡胶制品,2004,25(4):8-10.
    [29]汪亚平.胶州湾及邻近海区沉积动力学.中科院海洋研究所,2000.
    [30]魏建伟,石学法,方习生,张伟滨,王宗灵.胶州湾悬浮颗粒现场剖面测量与结果分析[J].海洋科学进展,2006,24(1):74-82.
    [31]吴宗泽主编.机械设计实用手册[M].北京:化学工业出版社,2003.6.
    [32]奚旦立,孙裕生,刘秀英.环境监测[M].北京:高等教育出版社,2004.29-34.
    [33]肖鸿,刘长根,陶建华.抛弃式温盐探头阻力系数的数值模拟及其实验验证[J].海洋技术,2006,25(1):35-37.
    [34]肖智敏,冯月永,申秀花.抛弃式水下剖面测量仪.实用新型专利,2004,授权号CN2653509Y.
    [35]徐红波,喻九阳,常跃,熊智强.O形密封圈的非线性有限元分析[J].武汉工程职业技术学院学报,2006,18(4):21-24.
    [36]许维德.流体力学[M].北京:国防工业出版社,1979.266.
    [37]阎家宾.橡胶和塑料接触密封件[J].世界橡胶工业,2002,(1):24-26.
    [38]叶绍辉.开关/继电器[J].无线电,2005(512):62-63.
    [39]张海霞.铝合金阳极氧化电解着色工艺及性能研究.大连理工大学,2007.
    [40]张澎湃.啮合同向双螺杆挤出机螺纹元件流场分析.燕山大学,2004.
    [41]赵卫东,宋金明.海洋化学传感器研制的动态评述[J].海洋与湖沼,2000,31(4), 453-459.
    [42]赵学端.水力学及空气动力学[M].上海:上海科学技术出版社,1959.463-464.
    [43]周志鸿,张康雷,李静,许同乐.O形橡胶密封圈应力与接触压力的有限元分析[J].润滑与密封,2006(4):86-89.
    [44]钟伟彬.千米声学应答释放器释放动力计算[J].海洋技术,1989,8(1):16-23.
    [45]钟先友,谭跃刚.水下机器人动密封技术[J].机械工程师,2006(1):40-41.
    [46] Agrawal, Y.C., Pottsmith, H.C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology 168, 89-114.
    [47] Amaury, D.R., 2000. A new type of horizontal in-situ water and fluid mud sampler[J].Marine Geology (163), 409-411.
    [48] Cristina, N., 2007. Focus on sample handling [J].Anal Bioanal Chem (388), 1001-1002.
    [49] Eberhard, J. S., Michael, S., Jan, W., et al., 2005. A routine device for high resolution bottom water sampling [J]. Journal of Sea Research 54, 204-210.
    [50] Gao, S., Cheng, P., Wang, Y.P., Cao, Q.Y., 2000. Characteristics of suspended sediment concentrations over the areas adjacent to Changjiang River Estuary, the summer of 1998. Marine Science Bulletin 2, 14-24.
    [51] Gartner, J.W., Cheng, R.T., Wang, P.F., Richter, K., 2001. Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations.Marine Geology 175, 199-219.
    [52] General Oceanics.Inc. Niskin water sampler.
    [53] General Oceanics.Inc. Go-Flo non-metallic water sampling bottles.
    [54] Grayson, R.P., Plater, A.J., 2005.A low-cost,large-volume general purpose water sampler [J]. Journal of Paleolimnology 33, 123-128.
    [55] Guangfeng, O.Y., Jenusz, P., 2006. Recent developments in SPME for on-site analysis and monitoring[J]. Trends in Analytical Chemistry 25(7), 692-703.
    [56] Jory, B., Joe, B., Edward, B., 2002. MITESS: a moored in situ trace element serial sampler for deep-sea moorings[J]. Deep-Sea Research I 49, 2103-2118.
    [57] Kriss, A.E., Lebedeva, M.L., Tsiban, A.V., 1966. Comparative estimate of a Nansen and microbiological water bottle for sterile collection of water samples from depths of seas and oceans[J]. Deep Sea Research and Oceanographic Abstracts 13(2), 205-208.
    [58]Loizeau, J.L., Arbouille, D., Santiago, S., Vernet, J.P., 1994. Evaluation of awide range laser diffraction grain size analyser for use with sidiments. Sedimentology 41, 353-361.
    [59] Makio, C. H., Shuichi, W., 2007. Utility of an automatic water sampler to observe seasonal variability in Nutrients and DIC in the Northwestern North Pacific[J]. Journal of Oceanography 63, 349-362.
    [60] Mikkelsen, O.A., Milligan, T.G., Hill, P.S., Moffat, D., 2004. INSSECT-an instrumented platform for investigated floc properties close to the boundary layer. Limnology Oceanography 2, 226-236.
    [61] Mikkelsen, O.A., Hill, P.S., Milligan, T.G., Chant, R.J., 2005. In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera. Continental Shelf Research 25, 1959-1978.
    [62] Nayar, S., Miller, D., Bryars,S., et al., 2006. A simple, inexpensive and large volume pore water sampler for sandy and muddy substrates[J].Estuarine, Coastal and Shelf Science 66,298-302.
    [63] Niskin, S.J. Water sampler device. United States Patent 4037477.
    [64] Ola, M., 2000. A new sampler for collection invertebrates in submergedvegetation[J]. Hydrobiologia 432, 229-231.
    [65] Paroscientific.Inc, manual.2002.
    [66] Patrick, H.J., 2002. A new rechargeable dialysis pore water sampler for monitoring sub-aqueous in-situ sediment caps[J].Water Research 36,3121-3129.
    [67] Peter, M.C., Feiyue, W., Joseph, D.G., et al., 2002. Pore water testing and analysis: the good ,the bad, and the ugly[J]. Marine Pollution Bulletin 44,359-366.
    [68] Petersen, W., Geisler, C.D., 1998. Schroeder F, et al. AISIT- a new device for remote-controlled sampling of dissolved and particle-bound trace elements in surface waters[J].Journal of Sea Research 40,179-191.
    [69] Pulp and paper EEM guidance document. Measurement of supporting environmental variables. 2005.
    [70] Robert, M., Nicolas, B., Steve, C., et al., 1998. Investigation of porewater sampling methods for mercury and methyl mercury[J]. Environmental Science Technology 32, 4031-4040.
    [71] Serbst, J.R., Burgess, R. M., Kuhn, A., et al., 2003. Precision of dialysis (peeper) sampling of cadmium in marine sediment interstitial water[J].Arch Environ Contam Toxicol 45,297-305.
    [72]Silicon Storage Technology, Inc,2000. FlashFlex51 MCU SST89C54 datasheet.
    [73] Song,J., Luo,Y.M., Zhao,Q.G., et al, 2003.Novel use of soil moisture samplers for studies on anaerobic ammonium fluxes across lack sediment-water interfaces[J]. Chemosphere 50,711-715.
    [74] Styles, R., 2006. Laboratory evaluation of the LISST in a stratified fluid. Marine Geology 227, 151-162.
    [75] Texas Instruments. MAX232 datasheet, 1998.
    [76] Thomsen, et al., 1996.An instrument for aggregate studies in the benthic boundary layer [J]. Marine Geology 135,153-156.
    [77] U.S. Environmental Protection Agency, 1997. Recommended guidelines for sampling marine sediment, water column, and tissue in Puget sound. 20-21.
    [78] Van Dorn, W., G., 1956. Large-volume water samplers[J].Trans Am Geophys union, (37), 682-684.
    [79] Wildlife Supply Company. Horizontal alpha water samplers.
    [80] William, J. E., Lynne, D.T., George, L.P., 2007. Descriptive physical oceanography[M].Elsevier.
    [81] Williams, N.D., Walling, D.E., Leeks G.J.L., 2007. High temporal resolution in situ measurement of the effective particle size characteristics of fluvial suspended sediment. Water Research 41, 1081-1093.
    [82] Yeoh 0.I.1993.Some forms of the strain energy for rubber.Rubber Chemical and Technology, 66(5):754-771.
    [83] Yolanda, M., Zoyne, P. Z., 2007. Water sampling: traditional methods and new approaches in water sampling strategy [J]. Trends in Analytical Chemistry 26 (4), 293-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700