活细胞内筛选地塞米松衍生物作用靶蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     糖皮质激素受体结合域诱饵表达载体的构建和鉴定
     目的构建糖皮质激素受体α配体结合域(GRα-LBD)的诱饵表达载体,为小分子配体酵母三杂交系统的建立奠定基础。
     方法RT-PCR扩增K562细胞的GRα-LBD,克隆入诱饵载体pGBKT7中,测序正确后,再把构建好的诱饵载体pGBKT7-GRα-LBD转化到酵母AH109细胞中,提取酵母蛋白,并用Western blot分析诱饵蛋白的表达情况。同时检测诱饵蛋白的毒性、渗漏和自激活作用。
     结果成功扩增了GRα-LBD,并分别成功克隆到pGBKT7中,测序结果正确。诱饵载体成功转化到酵母AH109细胞中,无毒性、渗漏和自激活作用,Western blot分析也证实了酵母细胞表达诱饵蛋白。
     结论成功构建了GRα-LBD酵母诱饵表达载体,为建立小分子配体酵母三杂交系统奠定了基础。
     第二部分
     人K562细胞cDNA文库的扩增、纯化、鉴定和酵母细胞转化
     目的对预转化到大肠DH5α中的人K562细胞cDNA文库进行扩增,纯化和鉴定并将文库质粒转化酵母为下一步的靶蛋白的筛选做准备。
     方法对K562细胞cDNA文库进行扩增,提取文库质粒,将文库质粒转化酵母Y187细胞,并用PCR和酶切鉴定转化结果。
     结果成功的扩增人K562细胞cDNA文库,并验证了文库的多样性,将文库质粒成功转化酵母Y187细胞。
     结论K562细胞cDNA文库的成功扩增,纯化,鉴定,为进一步的文库筛选奠定了基础。
     第三部分
     酵母三杂交技术筛选地塞米松衍生物作用的靶蛋白
     目的通过酵母三杂交技术在人K562细胞cDNA中筛选地塞米松衍生物作用的靶蛋白。
     方法通过将转化有诱饵质粒pGBKT7-GRα-LBD的酵母AH109细胞、转化有文库质粒的酵母Y187细胞和终浓度为0.4μg/ml的地塞米松衍生物三种物质放到一起交配后,将交配后的细胞铺于SD/-Trp/-Leu/-His的缺陷培养基上,然后将SD/-Trp/-Leu/-His培养基上生长的克隆挑取到SD/-Trp/-Leu/-His/-Ade /X-α-gal的缺陷培养基上进行营养缺陷筛选,重复挑取三次后仍为蓝色的克隆可能是阳性克隆,然后提取酵母质粒并转化大肠杆菌DH5α感受态细胞,提取大肠杆菌DH5α中的质粒,并通过对所提取的所有文库质粒进行PCR扩增和对PCR产物的单酶切分析,将文库质粒归类,归类后从每一类中随机选择一个代表,通过酵母回转实验进行验证。酵母回转实验阳性的质粒送上海生工测序,通过对测序结果的比对和进一步的分析来确定所筛选到的靶蛋白的特征。
     结果共测序43个,其中有6个是重复的,实际上我们共筛选到37个不同的蛋白,经过回转实验验证,证明20个是阳性克隆,其中一个是新蛋白。从中选择6个进行一对一的酵母交配实验后,发现DDX28和RanBP9/RanBPM是与地塞米松衍生物相互作用的靶蛋白。
     结论本研究我们筛选到了2个与地塞米松衍生物相互作用的靶蛋白,分别是DDX28和RanBP9/RanBPM。这将为地塞米松衍生物抗肿瘤的分子机制研究提供线索。
PART1
     CONSTRUCTION AND IDENTIFICATION OF THE BAIT EXPRESSION VECTOR OF GLUCOCORTICOID RECEPTOR BINDING DOMAIN
     Objective: To construct the bait expression plasmid pGBKT7-GRα-LBD of glucocorticoid receptor 1igand binding domain, which lay the foundations for constructing small molecule ligand yeast three-hybrid system.
     Methods: The fragments of GRα-LBD of human K562 cell were amplified by RT-PCR, and then were cloned into the bait expression vector pGBKT7. After being verified by sequencing, the bait vector pGBKT7-GRα-LBD was transformed into AH109 yeast cells. And the expression of the bait protein was analyzed by western blot. Toxicity,leakage and self-activation of the bait protein were detected simultaneously. Results: GRα-LBD was amplified and cloned into pGBKT7 successfully. The bait vector was transformed into AH109 yeast cells successfully and no toxicity, leakage and self-activation were found.The expression of the bait protein was confirmed by western blot.
     Conclusion: The bait expression vector pGBKT7-GRα-LBD was constructed successfully, which lay the foundations for constructing small molecule ligand yeast three-hybrid system.
     PART2
     AMPLI FICATION, PURIFICATION, IDENTIFICATION OF HUMAN K562 CELL cDNA LIBRARY AND ITS TRANSFORMATION INTO YEAST CELL
     Objective: To ampliy,purify and identify the cDNA library of K562 cell in Eoli DH5αand to transform it into yeast cell for subsequent target protein screening.
     Methods: The cDNA library of human K562 cell was amplified.Then the library plasmids were extracted and transformed into Y187 yeast cell.The results of transformation were verified by PCR and restriction enzyme analysis.
     Results: The cDNA library of human K562 cell was successfully amplified and the diversities were verificated. The cDNA library of human K562 cell was also successfully transformed into Y187 yeast cell.
     Conclusion: Successfully amplification,purification and identification of the cDNA library of human K562 cell which lay the foundations for subsequent protein screening.
     PART3
     SCREENING TARGET PROTEINS OF DEXAMETHASONE DERIVATE BY YEAST THREE-HYBRID SYSTEM
     Objective: Screening target proteins of dexamethasone derivate in K562 cell cDNA library by yeast three-hybrid system.
     Methods: Yeast strain AH109 containing bait plasmid pGBKT7-GRα-LBD, yeast strain Y187 transformed by K562 cell cDNA library and 0.4μg/ml dexamethasone derivate were mated together,spread the mating product to SD/-Trp/-Leu/-His dropout plate, then pick clones from SD/-Trp/-Leu/-His dropout plate to SD/-Trp/-Leu/-His/-Ade/X-α-gal dropout plate for further nutrition dropout screening.Blue clones were presumed positive clones after 3 times nutrition dropout screening.Yeast plasmids were extracted and transformed into Ecoi DH5α,subsequently plasmids of Ecoi DH5αwere extracted and library fragments were amplifed by PCR and amplification products were digested by only one restrict enzyme. Library plasmids were sorted by PCR and restrict enzyme analysis. We chosen one from every sort randomly as representation to verity weather it was really positive by yeast retransformation test. Positive plasmids were analysised by DNA sequencing. Target protein property was described by analysising sequencing results subsequently.
     Results: We sequenced forty-three clones at all, and six clones were duplication of the total, in fact we screened thirty-seven different proteins in our experiment. Yeast retransformation test showed that there were twenty politive clones and one new protein among these clones. Yeast mating test were performed of six clones from those that we had screened. Only DDX28 and RanBP9/RanBPM were target proteins interacting with dexamethasone derivate.
     Conclusion: We screened two target proteins(DDX28 and RanBP9/RanBPM) interacting with dexamethasone derivate. It may be as one envidence on study of dexamethasone derivate anticancer molecular mechanism.
引文
[1] Roy L, Guilhot J, Krahnke T, et a1. Survival advantage from imatinib compared with the combination interferon-alpha plus cytsFabine in chronic-phase chronic myelogenous leukemia: historicalcomparison between two phase 3 trials[J]. Blood, 2006, 108(5): 1478 -1484.
    [2] Gone ME, Mohmnmed M, Ellwood K, et a1. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification[J]. Science, 2001, 293: 876-880.
    [3] White DL, Saunders VA, Dang P, et a1. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib(AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinih[J]. Blood, 2006, 108(2): 697-704.
    [4] Apoptotic pathway induced by noscapine in human myelogenous leukemic cells. Heidari N, Goliaei B, Moghaddam PR, et al. Anticancer Drugs, 2007, 18(10): 1139-47.
    [5] Yang SH, Wu ZZ, Chien CM, et al. JNK and ERK mitogen-activated protein kinases mediate THDA-induced apoptosis in K562 cells[J]. Cell Biol Toxicol, 2007[Epub ahead of print]
    [6] 刘畅, 金丹婷, 钟梁, 等.地塞米松的结构改造及对 K562 细胞增殖抑制的初步研究[J]. 第四军医大学学报,2008[In Press].
    [7] Fields S, Song O. A novel genetic system to detect protein-protein interactions[J].Nature, 1989, 340(6230): 245-246.
    [8] Sengupta D J, Zhang B, Kraemer B, et a1. A three-hybrid system to detect RNA-protein interactions in vivo[J]. Proc Nail Acad Sci USA, 1996, 93(16):8496-8501.
    [9] Licitra EJ, Liu JO. A three-hybrid system for detecting small ligand-protein receptor interactions[J]. Proc Natl Acad Sci U S A, 1996, 93(23): 12817-12821.
    [10] Xu Q, Leung DY Kisieh KO. Serine arginine rich protein p30 directs alternative splicing of glueocortieoid receptor pre-mRNA to glueocortieoid receptor beta in neutrophils[J].J Biol Chem. 2003, 278: 27112-27118.
    [11] Bledson RK, Stewart EL, Pearce KH. structure and function of theglucocorticoid recptor ligand binding domain[J]. Vitam Horm, 2004, 68:49-91.
    [12] Seay D, Hook B, Evans K, et al. A three-hybrid screen identifies mRNAs controlled by a regulatory protein[J]. RNA, 2006, 12(8): 1594-1600.
    [13] Baker K.Complementation A reaction-independent genetic assay for enzyme catalysis[J]. Proc Natl Acad Sci U S A, 2002, 99(26): 16537-16542.
    [14] Charmandari E, Kino T, Chrousos GP, et al. Familial/sporadic glucocorticoid resistance clinical phenotype and molecular mechanisms[J]. Ann N Y Acad Sci, 2004, 1024:168-181.
    [15] Chrousos GP, Charmandari E, Kino T, et al. Glucocorticoid action networks--an introduction to systems biology[J]. J Clin Endocrinol Metab, 2004, 89(2): 563-564.
    [16] 张方, 钱桂生, 吴学玲, 等.人糖皮质激素受体变异体 cDNA 序列克隆和表达及其活性研究[J]. 第三军医大学学报,2006,28(1):50-52.
    [17] 李月白,胡新永,王义生.辛伐他汀对糖皮质激素性骨质疏松大鼠骨代谢的影响[J]. 郑州大学学报. 医学版,2006,41(2):269-272.
    [18] Zhu Y, Lee HC, Zhang L. An Examination of Heme Action in Gene Expression: Heme and Heme Deficiency Affect the Expression of Diverse Genes in Erythroid K562 and Neuronal PC12 Cells. DNA Cell Biol, 2002, 21(4):333-346.
    [19] Pettiford SM, Herbst R. The protein tyrosine phosphatase HePTP regulates nuclear translocation of ERK2 and can modulate megakaryocytic differentiation of K562 cells[J]. Leukemia, 2003, 17(2): 366-378.
    [20] Huang M, Wang Y, Collins M, et al. CPEC induces erythroid differentiation of human myeloid leukemia K562 cell through CTP depletion and p38 MAP kinase[J]. Leukemia, 2004, 18(11): 1857-1863.
    [21] Takagaki K, Katsuma S, Kaminishi Y, et al. Role of Chk1 and Chk2 in Ara-C-induced differentiation of human leukemia K562 cells.Genes to Cells[J]. 2005 10(2): 97-106.
    [22] Chae J, Kim J, Park JK, et a1. The antioxidant,rather than prooxidant,activities of quercetin on normal cells:quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis[J].Exp Cell RES, 2003, 291(10): 386-397.
    [23] 赵新汉,王志宇,李 晶, 等.槲皮素诱导人白血病细胞 K562 的凋亡[J]. 第四军医大学学报, 2006, 27(15): 1395-1398.
    [24] 曹东旭, 元英进. 槐果碱对人红白血病 K562 细胞的增殖抑制和诱导凋亡作用. 天津科技大学学报[J]. 2006, 21(40): 34-36.
    [25] 陈建胜, 叶华贞.南瓜蛋白对慢性粒细胞白血病 K562 细胞增殖的影响. 海峡药学[J]. 2006, 18(5): 180-182.
    [26] 史剑慧, 许小平, 张家梁, 等.核因子-κB 活化抑制增强高三尖杉酯碱诱导白血病细胞凋亡[J]. 中华内科杂志, 2003, 42(5): 292-295.
    [27] Kim SJ, Kim J, Cho Y, et al. Combination chemotherapy with bortezomib, cyclophosphamide and dexamethasone may be effective for plasma cell leukemia [J]. Jpn J Clin Oncol, 2007, 37(5): 382-384.
    [28] Ozaki S, Tanaka O, Fujii S, et al. Therapy with bortezomib plus dexamethasone induces osteoblast activation in responsive patients with multiple myeloma[J]. Int J Hematol, 2007, 86(2):180-185.
    [29] 肖志坚 , 郝玉书.急性白血病治疗现况与未来 [J].白血病 · 淋巴瘤 , 2006,15(1): 78-80.
    [30] Chen L, Yun SW, Seto J, et a1. The fragile X mental reua~htion protein binds and regulates a novel class of mRNAs containing U rich target seqnences[J]. Neurescience, 2003, 120(4): 1005-1017.
    [31] Zou K, Liu J, Zhu N, et al. Identification of FMRP-associated mRNAs using yeast three-hybrid system[J]. Am J Med Genet B Neuropsychiatr Genet. 2007, 114:637-640.
    [1] Gilliland DG, Griffin JD.The roles of FLT3 in hematopoiesis and leukemia. Blood,2002, 100(5): 1532-1542.
    [2] M unoz I, Aventin A, Villamor N,et a1. Immunophenolypic findings in acutemyeloid leukemia with FLT3 internal tandem duplication.Haematologica, 2003,88(6): 637-645.
    [3] Radomska HS,Bassères DS,Tenen DG,et al. Block of C/EBP function byhosphorylation in acut myeloid leukemia with FLT3 activating mutation. JExperimental Medicine, 2006, 203 (2):371-381.
    [4] Cools J, Mentens N, Furet P,et al.Prediction of resistance to Small Molecule FLT3Inhibitors:Implications for Molecularly Targeted Therapy of Acute Leukemia.Cancer Res, 2004, 64(18):6385 -6389.
    [5] Stone RM, DeAngelo DJ,Klimek V,et al. Patients with acute myeloid leukemia andan activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinaseinhibitor, PKC412. Blood, 2005, 105(1):54-60.
    [6] Kindler T, Breitenbuecher F, Kasper S, et al.Identification of a novelactivatingmutation (Y842C) within the activation loop of FLT3 in patients with acute myeloidleukemia (AML). Blood, 2005, 105(1):335-340.
    [7] Lopes deMenezes DE, Jing Peng,Garrett EN,etal. CHIR-258: A Potent Inhibitor ofFLT3 Kinase in Experimental Tumor XenograftModels of Human AcuteMyelogenous Leukemia. Clin Cancer Res, 2005, 11(14):5281-5291.
    [8] Jones PA, Laird PW. Cancer epigenetics comes of age. Nature Genetics, 1999,21(2):163-167.
    [9] Sciandrello G, Caradonna F, Mauro M, et a1.Arsenic induced DNAhypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis, 2004, 25(3): 413-417.
    [10] Di Croce, Raker, Veronica A, et a1. Methyltransferase Recruitment and DNA Hypermethylation of Target Promoters by an Oncogenic Transcription Factor.Science, 2002, 295(5557):1079-1082.
    [11] San Jose-Eneriz E, Agirre X, Roman-gomez J, et al.Downregulation of DBC1 expression in acute lymphoblastic leukemia is mediated by aberrant methylation of its promoter.Br J Haematol, 2006, 134(2):137-144.
    [12] Christman. JK, 5-Azacytidine and 5-aza-2_-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implicationsfor cancer therapy. Oncogene, 2002, 21:5483-5495.
    [13] Peterson CL. HDAC's at work: everyone doing their part. Mol Cell, 2002, 9(5): 921-922.
    [14] Hong J,Ishihara K,Yamaki K,et a1.Apicidin,a histone deacetylase inhibitor,induces differentiation of HL-60 cells.Cancer Lett, 2003, l89(2): 197-206.
    [15] Bartoli A, Fettucciari K, Fetriconi I, et al.Effect of trichostatin A and 5-azacytidine on transgene reactivation in U937 transduced cells. Pharmacol Res, 2003, 48(1):111-118.
    [16] Chambers A E,Baneoee S,Chaplin T,el a1.Histone acetylation-mediated regulation of genes in leukemic cells.Eur J Cancer,2003,39(8):l165-1175.
    [17] Nimmanapalli R, Fuino L, Bali P, et a1.Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or-refractory chronic myelogenous leukemia-blast crisis cells.Cancer Res, 2003, 63(16):5126-5135.
    [18] Sasakawa Y, Naoe Y,Inoue T,et a1.Effects of FK228,a nove1 histone deaccetylase inhibitor,on human [ymphoma U-937 cells in vitro and in vivo.Bio-chem Pharmaco1, 2002, 64(7):1079- 1090.
    [19] Satou Y, Nosaka K, Koya Y, et al.Proteasome inhibitor, bortezomib, potently inhibits the growth of adultT-cell leukemia cells both in vivo and in vitro. Leukemia,2004,18(8):1357-1363.
    [20] Mori N, Yamada Y, Ikeda S, et al.Bay 11-7082 inhibitstranscription factor NF-κB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood, 2002, 100(5):1828-1834.
    [21] Takayuki Ikezoe, Yang Yang,Kentaro Bandobashi,et al.Oridonin, a diterpenoid purified from Rabdosia rubescens inhibits the proliferation of cells from lymph -oid malignancies in association with blockade of the NF-κB signal pathways. Mol Cancer Ther, 2005, 4(4):578-586.
    [22] Neel BG, Gu H, Pao L.SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci, 2003, 28(6):284 -293.
    [23] Tartaglia M, Niemeyer CM, Shannon KM, Loh ML. SHP-2 and myeloid malignancies.Curr Opin Hematol, 2004, 11(1):44 -50.
    [24] Tartaglia M, Niemeyer CM, Fragale A, et al.Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.Nat Genet, 2003, 34(2):148 -150.
    [25] Loh ML, Vattikuti S, Schubbert S, et al. Mutations in PTPN11 implicated the SHP-2 phosphatase in leukemogenesis. Blood, 2004, 103(6):2325-2331.
    [26] Bentires-AljM, Paez JG, David FS, et al. Activating Mutations of the Noonan Syndrome-Associated SHP2/PTPN11 Gene in Human Solid Tumors and Adult Acute Myelogenous Leukemia. Cancer Res, 2004, 64(24): 8816-8820.
    [27] Ishida T, Utsunomiya A, Iida S, et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma (ATLL): its close association with skin involvement and unfavorable outcome. Clin Cancer Res, 2003, 9(10): 3625-3634.
    [28] Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, et al .Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma.Cancer Res, 2004, 64(6):2127-2133.
    [29] Harasawa H, Yamada Y, Hieshima K, et al.Survey of chemokine receptor expression reveals frequent co-expression of skin-homing CCR4 and CCR10 inadult T-cell leukemia/lymphoma.leuk lymphoma, 2006, 47(10):2163-2173.
    [30] Ishida T, Iida S, Akatsuks Y, et al.The CC Chemokine Receptor 4 as a Novel Specific MolecularTarget for Immunotherapy in Adult T-Cell Leukemia/Lymphoma. Clin Cancer Res, 2004, 10(22):7529-7539.
    [31] Asanuma K, Tsuji N, Endoh T, et al.Survivin enhances Fas ligand expression via up-regulation of specificity protein 1-mediated gene transcription in colon cancer cells. J Immunol.2004, 172(6):3922-3929.
    [32] Scielzo C, Ghia P, Conti A, et al.HS1 protein is differentially expressedin chronic lymphocytic leukemia patientsubsets with good or poor prognoses. Clin Invest, 2005, 115(6):1644-1650.
    [33] Ise T, Maeda H, Santora H, et al.Immunoglobulin Superfamily Receptor Translocation Associated. 2 Protein on Lymphoma Cell Lines and Hairy Cell Leukemia Cells Detected by Novel Monoclonal Antibodies. Clinical Cancer Res, 2005, 11(1): 87-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700