甲烷水合物降压分散数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物是未来最有潜力的新能源之一,在当今能源紧张污染严重的人类生存环境中。天然气水合物以其储量大,其副产物天然气燃烧清洁而广受好评。然而天然气水合物的工业成熟化的应用还没有成熟,如何安全开采,有效应用一直是各国科学家待解决的问题。如今,以经济性为特点的降压法开采开始走入科学家的视线。其对应的数值模拟方法也广受关注,对它们的研究具有重大的现实意义。
     本文应用黑油模型对天然气水合物管核建模,模拟其多孔介质中分解特性。对其进行敏感性分析,如压力,温度,水合物饱和度,模拟其在不同时间中的动态变化规律。并且,对天然气水合物的分解水相进行针对性的研究,讨论其对天然气水合物分解中的流动相(气和水两相)的流动,比较其中导热和对流传热的作用。在其流的过程中,本文也创新性地提出,应用达西修正式对气相流动进行更精确的模拟。
     为了水相对天然气水合物分解的影响特性,研究过程中模型通过改变甲烷水合物在多孔介质的核内的水相初始饱和度来观察水相流动特性,并分析所带来不同产气速率的原因。模拟结果展示了甲烷水合物分解前沿的变化规律与水相饱和度在此区域分布有关系。另一方面,通过比较甲烷气体饱和度在核内随时间的变化规律,和水相饱和度随时间变化率,研究在水合物分解过程中甲烷气体驱动水相的流动规律。
     通过数值模拟,本文主要完成了三方面工作。即:通过甲烷水合物降压分解过程研究水相敏感性分析;非饱和多孔介质中甲烷水合物分解过程中水相流动特性;为了提高模型对甲烷水合物流体流动变化趋势的准确性,将更适合甲烷水合物低温高压环境的Darcy-Forchheimer修正式代替经典的Darcy公式运用于数值模拟中。
Gas hydrate is probably the most potential one of energy in the Future. Nowadays there is a lot of pollution coming from burning of fossil fuels; however, because of a huge reserve and clean tail gas, gas hydrate owns a good reputation. But the industry of gas hydrate is not very mature, how to get it efficiently and safely is an important problem to solve. Now exploiting gas hydrate by depressurize method is consider as an economical way by scientists. Meanwhile, the gas hydrate simulation is also developing fast, doing research about simulation is very important for the gas hydrate study work.
     In this paper, we used black-oil-type simulation model to describe the course of dissociation. The sensitivity analysis such as pressure, temperature and different phase saturation in different time are showed in the simulation. Besides, we also focused on the water phase change in the dissociation; we discussed the water and methane gas transfer; compare heat conduction and convection of heat transfer in the hydrate dissociation. In addition, we suggested used Darcy-Forchheimer law instead of classical Darcy law in the simulation to prove the accuracy of model result.
     In order to analyze the character of gas hydrate dissociation course, to study the water transfer by observing the change of water saturation in the core, to compare different result coming from different initial water saturation, we used simulation to reveal the relationship between the front dissociation area and water saturation distribution. On the other hand, our simulation result also showed the methane gas driving water course as the time passed. Then, we attempted to describe the gas and liquid two phase flow regulation among this experiment.
     Trough the simulator, we have mainly done three part work related to hydrate. They are water sensitivity analysis in the methane hydrate dissociation, water transfer character in the un-saturated media when hydrate decompose, and used Darcy-Forchheimer law instead of classical Darcy law to fit the special low temperature and high pressure environment.
引文
[1]Makogon Y F, Holditch S A, Makogon T Y. Natural gas hydrates a potential energy source for the 21st Century [J]. Journal of Petroleum Science and Engineering,2007,56:14-31.
    [2]Sloan E D. Natural gas hydrate phase equilibria and kinetics understanding the state-of-the-art [J]. Revue de 1'Institut Francais du Petrole,1990,45:245-266.
    [3]Desa E. Submarine methane hydrates potential fuel resource of the 21st century [J]. Proc of AP Akademi of Sciences,2001,5:101-114.
    [4]Collett T S. Energy resource potential of natural gas hydrates [J]. American Association of Petroleum Geologists,2002,86:1971-1992.
    [5]Hacisalihoglu B, Demirbas A H, Hacisalihoglu S. Hydrogen from gas hydrate and hydrogen sulfide in the Black Sea [J]. Energy Education Science and Technology,2008,21: 109-115.
    [6]张志杰,于兴河,郑秀娟,刘博.天然气水合物的开采技术及其应用[J].Natural gas industry, 2005,25:1-3.
    [7]李淑霞,陈月明,杜庆军.天然气水合物开采方法及数值模拟研究评述[J]. Journal of China University of Petroeum,2006,30.
    [8]刘华,李相方,夏建蓉,隋秀香,张益.关于天然气水合物钻采工艺技术进展的研究[J].钻采工艺,2006,29(5).
    [9]姚彤宝,周兢,李生红.钻采天然气水合物的初步设想[J].探矿工程-岩土钻掘工程,2010,37(10).
    [10]熊颖,王宁升,许深皓,丁咚,吴平.天然气水合物的结构特征及防治措施[J].油气储运,2008,27(6).
    [11]吴传芝,赵克斌,孙长青,孙冬胜,徐旭辉,陈昕华,宣玲.天然气水合物开采研究现状[J].地质科技情报,2008,27(1).
    [12]宁伏龙,蒋国盛,汤凤林,吴翔,潘献义.利用地热开采海底天然气水合物[J].地质科技情报2006,26(12).
    [13]辜志宏.水下采油树帽的天然气水合物解堵[J].石油机械,2006,34(9).
    [14]李淑霞,夏唏冉,郝永卯,李清平.电阻率测试技术在沉积物-盐水-甲烷水合物体系中的应用[J].实验力学,2010(1).
    [15]李淑霞,姜兴兴,姜汉桥,李清平.天然气水合物藏注热开采敏感参数分析[J].石油钻采工艺,2010(2).
    [16]宋永臣,阮徐可,梁海峰,李清平,赵越超.天然气水合物热开采技术研究进展[J].过程工程学报,2009(5).
    [17]万丽华,颜克凤,李小森,樊栓狮.热力学抑制剂作用下甲烷水合物分解过程的分子动力学模拟[J],物理化学学报,2009(3).
    [18]孙宝江,刘晓兰,任韶然.钻井液添加剂抑制天然气水合物形成的试验[J].中国石油大学学报(自然科学版),2008(1).
    [19]Khataniar S, Kamath V A, Omenihu S D, Patil S L, Dandekar A Y. Modeling and economic analysis of gas production from hydrates by depressurization method [J]. Canadian Journal of Chemistry,2002,80:135-143.
    [20]Ahmadi G, Ji C, Smith D H. Production of natural gas from methane hydrate by a constant downhole pressure well [J]. Energy Conversion and Management,2007,48:2053-2068.
    [21]Goel N, Wiggins M, Shah S. Analytical modeling of gas recovery from in situ hydrates dissociation [J]. Journal of Petroleum Science and Engineering.2001,29:115-127.
    [22]Handa Y P, Stupin D. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-A-radius silica gel pores [J]. The journal of physical chemistry,1992,96,8599-8603.
    [23]Ogasawara K, Yamasaki A, Kiyono F, Kato C, Kawamura M. Development of new apparatus for measuring dissociation rate of a methane hydrate under flow condition of water [C]. In The Proceedings of The fifth International Conference on Gas Hydrates.2005. Tronheim, Norway.
    [24]Sung W, Lee H, Lee H, Lee C. Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection [J]. Energy Sources,2002,24: 499-512.
    [25]唐翠萍,樊栓狮.天然气水合物新型抑制剂的研究进展[J].石油与天然气化工2004,3:157-159.
    [26]唐翠萍,樊栓狮.聚乙烯吡咯烷酮抑制水合物生成研究[J].天然气工业,2006,26(3):125-128.
    [27]王宏伟,大牛地气田水合物防治工艺研究[J].天然气工业,2007,27:117-119.
    [28]周锡堂,樊栓狮,梁德青.CO2置换开采天然气水合物研究进展[J].化工进展,2006,25(5):524-527.
    [29]Moridis G J, Silpngarmlert S, Reagan M T, Collett T, K Zhang. Gas Production From the Unit D Class 3 Hydrate Deposit at the Mount Elbert Site North Slope Alaska [J]. Marine & Petroleum Geology,2010,28:517-534.
    [30]Jack Dvorkin, Richard Uden. Seismic wave attenuation in a methane hydrate reservoir [J]. Society of Exploration Geophysicists,2004,23(8):730-732.
    [31]Nazridoust Kambiz. Fundamentals and applications of environmental and geophysical multiphase flows [M].ProQuest Dissertations and Theses, Clarkson University,2006. Publication Number:AAI3209724, ISBN:9780542586040, Source:Dissertation Abstracts International, Volume:67-03, Section:B, page:1666,203 p.
    [32]Uchida T, Takeya S, Wilson L. D, Tulk C A, Ripmeester J A, Nagao J, Ebinuma T, Narita H. Measurements of physical properties of gas hydrates and in situ observations of formation and decomposition processes via Raman spectroscopy and X-ray diffraction [J]. Canadian Journal of Physics,2003,81:351-357.
    [33]H Sakai, T Gamo, E S Kim, M Tsutsumi, T Tanaka, J Ishibashi, H Wakita, M Yamano, T Oomori. Venting of Carbon Dioxide-Rich Fluid and Hydrate Formation in Mid-Okinawa Trough Backarc Basin [J]. Science,1990,248(4959):1093-1096.
    [34]Tomoko Ikeda, Hiroshi Fukazawa, Shinji Mae, Laurence Pepin. Extreme fractionation of gases caused by formation of clathrate hydrates in Vostok Antarctic Ice [J]. Geophysical Research Letters,1999,26(1):91-94.
    [35]George J, Timothy S Collettb, Scott R Dallimorec, Tohru Satohd, Steven Hancocke, Brian Weatherille. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada [J]. Journal of Petroleum Science and Engineering, 2004,43:219-238.
    [36]焉莉.俄罗斯天然气水合物研究现状[J].地质与资源,2003:192.
    [37]吴能友,张海放,杨胜雄,梁金强,王宏斌.南海神狐海域天然气水合物成藏系统初探[J].天然气工业,2007,27(9):1-6.
    [38]张洪涛,张海启,祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质,2007,34(6)
    [39]Chuvilin E M, Yakushev V S, Perlova E V. Experimental study of gas hydrate formation in porous media [J]. Advances in Cold-Region Thermal Engineering and Sciences,1999, 533:431-440.
    [40]Kneafsey T J, Tomutsa L, Moridis G J, Seol Y, Freifeld B M, Taylor C E, Gupta A. Methane hydrate formation and dissociation in a partially saturated core-scale sand sample [J]. Journal of Petroleum Science and Engineering,2007,56:108-126.
    [41]Jin S, Takeya S, Hayashi J, Nagao J, Kamata Y, Ebinuma T, Narita H. Analyses of methane hydrate sediments by Microfocus X-ray CT [C]. In The Proceedings of the Fifth International Conference on Gas Hydrates,2005. Trondheim, Norway.
    [42]Kawasaki T, Tsuchiya Y, Nakamizu M. Observation of methane hydrate dissociation behavior in methane hydrate bearing sediments by X-ray CT scanner [C]. In The Proceedings of the FifthInternational Conference on Gas Hydrates,2005. Trondheim, Norway.
    [43]Zhang P, Wu Q, Pu Y, Jiang G, Zhan J, Wang Y. Water transfer characteristics during methane hydrate formation and dissociation processes inside saturated sand [J]. Journal of Natural Gas Chemistry,2010,19:71-76.
    [44]Minagawa H, Nishikawa Y, Ikeda I, Miyazaki K, Takahara N, Sakamoto Y, Komai T, Narita H. Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement [J]. Journal of Geophysical Research, 2008,113:1-9.
    [45]Sakamoto Y, Miyazaki K, Tenma N. Simulation of a Laboratory Experiment For Dissociation Process of Methane Hydrate by Depressurization [C]. In the Proceedings of the 6th International Conference on Gas Hydrates,2008, Vancouver, British Columbia, Canada.
    [46]Yousif M H, Abass H H, Selim M S. Experimental and theoretical investigation of Methane-Gas-Hydrate dissociation in porous media [J]. SPE Reservoir Engineering,1991, 6:69-76.
    [47]Masuda Y, Fujinaga Y, Naganawa S. Modeling and experiment studies on dissociation of methane gas hydrates in Berea sandstone cores [C]. Proceedings of the 3rd international conference on gas hydrate,1999. Salt Lake city, Utah, USA.
    [48]Sun X, Mohanty K K.1-D modeling of hydrate depressurization in porous media [J]. Transport in Porous Media,2006,61:315-338.
    [49]Nazridoust K, Ahmadi G. Modeling of methane hydrate dissociation in a sandstone core [J]. Chemical Engineering Science,2007,62:6155-6177.
    [50]Moridis G J, Reagan M T. Numerical studies on the geomechanical stability of Hydrate-Bearing Sediments [C]. Proceedings of 2007 Offshore Technology Conference, 2007. Houston, Texas, USA.
    [51]Kurihara M, Sato A, Funatsu K, Ouchi H, Masuda Y, Narit H, Collett T S. Analysis of MDT test in Mt. Elbert methane hydrate reservoir through numerical simulation [J]. Marine and Petroleum Geology,2010,1:1-15.
    [52]Liang H, Song Y, Chen Y. Numerical simulation for laboratory-scale methane hydrate dissociation by depressurization [J]. Energy Conversion and Management,2010,51: 1883-1890.
    [53]Selim M S, Sloan E D. Heat and mass transfer during the dissociation of hydrate in porous media [J]. AIChE Journal,1989,35:1049-1052.
    [54]Tester J W. Thermodynamics and its applications [M].1997, Prentice Hall, New Jersey, USA.
    [55]Kim H C, Bishnoi P R, Heidemann R A. Kinetics of methane hydrate dissociation [J]. Chemical Engineering Science,1987,42:1645-1653.
    [56]Sun X, Mohanty K K. Methane hydrate formation and dissociation in porous media [J]. Chemical Engineering Science,2006,61:3476-3495.
    [57]Wilder J W, Smith D H. Dependencies of clathrate hydrate dissociation fugacity on the inverse temperature and inverse pore radius [J]. Industrial & Engineering Chemistry Research,2002,41:2819-2825.
    [58]Amyx J W, Bass M D, Whiting R L. Petroleum reservoir engineering physical properties [M].1960, New York, McGraw-Hill, USA.
    [59]R A Wooding. Steady state free thermal convection of liquid in a saturated permeable medium [J]. Journal of Fluid Mechanics,1957,2:273-285.
    [60]S L Lee, J H Yang. Modeling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders [J]. International Journal of Heat and Mass Transfer,1997,40: 3149-3155.
    [61]B Goyeau, J P Songbe, D Gobin. Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation [J]. International Journal of Heat and Mass Transfer,1996,39:1363-1378.
    [62]Murilo D M, Victor C. Permeability of Porous Ceramics Considering the Klinkenberg and Inertial Effects [J]. Journal of the American Ceramic Society,2001,84:941-944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700