祁连山冻土区水合物藏降压开采的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物是自然界中天然气存在的一种特殊形式,主要分布在深海沉积层和陆域永久冻土带中。我国的青藏高原冻土区幅员广阔,面积可达150万平方公里。近年来在青藏高原冻土区实施的一系列的地质学、地球物理和地球化学的调查和研究,证实了其具备良好的天然气水合物赋存条件和找矿前景。2008年和2009年,我国在祁连山冻土区实施了“祁连山冻土区天然气水合物科学钻探工程”,成功钻获天然气水合物的实物样品。
     本文以DK-3井内的天然气水合物的产出特征作为依据,利用目前世界上较先进的水合物开采模拟软件TOUGH+HYDRATE,并采用垂直单井降压法,对青藏高原祁连山冻土区天然气水合物藏的开发潜力进行数值模拟。为了全面且系统地评价根据实地参数建立的模型的产气能力,分别引用了绝对指标和相对指标,并在降压分解的过程中设置了三种不同的井筒压力(1MPa、1.5MPa和2.5MPa)。模拟结果显示,井筒压力为1.5MPa时,水合物分解产气速率和储层内总气体产出速率都较为适中,储层内的累计产气总量相对最大,开发潜力明显优于其他两种情况。对井筒压力为1.5MPa时天然气水合物储层内的温度、水合物饱和度、气体饱和度和盐度的空间分布随时间的演化进行数值模拟研究,结果显示,水合物在分解过程中没有出现冰阻现象,也未见二次水合物的生成,但有一部分游离气体滞留在了储层内未被产出。在最大分解时间内,水合物储层的有效分解半径不到20m,实际分解的水合物质量仅占整个模拟系统中天然气水合物总量的2.3%。通过上述的分析和讨论可以看出,对青藏高原祁连山冻土区天然气水合物藏采用垂直单井降压法开采不具有经济可行性。
Natural gas hydrate is a special form of the existence of natural gas, which is mainly distributed both in the deep marine sediments and in the terrestrial permafrost regions. The Qinghai-Tibet Plateau permafrost in China has a vast expanse with a total area up to150×104km2. In recent years, a series of geological, geophysical, and geochemical investigations and studies were conducted in the Qinghai-Tibet Plateau permafrost, resulting in the confirmation of the favorable occurrence conditions and prospecting potential for gas hydrates in this region. In2008and2009, the scientific drilling project of gas hydrate in the Qilian Mountain permafrost was implemented in China, with the discovery of gas hydrate samples successfully.
     Based on the output characteristics of gas hydrates at the DK-3drilling site, we take advantage of currently one of the world's most advanced hydrate simulator TOUGH+HYDRATE to numerically simulate the development potential of gas hydrate deposits in the Qilian Mountain permafrost, Qinghai-Tibet Plateau using a single vertical well by depressurization. In order to evaluate the gas production potential of hydrates in the model built by the field parameters comprehensively and systematically, we employ the absolute index and the relative index respectively, and set three different cases of wellbore pressure (1MPa,1.5MPa and2.5MPa) during the dissociation process by depressurization. The simulation results indicate that when the wellbore pressure is set to1.5MPa, the CH4production rate of hydrate dissociation and the total CH4production rate in the reservoir both show moderately, and the cumulative CH4volume produced from the reservoir is relatively the largest, with the development potential better than the other two cases obviously. Then we numerically simulate the evolution of spatial distributions of temperature, hydrate saturation, gas saturation and water salinity in the reservoir for the wellbore pressure of1.5MPa, which indicates that ice obstacle does not appear and secondary hydrate is not observed, however, a large volume of free gas remains in the reservoir instead of being produced. During the maximum dissociation time, the effective radius of gas hydrate dissociation in the reservoir is less than20m, and the actual quality of gas hydrate dissociation only accounts for2.3%of the total quality of gas hydrates in the simulation system. Through the above analysis and discussions, we can conclude that the method of a single vertical well by depressurization for the development of gas hydrate deposits in the Qilian Mountain permafrost, Qinghai-Tibet Plateau is not economically feasible.
引文
[1]Michael D.Max.Natural Gas Hydrate in Oceanic and Permafrost Environments[M]. U.S.A.:2003.
    [2]陈光进,孙长宇,马庆兰.气体水合物科学与技术[M].北京:化学工业出版社,2008.
    [3]苏正,吴能友,张可霓.南海北部陆坡神狐天然气水合物开发潜力[J].海洋地质前沿,2011,27(6):16-23.
    [4]李刚,李小森,陈琦等.南海神狐海域天然气水合物开采数值模拟[J].化学学报,2010,68(11):1083-1092.
    [5]Gang Li,George J. Moridis,Keni Zhang,et al.The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea[J].Journal of Petroleum Science and Engineering,2011,77(2011):49-68.
    [6]李小森,陈琦,李刚等.海底水合物矿藏降压开采与甲烷气体扩散过程的数值模拟[J].现代地质,2010,24(3):598-606.
    [7]Keni Zhang,George J. Moridis,Nengyou Wu,et al.Evaluation of Alternative Horizontal Well Designs for Gas Production from Hydraye Deposits in the Shenhu Area, South China Sea[C].CPS/SPE International Oil&Gas Conference and Exhibition,8-10 June 2010,Beijing, China.
    [8]Zhengquan Lu,Youhai Zhu,Yongqin Zhang,et al.Gas hydrate occurrences in the Qilian Mountain pennafrost,Qinghai Province,China[J].Cold Regions Science and Technology,2011,66(2011):93-104.
    [9]祝有海,张永勤,文怀军等.祁连山冻土区天然气水合物及其基本特征[J].地球学报,2010,31(1):7-16.
    [10]卢振权,祝有海,张永勤等.青海省祁连山冻土区天然气水合物存在的主要证据[J].现代地质,2010,24(2):329-336.
    [11]Xiao-Sen Li,Bo Li,Gang Li,et al.Numerical simulation of gas production potential from permafrost hydrate deposits by huff and puff method in a single horizontal well in Qilian Mountain,Qinghai province[J].Energy,2012,40(2012):59-75.
    [12]Xiao-Sen Li,Bo Yang,Gang Li,et al.Numerical Simulation of Gas Production from Natural Gas Hydrate Using a Single Horizontal Well by Depressurization in Qilian Mountain Permafrost[J].Industrial&Engineering Chemistry Research,2012,51:4424-4432.
    [13]Kuuskraa V.A气体水合物的概念模型[M].北京:国家技术信息中心,1995.
    [14]McMullan R.K.,Jeffrey G.A.Polyhedral clathrate hydrates IX structure of ethylene oxide hydrate[J]. Journal of Chemical Physics,1965,42(8):2725-2732.
    [15]Mak T.C.,McMullan R.K. Polyhedral clathrate hydrates X structure of the double hydrate of tetrahydrofuran and hydrogen sulfide[J]. Journal of Chemical Physics,1965,42(8):2732-2737.
    [16]Konstantin A.K.,Uchadin A.,Ripmeester J.A.A complex clathrate hydrate structure showing bimodal guest hydration[J].Nature,1999,397:420-423.
    [17]史斗,郑军卫.世界天然气水合物研究开发现状与前景[J].地球科学进展,1999,14:330-339.
    [18]朱秋格.天然气水合物——21世纪的潜在能源[J].特种油气藏,2004,11(1):5-8.
    [19]祝有海,吴必豪,卢振权.中国近海天然气水合物找矿前景[J].矿床地质,2001,(2):174-180.
    [20]杨文达,陆文才.东海陆坡——冲绳海槽天然气水合物初探[J].海洋石油,2000,(4):23-28.
    [21]Collett T.S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska[J].American Association of Petroleum Geologists Bulletin 77/5,1993:793-812.
    [22]Collett T.S. Natural gas production from Arctic gas hydrates, in Howell, D.G., ed, The Future of Energy Gases:U.S. Geological Survey Professional Paper 1570,1993:299-311.
    [23]Judge A.S.,Smith S.L.,Majorowicz J.The current distribution and thermal stability of natural gas hydrates in the Canadian Polar Regions, in Proceedings Fourth International Offshore and Polar Engineering Conference, Osaka, Japan,1994:307-313.
    [24]Dallimore S.R.,Collett T.S. Intrapermafrost gas hydrates from a deep core hole in the Mackenzie Delta, Northwest Territories, Canada. Geology 23/6,1995:527-530.
    [25]Dallimore S.R.,Uchida T.,Collett T.S. Summary. In:Dallimore, S.R., Uchida, T. & Collett, T.S.(eds). Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada Bulletin,1999,544 (403):1-10.
    [26]BiIy C.,Dick J.W.L. Naturally occurring gas hydrates in the Mackenzie Delta[J]. Bulletin of Canadian Petroleum Geology,1974,22:320-352.
    [27]Collett T.S.,Lee M.W.,Dallimore S.R.,et al. Seismic- and well-log-inferred gas hydrate accumulations on Richards Island. In:Dallimore, S.R., Uchida, T., & Collett, T.S. (eds). Scientific results from JAPEX/JNOC/GSC MaIHk 2L-38 gas hydrate research well, Mackenzie Delta, Northwest Territories, Canada:Geological Survey of Canada Bulletin,1999,544:357-376.
    [28]Cherskiy N.V.,Tsarev V.P,Nikitin S.P.Investigation and prediction of conditions of accumulation of gas resources in gas-hydrate pools[J].Petroleum Geology,1985,21:65-89.
    [29]Collett T.S.,Ginsburg G.D. Gas hydrate in the Messoyakha gas field of the West Siberian Basin-a re-examination of the geologic evidence[J].International Journal of Offshore and Polar Engineering,1998,8(1):22-29.
    [30]Grover T.,Moridis G.J.,Holditch S.A. Analysis of reservoir performance of Messoyakha gas hydrate field. In:Proceedings of the eighteenth international offshore & polar engineering conference. Vancouver, Canada,July 06-11,2008.
    [31]Dallimore S.R.,Collett T.S.Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie delta, northwest territories[J].Geological Survey of Canada, Bulletin,2005:585.
    [32]Moridis G.J.,Collett T.S.,Dallimore S.R.,et al.Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie delta, Canada[J]. Journal of Petroleum Science and Engineering,2004,43:219-238.
    [33]Lee M.W.,Agena W.F.,Collett T.S.,et al.Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska north slope[J]. Marine and Petroleum Geology,2011,28: 578-588.
    [34]Hunter R.B.,Collett T.S.,Boswell R.,et al.Mount Elbert gas hydrate stratigraphic test well, Alaska north Slope: overview of scientific and technical program[J]. Marine and Petroleum Geology,2011,28:295-310.
    [35]Moridis G.J.,Silpngarmlert S.,Reagan M.T.,et al.Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the Mount Elbert gas hydrate stratigraphic test well, Alaska north slope:implications of uncertainties[J]. Marine and Petroleum Geology,2011,28:517-534.
    [36]George J.Moridis,Michael B.Kowalsky,Karsten Pruess.TOUGH+HYDRATE v1.0 User's Manual:A Code for the Similation of System Behavior in Hydrate-Bearing Geologic Media[S]. Lawrence Berkeley National Laboratory,Berkeley,CA,2008.
    [37]Zhang K.,George J.Moridis,Karsten Pruess.A Domain Decomposition Approach for Large-Scale Simulations of Coupled Processes in Hydrate-Bearing Geologic Media[C]. Proceedings of 6th International Conference on Gas Hydrates,Vancouver,Canada,2008.
    [38]Tuminaro R.S.,Heroux M.,Hutchinson S.A.,et al.Official Aztec user's guide,Ver 2.1[S].Massively Parallel Computing Research Laboratory,Sandia National Laboratories, Albuquerque,NM,1999.
    [39]Pruess K.,C.Oldenburg,G.Moridis.TOUGH2 User's Guide-Version 2.0[S].Lawrence Berkeley Laboratory, Berkeley,CA,1999.
    [40]Kim H.C.,Bishnoi P.R.,Heideman,R.A.,et al.Chem. Eng. Sci.,1987,42:1645-1653.
    [41]Klinkenberg L.J.The Permeability of Porous Media to Liquids and Gases[J].API Drilling and Production Practice,1941:200-213.
    [42]Millington R.J.,J.P. Quirk.Permeability of Porous Solids[J].Trans.Faraday Soc.,1961,57:1200-1207.
    [43]Bird R.,W.E. Stewart,E.N. Lightfoot.Transport Phenomena,John Wiley & Sons,New York, NY,1960.
    [44]Marion G.M.,Jakubowski S.D.The compressibility of ice to 2.0 kbar[J].Cold Regions Science and Technology,2004,38(2-3):211-218.
    [45]Moridis G.J.Numerical studies of gas production from methane hydrates[J].Society of Petroleum Engineers Journal,2003,32(8):359-370.
    [46]Sloan E.D.Clathrate Hydrates of Natural Gases, Marcel Dekker, Inc.:New York, NY,1998.
    [47]de Marsily G.Quantitative Hydrogeology,Academic Press,Orlando,FL,1986.
    [48]Mason E.A.,A.P.Malinauskas.Gas Transport in Porous Media: The Dusty Gas Model, Elsevier, Amsterdam, The Netherlands,1983.
    [49]Webb S.W.Gas-Phase Diffusion in Porous Media-Evaluation of an Advective-Dispersive Formulation and the Dusty Gas Model for Binary Mixtures[J].Por.Media,1998,1(2):187-199.
    [50]Cass A.,G.S.Campbell,T.L.Jones. Enhancement of Thermal Water Vapor Diffusion in Soil[J]. Soil Sci.Soc Am.J.,1984,48(1):25-32.
    [51]Webb S.W.,C.K. Ho. Review of Enhanced Vapor Diffusion in Porous Media, in:K. Pruess (ed.), Proceedings of the TOUGH Workshop'98, Lawrence Berkeley National Laboratory Report LBNL-41995, pp.257-262, Berkeley, CA,1998a.
    [52]Webb S.W.,C.K. Ho. Enhanced Vapor Diffusion in Porous Media-LDRD Final Report, Sandia National Laboratories Report SAND98-2772, Albuquerque, NM,1998b.
    [53]Jury W.A.,W.F. Spencer,W.J. Fanner. Behavior Assessment Model for Trace Organics in Soil:I. Model Description[J]. Environ. Qual.,1983,12(4):558-564.
    [54]Falta R.W.,K. Pruess,S. Finsterle,et al.T2VOC User's Guide[S],Lawrence Berkeley Laboratory Report LBL-36400, Berkeley, CA, March 1995.
    [55]Zhang L.X.,Xu X.Z.,Ma W.Qinghai-Tibet plateau permafrost and gas hydrate[J]. Natural Gas Geoscience,2001,12 (1):22-26 (in Chinese).
    [56]Zhang H.T.,Zhang H.Q.,Zhu, Y.H. Gas hydrate investigation and research in China:present status and progress[J]. Geology in China,2007,34 (6):953-961 (in Chinese).
    [57]Huang P.,Pan G.T.,Wang, L.Q.,et al.Prospect evaluation of natural gas hydrate resources on the Qinghai-Tibet plateau[J]. Regional Geology of China,2002,21 (11):794-798 (in Chinese).
    [58]Liu H.S.,Han X.L.Geophysical recognition and prediction of natural gas hydrates in Qiangtang basin of Tibet[J]. Northwestern Geology,2004,37(4):33-38 (in Chinese).
    [59]Chen D.F.,Wang M.C.,Xia B.Formation condition and distribution prediction of gas hydrate in Qinghai-Tibet Plateau permafrost[J].Chinese Journal of Geophysics,2005,48(1):165-172 (in Chinese).
    [60]Wu Q.B.Jiang G.L.,Pu Y.B.,et al.Relationship between permafrost and gas hydrates on Qinghai-Tibet Plateau[J].Geological Bulletin of China,2006,25 (1-2):29-33 (in Chinese).
    [61]Lu Z.Q.,Wu B.H.,Rao Z.Geological and geochemical anomalies of gas hydrate in permafrost zones along the Qinghai-Tibet railway, China[J]. Geological Bulletin of China,2007,26 (8):1029-1040 (in Chinese).
    [62]Lu Z.Q.,Sultan N.,Jin C.S.,et al.Modeling on gas hydrate formation conditions in the Qinghai-Tibet plateau permafrost[J]. Chinese Journal of Geophysics,2009,52 (1):157-168 (in Chinese).
    [63]Zhu Y.H.,Liu Y.L.,Zhang Y.Q.Formation conditions of gas hydrates in permafrost of the Qilian Mountains, Northwest China[J]. Geological Bulletin of China,2006,25 (1-2):58-63 (in Chinese).
    [64]Wu Q.B.Jiang G.L.,Zhang P.Assessing the permafrost temperature and thickness conditions favorable for the occurrence of gas hydrate in the Qinghai-Tibet Plateau[J], Energy Convers Manage,2010,51(2010):783-787.
    [65]Zhou Y.W.,Qiu G.Q.,Guo D.X.,et al.Chinese geocryology.Beijing:Science Press,2002:9-128 [in Chinese with English abstract].
    [66]Collett T.S., Ginburg G.D. Gas hydrates in the Messoyakha gas field of the west Siberian basica extermination of the geologic evidence. In:Proceedings of 7th international offshore and polar engineering conference,1997,96:103.
    [67]周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000:329-353.
    [68]徐学祖,程国栋,俞祁浩.青藏高原多年冻土区天然气水合物的研究前景和建议[J].地球科学进展,1999,14(2):201-204.
    [69]Makogon Y.F.,Holditch S.A.,Makogon T.Y. Natural gas hydrates-a potential energy source for the 21st Century[J]. Petrol Sci Eng,2007,56:14-31.
    [70]Kelland M. Natural gas hydrates:energy for the future[J]. Mar Pollut Bull,1994,29:307-311.
    [71]Kvenvolden KA. A review of the geochemistry of methane in natural gas hydrate[J]. Org Geochem,1995,23:997-1008.
    [72]Jianglin He,Jian Wang,Xiugen Fu,et al.Assessing the conditions favorable for the occurrence of gas hydrate in the Tuonamu area Qiangtang basin,Qinghai-Tibetan,China[J]. Energy Conversion and Management,2011,53(2012):11-18.
    [73]卢振权,祝有海,张永勤等.青海祁连山冻土区天然气水合物资源量的估算立法-以钻探区为例.地质通报,2010,29(9):1310-1318.
    [74]Moridis G.J.,Seol Y.,Kneafsey T.J. Studies of reaction kinetics of methane hydrate dissociation in porous media[C].Proceedings of the fifth international conference on gas hydrates. Trondheim, Norway,June 2-6,2005.
    [75]van Genuchten M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Jounal,1980,44:892-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700