断乳至性成熟期持续暴露大豆异黄酮对卵泡发育的影响及其代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆异黄酮是大豆等豆科植物生长过程中形成的植物化学物,是一种植物雌激素,流行病学和动物实验显示大豆异黄酮对人类有很多益处,如预防癌症,防治心脑血管疾病,改善更年期综合征等。但鉴于未成年体内雌激素水平较低和下丘脑-垂体-性腺轴发育的不完善,使得他们对外源性雌激素高度敏感。因此大豆异黄酮的雌激素样作用对其内分泌产生干扰作用的机会较大。目前对大豆异黄酮的生殖发育毒性国内外做了一些研究,但大部分的研究主要集中在大豆异黄酮的外源性雌激素样效应上,如对子宫、阴道、乳腺等雌激素效应器官的影响。而对于内源性雌激素的产生器官卵巢的影响研究极少,且缺乏深入的分子机制研究。基于以上研究现状,本研究建立Wistar大鼠断乳致性成熟期持续暴露大豆异黄酮的动物模型,研究大豆异黄酮对卵巢发育的一般影响,对卵泡液微环境成分影响的代谢组学变化,对卵巢细胞凋亡及Fas及Bcl-2/Bax信号途径在大豆异黄酮诱导卵泡细胞凋亡中的调控作用。研究结果对于明确大豆异黄酮未成年卵泡发育毒性及其机制以及未成年女性含大豆异黄酮的豆类及其制品的安全推荐量的制定具有重要的指导意义。
     目的:
     研究断乳至性成熟期持续大豆异黄酮对卵巢发育的一般影响。进一步采用代谢组学(HPLC-MS)技术研究断乳致性成熟期持续暴露大豆异黄酮大鼠卵巢卵泡液内源性代谢物的变化,筛选出差异代谢标记物。进而探讨大豆异黄酮对卵巢颗粒细胞凋亡的影响及Fas和Bcl-2/Bax信号通路在其中的调控作用。为大豆异黄酮未成年女(雌)性性腺生殖发育干扰作用的预防与控制以及未成年女性含大豆异黄酮的配方制剂和豆类食品安全摄入量的制定提供科学依据。
     方法:
     1.清洁级雌性Wistar大鼠80只,21日龄,45±5g,按体重随机分为4组,每组20只,以0、50、100、200mg/kg.BW的大豆异黄酮灌胃,每天1次,直至第80日龄,共灌胃59天。每天记录体重,观察阴门开放时间和动情周期,干预结束后于动情期剖杀大鼠,取血测定血清雌二醇和孕酮。取卵巢、子宫称重。取卵巢固定、包埋、切片、HE染色计数各级卵泡,计算构成比。
     2.采用显微注射技术提取上述动物模型中右侧卵巢有腔卵泡的卵泡液,每3只卵巢卵泡液混在一起收集为1份,约15μL,每组6份。经离心、甲醇抽提,HPLC-MS检测,色谱和质谱数据经适当降维,去噪。采用主成分分析法(PCA)和偏最小二乘判别法(PLS-DA)进行模式识别,根据变量权重重要性排序值(VIP)和数据库筛选差异代谢标记物,并用标准品进行验证。
     3.每组随机抽取2个卵巢组织用于透射电镜观察细胞凋亡。取上述研究内容“1”中的切片用TUNEL法检测细胞凋亡。每组随机抽取6个卵巢组织采用real time-PCR检测Caspase-3、8、9、Fas及Bcl-2、Bax mRNA表达,剩下的每组6个卵巢组织采用Western-blot法测定Caspase-3、Fas、Bcl-2及Bax蛋白表达水平。
     结果:
     1.大豆异黄酮对卵巢发育的一般影响:(1)与对照组相比,大豆异黄酮剂量组体重无明显差别,卵巢和子宫脏器系数无明显差异(P>0.05)。(2)与对照组相比,高剂量组阴道开放时间明显提前(P<0.05),各剂量组动情周期无明显变化(P>0.05)。(3)与对照组相比,高剂量组血清雌二醇明显降低(P<0.05),各组间孕酮水平差别无显著意义(P>0.05)。(4)与对照组相比,中高剂量组闭锁卵泡和黄体比例明显升高(P<0.05),而原始卵泡和初级卵泡明显减少(P<0.05)。
     2.大豆异黄酮对卵泡液影响的代谢组学研究:(1)总离子色谱图:肉眼上看大豆异黄酮剂量组与对照组有些差别。(2)PCA分析:经数据降维和去除噪音,1300多个峰被识别,在PCA得分散点图和3D图上各剂量组与对照组差别明显。(3)PLS-DA分析:在PLS-DA得分散点图和3D图上可看到各剂量组之间以及与对照组之间差异很明显。(4)经VIP和数据库检索以及标准品验证,共筛选出24个差异代谢标记物,涉及性激素代谢、氨基酸代谢、脂肪酸代谢以及能量代谢途径。
     3.大豆异黄酮对卵巢颗粒细胞凋亡的影响及Fas和Bcl-2/Bax信号通路的调控作用研究:(1)透射电镜发现大豆异黄酮剂量组颗粒细胞凋亡增多,且存在明显的脂肪变性。(2)TUNEL法检测发现高剂量组有腔卵泡的凋亡率显著高于对照组(P<0.05),同时闭锁卵泡颗粒细胞凋亡率也高于对照组(P<0.05),中高剂量组黄体颗粒细胞凋亡率显著高于对照组(P<0.05)(3)中高剂量组Caspase-3、8、9、Fas及Bax mRNA表达均上调,与对照组比较差异具有统计学意义(P<0.05)。而Bcl-2mRNA各组间差别无统计学意义(P>0.05)。(4)与real time-PCR结果一致,Caspase-3、Fas、Bax基因蛋白表达均上调(P<0.05),Bcl-2蛋白表达低中剂量组与对照组差别无显著意义(P>0.05),而在高剂量组反而下降(P<0.05),与real time-PCR结果不一致。
     结论:
     1.断乳致性成熟期持续暴露大豆异黄酮会影响卵巢发育,导致闭锁卵泡和黄体比例增多,卵巢是大豆异黄酮的敏感器官之一。
     2.断乳致性成熟期持续暴露大豆异黄酮会使卵巢卵泡液的代谢物发生明显变化,涉及性激素代谢、氨基酸代谢、脂肪酸代谢以及能量代谢途径,提示大豆异黄酮可通过诱导卵泡液代谢成分改变影响卵泡发育。
     3.大豆异黄酮可诱导卵巢颗粒细胞凋亡和脂肪变性,其可能机制主要是通过激活Bcl-2/Bax和Fas系统,进而激活Caspase家族途径。
Soy isoflavones (SIF) are a kind of phytochemicals and phytoestrogens whichare found in soy and other legumes. Epidemiological evidence and experimentalstudies have repeatedly linked the consumption of soy isoflavones or soy products toa variety of beneficial health effects, such as the prevention of cancer andcardiovascular disease, as well as osteoporosis in menopausal and postmenopausalwomen. Children have low estrogen levels and the development of hypothalamic-pituitary-ovarian axis is immature, which makes them more sensitive to exogenousestrogenic compounds. Therefore, it is reasonable to assume that soy isoflavones maypose a greater hazard to the developing reproductive system in children, and publicconcern about this issue has recently increased. Previous studies had shown that soyisoflavones may adversely affect estrogen-sensitive target tissues, including the uterus,oviduct, vagina and mammary gland. However, whether the ovary, especially theovarian follicle, which as an endogenous estrogen-producing tissue, is affected by soyisoflavones remains unclear and is seldom been intensively studied. Based on theseobservations, the purpose of this study was to determine the influence of theadministration of soy isoflavones from weaning to sexual maturity on ovarian follicledevelopment by using the animal model of Wistar rats. The studies of our researchinclude the effects of soy isoflavones on ovarian development in general; themetabolomic variations in follicular fluid; apoptosis of ovarian cells and theregulation function of Fas and Bcl-2/Bax signal pathway. The results would haveguiding instuction for the prevention and control of soy isoflavones on female gonadalreproductive development and for the formulation of soy foods and soy isoflavonesformula in safe intake of immature female.
     Objective:
     To investigate the general effect of soy isoflavones on ovarian development byestablishing animal models of soybean isoflavones exposure from weaning to sexualmaturity, then to investigate the metabolomic variations in follicular fluid usingHPLC-MS and uncover useful toxic biomarkers. Finally to explore the effects of soyisoflavones on apoptosis of ovarian granulosa cells and the regulation function of Fasand Bcl-2/Bax signaling pathway. the results would have guiding instruction for theprevention and control of soy isoflavones on female gonadal reproductivedevelopment and for the formulation of soy foods and soy isoflavones formula in safeintake of immature female.
     Methods:
     1. Eighty female21day old Wistar rats weighing45±5g were randomly dividedinto four groups of twenty rats each. Rats of each group were treated daily byintragastric administration of SIF (0,50,100or200mg/kg body weight, respectively)until they reached sexual maturity. Weight gain was measured every day. Age ofvaginal opening and estrus cycle were observed before killing. After the treatmentperiod, the animals were killed by decapitation at the oestrus of estrous cycle, andblood, ovarian samples were harvested to determine serum estradiol (E2) andprogesterone (P4) levels and enumerate ovarian follicles in each stage.
     2. Follicular fluid was collected from the antral follicles of the ovary using amicroinjector under an inverted microscope. Follicular fluid collected from the leftovaries of three rats from the same group was pooled, up to a total volume of15μl.Each group consists of6samples.The follicular fluids were then prepared successivepassing through a series of centrifugation, methanol extraction, HPLC-MS detection,chromatography and mass spectrometry data dimension reduction and denoising.Principal component analysis (PCA) and partial least-squares-discriminant analysis(PLS-DA) was used to recognize pattern. Variable importance in projection (VIP) anddatabases were employed to identify differences in metabolites and reveal useful toxic biomarkers. Finally, Standards of metabolic interest were used to confirm thestructures.
     3. Two ovarian tissues were randomly selected to observe cell apoptosis by usingtransmission electron microscopy. Ovarian sections in part one were also used todetect cell apoptosis by TUNEL method. Six ovarian tissues were selected to detectmRNA level of Caspase-3,8,9, Fas, Bax and Bcl-2by real time PCR. The rest6ovarian tissues were selected to determine protein expression level of Caspase-3, Fas,Bax and Bcl-2by Western-blot method.
     Results:
     1. The general effect of soy isoflavones on ovarian development (1)There was nosignificant difference in body, ovary and uterus weight among any of the groups (P>0.05).(2)Compared with the control group, age of vaginal opening was accelerated inhigh-dose groups (P<0.05). There was no significant change in estrus cycle of SIFgroups (P>0.05).(3)SIF treatment led to significant reductions in serum E2levels inhigh-dose SIF group as compared to the control group (P <0.05). However, there wereno significant differences (P>0.05) in the levels of serum P4among any of thegroups.(4)In the control and low-dose SIF group, a large number of primordial andprimary follicles were found. However, in the middle and high dose SIF groups, thenumbers of atretic follicles and corpora lutea were higher than those of the controlgroup (P <0.05)
     2. Metabolomic changes in follicular fluid induced by soy isoflavonesadministered to rats from weaning until sexual maturity:(1) Total ion intensitychromatogram: Visual comparison of these chromatograms indicated that themetabolic profiles of the groups treated with soy isoflavones differ somewhat fromthat of control group.(2)PCA analysis: Through data dimension reduction anddenoising, approximately1300peaks (defined by a pair of m/z values and RT) wereidentified. the control and low, middle and high dose SIF rats are appreciablyseparated in the pseudo3D-PCA score plot.(3)PLS-DA analysis: The score plots of the PLS-DA between the control group and the groups treated with soy isoflavonesare clearly separated.(4)Based on the VIP value, database retrieval and standardverification, The24most significantly altered metabolites were identified, includingprimary sex hormones, amino acids, fatty acids and metabolites involved in energymetabolism.
     3. The effects of soy isoflavones on apoptosis of ovarian cells and the regulationfunction of Fas and Bcl-2/Bax signaling pathway:(1) Granulosa cell apoptosisincreased in SIF groups from Transmission electron microscope. Lipid accumulationwas also found in SIF groups.(2) By using TUNEL assay, the results showed thatgranulosa cell apoptosis rate of the antral follicle in the high-dose group wasobviously higher than that of the control group (P<0.05), while granulosa cellapoptosis rate of the atretic follicle was also higher than that of the control group(P<0.05). Granulosa cell apoptosis rate of corpora lutea in middle and high SIFgroups was significantly higher than that of control group (P<0.05).(3)mRNA levelsof caspase-3,8,9, Fas and Bax in middle and high-dose groups were up-regulated(P<0.05). mRNA level of Bcl-2in low-dose SIF group was higher than that of controlgroup (P<0.05).(4)Consistent with the results of real time PCR, protein expression ofCaspase-3, Fas, Bax gene was significantly up-regulated (P<0.05), but Bcl-2proteinexpression in high-dose group was significance lower than that of control group,which was inconsistent with the results of real time PCR.
     Conclusions:
     1. Continuous exposure of soy isoflavones from weaning to sexual maturity canaffect ovarian development, resulting in atretic follicle and corpus luteum increasing,which indicate that the ovary is one of the main target tissues of soy isoflavones.
     2. Soy isoflavones can induce metabolic alterations in follicular fluid, whichinclude primary sex hormones, amino acids, fatty acids and metabolites involved inenergy metabolism. These findings indicate that soy isoflavones affect ovarian follicledevelopment by inducing metabolomic variations in follicular fluid.
     3. Soy isoflavones can induce apoptosis of granulosa cells and lipids accumulationin ovary. the possible mechanism may relate to the activation of Bcl-2/Bax and Fassystem, and then activating the Caspase family signaling pathway.
引文
[1]Levy JR, Faber KA, Ayyash L, et al. The effect of prenatal exposure to thephytoestrogen genistein on sexual differentiation in rats. Proc. Soc. Exp Biol Med.1995,208:60-66.
    [2] Hughes C, L iu G, Beall S, et al. Effects of genistein or soy milk during lategestation and lactation on adult uterine organization in the rat. Exp Biol Med(Maywood).2004,229(1):108-117.
    [3]Newbold RR, Banks EP, Bullock B, et al. Uterine adeno carcinoma in mice treatedneonatally with genistein. Cancer Res.2001,61:4325-4328.
    [4]Liu ZP, Zhang XP, Li L, et al. Effects of lactational exposure to soy isoflavoneson reproductive system in neonatal female rats. Basic Clin Pharmacol.2007,102:317-324.
    [5] El Sheikh Saad H, Meduri G, Phrakonkham P, et al. Abnormal peripubertaldevelopment of the rat mammary gland following exposure in utero and duringlactation to a mixture of genistein and the food contaminant vinclozolin. ReprodToxicol.2011,32(1):15-25.
    [6] Ashby J, Tinwell H, Odum J, et al. Diet and the aetiology of temporal advances inhuman and rodent sexual development. J ApplToxicol.2000,20:343-347.
    [7]张晓鹏,李丽,张文众等.大豆异黄酮对不同发育期雌性大鼠生殖系统毒性的研究.中国食品卫生杂志.2006,18(6):508-513.
    [8]卜云,张振汉.大豆黄酮对小鼠生长和生殖影响的研究.宁夏农学院学报.2004,25(1):48-50.
    [9] Chan, W H. Impact of genistein on maturation of mouse oocytes, fertilization, andfetal development. Reprod Toxicol.2009,28:52-58.
    [10] Galeati G, Vallorani C, Bucci D,et al. Daidzein does affect progesteronesecretion by pig cumulus cells but it does not impair oocytes IVM. Theriogenology.2010,74(3):451-457.
    [11]Setchell K, Zimmer-Nechemias L, Cai J, et al. Exposure of infants to phyto-oestrogensfrom soy-based infant formula. Lancet.1997,350(9070):23-27.
    [12] Krysko DV, Diez-Fraile A, Criel G, et al. Life and death of female gametesduring oogenesis and folliculogenesis. Apoptosis.2008,13(9):1065-1087.
    [13] Manabe N, Matsuda-Minehata F, Goto Y, et al.. Role of cell death ligand andreceptor system on regulation of follicular atresia in pig ovaries. Reprod DomestAnim.2008,2:268-272.
    [14]Setchell KD, Gosselin SJ, Welsh MB, et al. Dietary estrogens--a probable cause ofinfertility and liver disease in captive cheetahs. Gastroenterology.1987,93(2):225-233.
    [15]Piotrowska KK, Woclawek-Potocka I, Bah M.M, et al. Phytoestrogens and theirmetabolites inhibit the sensitivity of the bovine corpus luteum to luteotropic factors. JReprod Dev.2006,52(1):33-41.
    [16] Adams NR. Detection of the effects of phytestrogenes on sheep and cattle. J. Anim.Sci.1995,73(5):1509–1515.
    [17] Chen X, Anderson JJ. Isoflavones and bone: animal and human evidence of efficacy. JMusculoskelet Neuronal. Interact.2002,2(4):352-359.
    [18]Cooke GM. A review of the animal models used to investigate the health benefits ofsoy isoflavones. J AOAC Int.2006,89(4):1215-1227.
    [19]Kurzer MS. Soy consumption for reduction of menopausal symptoms.Inflammopharmacol.2008,16(5):227-229.
    [20]Xiao CW. Health effects of soy protein and isoflavones in humans. J Nutr.2008,138(6):1244-1249.
    [21]Ma DF, Qin LQ, Wang PY, et al. Soy isoflavone intake inhibits bone resorption andstimulates bone formation in menopausal women: meta-analysis of randomized controlledtrials. Eur J Clin Nutr.2008,62(2):155-161.
    [22]Kuiper GG, Lemmen JG, Carlsson B, et al. Interaction of estrogenic chemicals andphytestrogens with estrogen receptor. Endocrinology.1998,139(10):4252-4263.
    [23]Nikaido Y, Danbara N, Tsujita-Kyutoku M, et al. Effects of prepubertal exposure toxenoestrogen on development of estrogen target organs in female CD-1mice. In Vivo.2005,19(3):487-494.
    [24]Nikaido Y, Yoshizawa K, Danbara N, et al. Effects of maternal xenoestrogen exposureon development of the reproductive tract and mammary gland in female CD-1mouseoffspring. Reprod Toxicol.2004,18(6):803-811.
    [25]Padilla-Banks E, Jefferson WN, Newbold RR. Neonatal exposure to the phytoestrogengenistein alters mammary gland growth and developmental programming of hormonereceptor levels. Endocrinology.2006,147(10):4871-4882.
    [26]Jefferson WN,Doerge D, Padilla-Banks E, et al. Oral exposure to genistin, theglycosylated form of genistein, during neonatal life adversely affects the femalereproductive system. Environ Health Perspect.2009,117(12):1883-1889.
    [27]Pryor JL, Hughes C, Foster W, et al. Critical windows of exposure for children’shealth: the reproductive system in animals and humans. Environ Health Perspect.2000,108(Suppl3):491-503.
    [28]Sharpe RM, Irvine DS. How strong is the evidence of a link between environmentalchemicals and adverse effects on human reproductive health? BMJ.2004,328(7437):447-451.
    [29]Atanassova N, McKinnell C, Fisher J, et al. Neonatal treatment of rats withdiethylstilbestrol (DES) induces stromal–epithelial abnormalities of the vas deferens andcauda epididymis in adulthood following delayed basal cell development. Reproduction.2005,129(5):589-601.
    [30]Franke AA, Custer LJ. Daidzein and genistein concentrations in human milk after soyconsumption. Clin Chem.1996,42(6):955-964.
    [31]Franke AA, Custer LJ, Tanaka Y. Isoflavones in human breast milk and otherbiological fluids. Am J Clin Nutr.1998,68(6):1466S-1473S.
    [32]Setchell KD, Zimmer-Nechemias L, Cai J, et al. Isoflavone content of infant formulasand the metabolic fate of these phytoestrogens in early life. Am J Clin Nutr.1998,68(6):1453S-1461S.
    [33]Coldham, NG, and Sauer, M J. Pharmacokinetics of [(14)C]Genistein in the rat:gender-related differences, potential mechanisms of biological action, and implications forhuman health. Toxicol Appl Pharmacol.2000,164(2):206-215.
    [34]McCarver G, Bhatia J, Chambers C, et al. NTP-CERHR expert panel report onthe developmental toxicity of soy infant formula. Birth Defects Res B Dev ReprodToxicol.2011,92(5):421-468.
    [35]Jefferson W, Newbold R, Padilla-Banks E, et al. Neonatal genistein treatment altersovarian differentiation in the mouse: inhibition of oocyte nest breakdown and increasedoocyte survival. Biol Reprod.2006,74(1):161-168.
    [36]Dierschke DJ, Hutz RJ, Wolf RC. Induced follicular atresia in rhesus monkeys:strength-duration relationships of the estrogen stimulus. Endocrinology.1985,117(4):1397-1403.
    [37]Hutz RJ, Dierschke DJ, Wolf RC. Role of estradiol in regulating ovarian follicularatresia in rhesus monkeys: a review. J Med Primatol.1990,19(6):553-571.
    [38]Lewis RW, Brooks N, Milburn GM, et al. The effects of the phytoestrogen genisteinon the postnatal development of the rat. Toxicol Sci.2003,71(1):74-83.
    [39]Galeati G, Vallorani C, Bucci D, et al. Daidzein does affect progesterone secretion bypig cumulus cells but it does not impair oocytes IVM. Theriogenology.2010,74(3):451-457.
    [40]Goldman JM, Law SC, Balchak SK, et al. Endocrine disrupting chemicals:Prepubertal exposure and effects sexual maturation and thyroid activity in the female rat.Crit Rev Toxicol.2000,30:135-196.
    [41]李海斌,李君,姚三巧.氯氰菊酯对雌性大鼠生殖器官的影响.环境与健康杂志.2008,25(8):708-710.
    [42]John, A. Endocrine disrupters and female reproductive health. Best Pract ResclillEndocrinol Metab.2006,20(1):63-75.
    [43]林楠,冯云.代谢组学预测卵子质量与胚胎发育潜能研究进展.中国实用妇科与产科杂志.2012,28(7):544-546.
    [44] Putri SP, Nakayama Y, Matsuda F, et al. Current metabolomics: Practicalapplications. J Biosci Bioeng.2013Jan28.[Epub ahead of print]
    [45]Pinero-Sagredo E, Nunes S, de Los Santos MJ, et al. NMR metabolic profile of humanfollicular fluid. NMR Biomed.2010,23(5):485-495.
    [46]Fortune JE, Rivera GM, Yang MY. Follicular development: the role of the follicularmicroenvironment in selection of the dominant follicle. Anim Reprod Sci.2004,82-83:109-126.
    [47] Goodacre R. Metabolic profiling: pathways in discovery. Drug Discov Today.2004,9(6):260-261.
    [48] Evans Alison A, Chen G, Ross Eric A, et al. W.T. London, Oncology.2002,11:369.
    [49] Pasikanti KK, Esuvaranathan K, Ho PC, et al. J. Proteome Res.2010,9:2988.
    [50] Keun HC, Athersuch TJ. Pharmacogenomics.2007,8:731.
    [51] Wilcoxen KM, Uehara T, Myint KT, et al. Expert Opin. Drug Discov.2010,5:249.
    [52]Hirai MY, Yano M, Goodenowe DB, et al. Proc Natl Acad Sci. U S A.2004,101:10205.
    [53]Holmes E, Nicholls AW, Lindon JC, et al. Chem. Res. Toxicol.2000,13:471.
    [54]Lin SH, Chan W, Li JH, et al. Rapid Commun. Mass Spectrom.2010,24:1312.
    [55] Revelli A, Delle Piane L, Casano S, et al. Follicular fluid content and oocyte quality:from single biochemical markers to metabolomics. Reprod Biol Endocrinol.2009,7,40.
    [56] Llorach-Asunción R, Jauregui O, Urpi-Sarda M, et al. J PharmBiomed Anal.2010,51:373.
    [57] Adlercreutz H, Bannwart C, W h l K, et al. Inhibition of human aromatase bymammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol.1993,44(2):147-153.
    [58] Lacey M, Bohday J, Fonseka SM, et al. Dose-response effects of phytoestrogens onthe activity and expression of3beta-hydroxysteroid dehydrogenase and aromatase inhuman granulosa-luteal cells. J. Steroid. Biochem. Mol Biol.2005,96(3-4):279-286.
    [59] Le Bail JC, Champavier Y, Chulia AJ, et al. Effects of phytoestrogens on aromatase,3beta and17beta-hydroxysteroid dehydrogenase activities and human breast cancer cells.Life Sci.2000,66(14):1281-1291.
    [60] Tiemann U, Schneider F, Vanselow J, et al. In vitro exposure of porcine granulosacells to the phytoestrogens genistein and daidzein: effects on the biosynthesis ofreproductive steroid hormones. Reprod Toxicol.2007,24(3-4):317-325.
    [61]Nynca A, Jablonska O, Slomczynska M, et al. Effects of phytoestrogen daidzein andestradiol on steroidogenesis and expression of estrogen receptors in porcine luteinizedgranulosa cells from large follicles. J Physiol Pharmacol.2009,60(2):95-105.
    [62]Houghton FD, Hawkhead JA, Humpherson PG, et al. Non-invasive amino acidturnover predicts human embryo developmental capacity. Hum Reprod.2002,17(4):999-1005.
    [63]Lane M, Gardner DK. Mitochondrial malate-aspartate shuttle regulates mouse embryonutrient consumption. J Biol Chem.2005,280(18):18361-18367.
    [64]Humpherson PG, Leese HJ, Sturmey RG. Amino acid metabolism of the porcineblastocyst. Theriogenology.2005,64(8):1852-1866.
    [65]Lee ES, Fukui Y. Synergistic effect of alanine and glycine on bovine embryoscultured in a chemically defined medium and amino acid uptake by vitro-producedbovine morulae and blastocysts. Biol Reprod.1996,55(6):1383-1389.
    [66] Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovineembryo development in culture. Biol Reprod.1999,61(3):731-740.
    [67] Yang H, Foxcroft GR, Pettigrew JE, et al. Impact of dietary lysine intake duringlactation on follicular development and oocyte maturation after weaning in primiparoussows. J Anim Sci.2000,78(4):993-1000.
    [68] Sinclair KD, Lunn LA, Kwong WY, et al. Amino acid and fatty acid composition offollicular fluid as predictors of in-vitro embryo development. Reprod Biomed Online.2008,16(6):859-868.
    [69] Leroy JL, Vanholder T, Mateusen B, et al. Non-esterified fatty acids in follicular fluidof dairy cows and their effect on developmental capacity of bovine oocytes in vitro.Reproduction.2005,130(4):485-495.
    [70] Mu YM, Yanase T, Nishi Y, et al. Saturated FFAs, palmitic acid and stearic acid,induce apoptosis in human granulosa cells. Endocrinology.2001,142(8):3590-3597.
    [71] Vanholder T, Leroy JL, Soom AV, et al. Effect of non-esterified fatty acids on bovinegranulosa cell steroidogenesis and proliferation in vitro. Anim Reprod Sci.2005,87(1-2):33-44.
    [72] Abe H, Yamashita S, Itoh T, et al. Ultrastructure of bovine embryos developed from invitro-matured and-fertilized oocytes: comparative morphological evaluation of embryoscultured either in serum-free medium or in serum-supplemented medium. Mol Reprod Dev.1999,53(3):325-335.
    [73] Reis A, Rooke JA, McCallum GJ, et al. Consequences of exposure to serum, with orwithout vitamin E supplementation, in terms of the fatty acid content and viability ofbovine blastocysts produced in vitro. Reprod Fertil Dev.2003,15(5):275-284.
    [74] Majno G, and Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. AmJ Pathol.1995,146:3-15.
    [75] Lockshin RA, and Williams CM. Programmed cell death. I. Cytology of degenerationin the intersegmental muscles of the Pernyi silkmoth. J Insect Physiol.1965,11:123-133.
    [76] Kuan NK, and Passaro E J. Apoptosis: programmed cell death. Arch Surg.1998,133:773-775.
    [77] Hu as-Stasiak M, Gawron A. Follicular atresia in the prepubertal spiny mouse(Acomys cahirinus) ovary. Apoptosis.2011,16(10):967-975.
    [78] Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol.1991,124:43-101.
    [79] Inoue N, Matsuda F, Goto Y, et al. Role of cell-death ligand-receptor system ofgranulosa cells in selective follicular atresia in porcine ovary. J Reprod Dev.2011,57:169-175.
    [80] Tilly JL, Kowalski KI, Johnson AL, et al. Involvement of apoptosis in ovarianfollicular atresia and postovulatory regression. Endocrinology.1991,129:2799-2801.
    [81] Jiang JY, Cheung CKM, Wang YF, et al. Regulation of cell death and cell survivalgene expression during ovarian follicular development and atresia. Front Biosci.2003,8:d222-d237.
    [82] Matsuda-Minehata F, Inoue N, Goto Y, et al. The regulation of ovarian granulosa celldeath by pro-and anti-apoptotic molecules. J Reprod Dev.2006,52:695-705.
    [83]Matsuda F, Inoue N, Manabe N, et al. Follicular growth and atresia in mammalianovaries: regulation by survival and death of granulosa cells. J Reprod Dev.2012,58(1):44-50.
    [84] Hakuno N, Koji T, Yano T, et al. Fas/APO-1/CD95system as a mediator of granulosacell apoptosis in ovarian follicle atresia. Endocrinology.1996,137:1938-1948.
    [85] Sakamaki K, Yoshida H, Nishimura Y, et al. Involvement of Fas antigen in ovarianfollicular atresia and luteolysis. Mol Reprod Dev.1997,47:11-18.
    [86] Kondo H, Maruo T, Peng XJ, et al. Immunological evidence for the expression of thefas antigen in the infant and adult human ovary during follicular regression and atresia. JClin Endocrinol Metab.1996,81:2702-2710.
    [87] Porter DA, Vickers SL, Cowan RG, et al. Expression and function of fas antigen varyin bovine granulosa and theca cells during ovarian follicular development and atresia. BiolReprod.2000,62:62-66.
    [88] Porter DA, Harman RM, Cowan RG, et al. Relationship of Fas ligand expression andatresia during bovine follicle development. Reproduction.2001,121:561-566.
    [89] Lin P, and Rui R. Effects of follicular size and FSH on granulosa cell apoptosis andatresia in porcine antral follicles. Mol Reprod Dev.2010,77:670-678.
    [90] Ratts VS, Flaws JA, Kolp R, et al. Ablation of bcl-2gene-expression decreases thenumbers of oocytes and primordial follicles established in the postnatal female mousegonad. Endocrinology.1995,136:3665-3668.
    [91] Hsu SY, Lai RJM, Finegold M, et al. Targeted overexpression of Bcl-2in ovaries oftransgenic mice leads to decreased follicle apoptosis, enhanced folliculogenesis, andincreased germ cell tumorigenesis. Endocrinology.1996,137:4837-4843.
    [92] Perez GI, Robles R, Knudson CM, et al. Prolongation of ovarian lifespan intoadvanced chronological age by Bax-deficiency. Nat Genet.1999,21:200-203.
    [93] Kugu K, Ratts VS, Piquette GN, et al. Analysis of apoptosis and expression of bcl-2gene family members in the human and baboon ovary. Cell Death Differ.1998,5:67-76.
    [94] Sai T, Goto Y, Yoshioka R, et al. Bid and Bax are involved in granulosa cellapoptosis during follicular atresia in porcine ovaries. J Reprod Dev.2011,57:421-427.
    [95] Robles R, Tao XJ, Trbovich AM, et al. Localization, regulation and possibleconsequences of apoptotic protease-activating factor-1(Apaf-1) expression in granulosacells of the mouse ovary. Endocrinology.1999,140:2641-2644.
    [96] Matsui T, Manabe N, Goto Y, et al. Expression and activity of Apaf1and caspase-9ingranulosa cells during follicular atresia in pig ovaries. Reproduction.2003,126:113-120.
    [97] Toda K, Takeda K, Okada T, et al. Targeted disruption of the aromatase P450gene(Cyp19) in mice and their ovarian and uterine responses to17beta-oestradiol. J Endocrinol.2001,170:99-111.
    [98] Kadakia R, Arraztoa JA, Bondy C, et al. Granulosa cell proliferation is impaired inthe Igf1null ovary. Growth Horm IGF Res.2001,11:220-224.
    [99] Mani AM, Fenwick MA, Cheng ZR, et al. IGF1induces up-regulation ofsteroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells. Reproduction.2010,139:139-151.
    [100] Uma J, Muraly P, Verma-Kumar S, et al. Determination of onset of apoptosis ingranulosa cells of the preovulatory follicles in the bonnet monkey (Macaca radiata):Correlation with mitogen-activated protein kinase activities. Biol Reprod.2003,69:1379-1387.
    [101] Matsuda F, Inoue N, Maeda A, et al. Expression and function of apoptosis initiatorFOXO3in granulosa cells during follicular atresia in pig ovaries. J Reprod Dev.2011,57:151-158.
    [102] Murdoch WJ. Inhibition by oestradiol of oxidative stress-induced apoptosis in pigovarian tissues. J Reprod Fertil.1998,114:127-130.
    [103] Lund SA, Murdoch J, Van Kirk EA, et al. Mitogenic and antioxidant mechanisms ofestradiol action in preovulatory ovine follicles: Relevance to luteal function. BiolReprod.1999,61:388-392.
    [1]林楠,冯云.代谢组学预测卵子质量与胚胎发育潜能研究进展.中国实用妇科与产科杂志,2012,28(7):544-546.
    [2]Fahiminiya S, Labas V, Roche S, et al. Proteomic analysis of mare follicular fluidduring late follicle development. Proteome Sci.2011,7;9:54.
    [3]Houghton FD, Hawkhead JA, Humpherson PG, et al. Non-invasive amino acidturnover predicts human embryo developmental capacity. Hum Reprod.2002,17(4),999-1005.
    [4]Lane M, Gardner DK. Mitochondrial malate-aspartate shuttle regulates mouseembryo nutrient consumption. J. Biol. Chem.2005,280(18):18361-18367.
    [5]Humpherson PG, Leese HJ, Sturmey RG. Amino acid metabolism of the porcineblastocyst. Theriogenology.2005,64(8),1852-1866.
    [6]Bender K, Walsh S, Evans AC, et al. Metabolite concentrations in follicular fluidmay explain differences in fertility between heifers and lactating cows.Reproduction.2010,139(6):1047-55.
    [7]Cetica P, Pintos L, Dalvit G, et al. Involvement of enzymes of amino acidmetabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro.Reproduction.2007,126:753–763.
    [8]Steeves TE, Gardner DK. Temporal and differential effects of amino acids onbovine embryo development in culture. Biology of Reproduction.1999,61:731–740.
    [9]Leroy JL, Vanholder T, Mateusen B, et al. Non-esterified fatty acids in follicularfluid of dairy cows and their effect on developmental capacity of bovine oocytes invitro. Reproduction.2005,130:485–495.
    [10]Vanholder T, Leroy JL, Soom AV, et al.Effect of non-esterified fatty acids onbovine granulosa cell steroidogenesis and proliferation in vitro. Animal ReproductionScience.2005,87:33–44.
    [11]Mu YM, Yanase T, Nishi Y, et al. Saturated FFAs, palmitic acid and stearic acid,induce apoptosis in human granulosa cells. Endocrinology.2001,142(8):3590-3597.
    [12]Haggarty P, Wood M, Ferguson E, et al. Fatty acid metabolism in humanpreimplantation embryos. Human Reproduction.2006,21:766–773.
    [13]Abe H, Yamashita S, Itoh T, et al. Ultrastructure of bovine embryos developedfrom in vitro-matured and-fertilized oocytes: comparative morphological evaluationof embryos cultured either in serum-free medium or in serum-supplemented medium.Molecular Reproduction and Development.1999,53:325–335.
    [14]Bilby TR, Sozzi A, Lopez MM, et al. Pregnancy, bovine somatotropin, anddietary n-3fatty acids in lactating dairy cows: I. Ovarian, conceptus, and growthhormone-insulin-like growth factor system responses. Journal of Dairy Science.2006,89:3360–3374.
    [15]Cerri RL, Juche SO, Chebel RC, et al. Effect of fat source differing in fatty acidprofile on metabolic parameters, fertilization, and embryo quality in high-producingdairy cows. Journal of Dairy Science.2009,92:1520–1531.
    [16]Robinson RS, Pushpakumara PG, Cheng Z, et al. Effects of dietarypolyunsaturated fatty acids on ovarian and uterine function in lactating dairy cows.Reproduction.2002,124:119–131.
    [17]Childs S, Lynch CO, Hennessy AA, et al.Effect of dietary enrichment with eithern-3or n-6fatty acids on systemic metabolite and hormone concentration and ovarianfunction in cattle. Animal.2008,2:883–893.
    [18]Marei WF, Wathes DC, Fouladi-Nashta AA. The effect of linolenic acid onbovine oocyte maturation and development. Biology of Reproduction.2009,81:1064–1072.
    [19]Wang TH, Chang CL, Wu HM, et al. Insulin-like growth factor-II (IGF-II), IGF-binding protein-3(IGFBP-3), and IGFBP-4in follicular fluid are associated withoocyte maturation and embryo development. Fertil Steril.2006,86:1392–1401.
    [20]Oosterhuis GJ, Vermes I, Lambalk CB, et al. Insulin-like growth factor (IGF)-Iand IGF binding protein-3concentrations in fluid from human stimulated follicles.Hum Reprod.1998,13:285–289.
    [21]Fried G, Remaeus K, Harlin J, et al. Inhibin B predicts oocyte number and theratio IGF-I/IGFBP-1may indicate oocyte quality during ovarian hyperstimulation forin vitro fertilization. J Assist Reprod Genet.2003,20:167–176
    [22]Asimakopoulos B, Abu-Hassan D, Metzen E, et al. The levels of steroidhormones and cytokines in individual follicles are not associated with the fertilizationoutcome after intracytoplasmic sperm injection. Fertil Steril.2008,90:60–64.
    [23]Lau CP, Ledger WL, Groome NP, et al. Dimeric inhibins and activin A in humanfollicular fluid and oocyte-cumulus culture medium. Hum Reprod.1999,14:2525–2530.
    [24]Fujiwara T, Lambert-Messerlian G, Sidis Y, et al. Analysis of follicular fluidhormone concentrations and granulosa cell mRNA levels for the inhibin-activin-follistatin system: relation to oocyte and embryo characteristics. Fertil Steril.2000,74:348–355.
    [25]Wen X, Tozer AJ, Butler SA, et al. Follicular fluid levels of inhibin A, inhibin B,and activin A levels reflect changes in follicle size but are not independent markers ofthe oocyte's ability to fertilize. Fertil Steril.2006,85:1723–1729.
    [26]Ebner T, Sommergruber M, Moser M, et al.Basal level of anti-Müllerian hormoneis associated with oocyte quality in stimulated cycles. Hum Reprod.2006,21:2022–2026.
    [27]Takahashi C, Fujito A, Kazuka M, et al. Anti-Müllerian hormone substance fromfollicular fluid is positively associated with success in oocyte fertilization during invitro fertilization. Fertil Steril.2008,89:586–591.
    [28]Cupisti S, Dittrich R, Mueller A, et al. Correlations between anti-müllerianhormone, inhibin B, and activin A in follicular fluid in IVF/ICSI patients for assessingthe maturation and developmental potential of oocytes. Eur J Med Res.2007,12:604–608.
    [29]Mendoza C, Cremades N, Ruiz-Requena E, et al. Relationship betweenfertilization results after intracytoplasmatic sperm injection, and intrafollicular steroid,pituitary hormone and cytokine concentrations. Hum Reprod.1999,93:863–868.
    [30]Mendoza C, Ruiz-Requena E, Ortega E, et al. Follicular fluid markers of oocytedevelopmental potential. Hum Reprod.2002,17:1017–1022.
    [31]Lédée N, Lombroso R, Lombardelli L, et al. Cytokines and chemokines infollicular fluids and potential of the corresponding embryo: the role of granulocytecolony-stimulating factor. Hum Reprod.2008,23:2001–2009.
    [32]Cerkiene Z, Eidukaite A, Usoniene A. Follicular fluid levels of interleukin-10andinterferon-gamma do not predict outcome of assisted reproductive technologies. Am JReprod Immunol.2008,59:118–126.
    [33]Bili H, Tarlatzis BC, Daniilidis M, et al. Cytokines in the human ovary: presencein follicular fluid and correlation with leukotriene B4. J Assist Reprod Genet.1998,15:93–98.
    [34]Monteleone P, Giovanni Artini P, Simi G, et al.Follicular fluid VEGF levelsdirectly correlate with perifollicular blood flow in normoresponder patientsundergoing IVF. J Assist Reprod Genet.2008,25:183–186.
    [35]Malamitsi-Puchner A, Sarandakou A, Baka SG, et al. Concentrations ofangiogenic factors in follicular fluid and oocyte-cumulus complex culture mediumfrom women undergoing in vitro fertilization: association with oocyte maturity andfertilization. Fertil Steril.2001,76:98–101.
    [36]Barroso G, Barrionuevo M, Rao P, et al. Vascular endothelial growth factor,nitric oxide, and leptin follicular fluid levels correlate negatively with embryo qualityin IVF patients. Fertil Steril.1999,72:1024–1026
    [37]Van Blerkom J, Antczak M, Schrader R. The developmental potential of thehuman oocyte is related to the dissolved oxygen content of follicular fluid: associationwith vascular endothelial growth factor levels and perifollicular blood flowcharacteristics. Hum Reprod.1997,12:1047–1055.
    [38]H st E, Mikkelsen AL, Lindenberg S, et al. Apoptosis in human cumulus cells inrelation to maturation stage and cleavage of the of the corresponding oocyte. ActaObstet Gynecol Scand.2000,79:936–940.
    [39]Mercé LT, Bau S, Barco MJ, et al. Assessment of the ovarian volume, numberand volume of follicles and ovarian vascularity by three-dimensional ultrasonographyand power Doppler angiography on the HCG day to predict the outcome in IVF/ICSIcycles. Hum Reprod.2006,21:1218–1226.
    [40]Malamitsi-Puchner A, Sarandakou A, Baka S, et al. Soluble Fas concentrations inthe follicular fluid and oocyte-cumulus complex culture medium from womenundergoing in vitro fertilization: association with oocyte maturity, fertilization, andembryo quality. J Soc Gynecol Invest.2004,11:566–569.
    [41]José de los Santos M, Anderson DJ, Racowsky C, et al. Presence of Fas-Fasligand system and Bcl-2gene products in cells and fluids from gonadotropin-stimulated human ovaries. Biol Reprod.2000,63:1811–1816.
    [42]Onalan G, Selam B, Onalan R, et al. Serum and follicular fluid levels of solubleFas and soluble Fas ligand in IVF cycles. Eur J Obstet Gynecol Reprod Biol.2006,125:85–91.
    [43]Lee KS, Joo BS, Na YJ, et al. Relationships between concentrations of tumornecrosis factor-alpha and nitric oxide in follicular fluid and oocyte quality. J AssistReprod Genet.2000,17:222–228.
    [44]Barrionuevo MJ, Schwandt RA, Rao PS, et al.Nitric oxide (NO) and interleukin-1beta (IL-1beta) in follicular fluid and their correlation with fertilization and embryocleavage. Am J Reprod Immunol.2000,46:359–364.
    [45]Lee TH, Wu MY, Chen MJ, et al. Nitric oxide is associated with poor embryoquality and pregnancy outcome in in vitro fertilization cycles. Fertil Steril.2004,82:126–131.
    [46]Suchanek E, Simunic V, Macas E, et al. Prostaglandin F2alpha, progesterone andestradiol concentrations in human follicular fluid and their relation to success of invitro fertilization. Eur J Obstet Gynecol Reprod Biol.1988,28:331–339.
    [47]Ellsworth LR, Balmaceda JP, Schenken RS, et al.Human chorionic gonadotropinand steroid concentrations in human follicular fluid in relation to follicle size andoocyte maturity in stimulated ovarian cycles. Acta Eur Fertil.1984,15:343–346.
    [48]Cha KY, Barnes RB, Marrs RP, et al. Correlation of the bioactivity of luteinizinghormone in follicular fluid with oocyte maturity in the spontaneous cycle. Fertil Steril.1986,45:338–341.
    [49]Enien WM, Chantler E, Seif MW, et al. Human ovarian granulosa cells andfollicular fluid indices: the relationship to oocyte maturity and fertilization in vitro.Hum Reprod.1998,13:1303–1306.
    [50]Mendoza C, Ruiz-Requena E, Ortega E, et al. Follicular fluid markers of oocytedevelopmental potential. Hum Reprod.2002,17:1017–1022.
    [51]Lanzone A, Fortini A, Fulghesu AM, et al. Growth hormone enhances estradiolproduction follicle-stimulating hormone-induced in the early stage of the follicularmaturation. Fertil Steril.1996,66:948–953.
    [52]Jia X, Kalmijn J, Hsueh AJ. Growth hormone enhances follicle-stimulatinghormone-induced differentiation of cultured rat granulosa cells. Endocrinology.1986,118:1401–1409.
    [53]Izadyar F, Zhao J, Van Tol HT, et al. Messenger RNA expression and proteinlocalization of growth ormone in bovine ovarian tissue and in cumulus oocytecomplexes (COCs) during vitro maturation. Mol Reprod Dev.1999,53:398–406.
    [54]Lindner C, Lichtenberg V, Westhof G, et al. Endocrine parameters of humanfollicular fluid and fertilization capacity of oocytes. Horm Metab Res.1988,20:243–246.
    [55]Oda T, Yoshimura Y, Izumi Y, et al. The effect of the follicular fluid adenosine3',5'-monophosphate degradation rate on successful fertilization and cleavage ofhuman oocytes. J Clin Endocrinol Metab.1990,71:116–121.
    [56]Rosenbusch B, Djalali M, Sterzik K. Is there any correlation between follicularfluid hormone concentrations, fertilizability, and cytogenetic analysis of humanoocytes recovered for in vitro fertilization? Fertil Steril.1992,57:1358–1360.
    [57]Tesarik J, Mendoza C. Direct non-genomic effects of follicular steroids onmaturing human oocytes: oestrogen versus androgen antagonism. Hum ReprodUpdate.1997,3:95–100.
    [58]Teissier MP, Chable H, Paulhac S, et al. Comparison of follicle steroidogenesisfrom normal and polycystic ovaries in women undergoing IVF: relationship betweensteroid concentrations, follicle size, oocyte quality and fecundability. Hum Reprod.2000,15:2471–2477.
    [59]Costa LO, Mendes MC, Ferriani RA, et al. Estradiol and testosteroneconcentrations in follicular fluid as criteria to discriminate between mature andimmature oocytes. Braz J Med Biol Res.2004,37:1747–1755.
    [60]Ben-Rafael Z, Meloni F, Strauss JF, et al. Relationships between polypronuclearfertilization and follicular fluid hormones in gonadotropin-treated women. Fertil Steril.1987,47:284–288.
    [61]Xia P, Younglai EV. Relationship between steroid concentrations in ovarianfollicular fluid and oocyte morphology in patients undergoing intracytoplasmic sperminjection (ICSI) treatment. J Reprod Fertil.2000,118:229–233.
    [62]De Placido G, Alviggi C, Perino A, et al. Recombinant human LHsupplementation versus recombinant human FSH (rFSH) step-up protocol duringcontrolled ovarian stimulation in normogonadotrophic women with initial inadequateovarian response to rFSH. A multicentre, prospective, randomized controlled trial.Hum Reprod.2005,20:390–396.
    [63]Lisi F, Rinaldi L, Fishel S, et al. Use of recombinant LH in a group of unselectedIVF patients. Reprod Biomed Online.2002,5:104–108.
    [64]Lewicka S, von Hagens C, Hettinger U, et al. Chortisol and cortisone in humanfollicular fluid and serum and the outcome of IVF treatment. Hum Reprod.2003,18:1613–1617.
    [65]Keay SD, Harlow CR, Wood PJ, et al. Higher cortisol:cortisone ratios in thepreovulatory follicle of completely unstimulated IVF cycles indicate oocytes withincreased pregnancy potential. Hum Reprod.2002,17:2410–2414.
    [66]Michael AE, Collins TD, Norgate DP, et al.Relationship between ovariancortisol:cortisone ratios and the clinical outcome of in vitro fertilization and embryotransfer (IVF-ET) Clin Endocrinol.1999,51:535–540
    [67]Revelli A, Dolfin E, Gennarelli G, et al. Low-dose acetylsalicylic acid plusprednisolone as an adjuvant treatment in IVF: a prospective, randomized study. FertilSteril.2008,5:1685–1691
    [68]Botros L, Sakkas D, Seli E. Metabolomics and its application for non-invasiveembryo assessment in IVF. Mol Hum Reprod.2008,14:679–690.
    [69]Nagy ZP, Sakkas D, Behr B. Non-invasive assessment of embryo viability bymetabolomic profiling of culture media ("metabolomics") Reprod Biomed Online.2008,17:502–507.
    [70]Seli E, Botros L, Sakkas D, et al. Noninvasive metabolomic profiling of embryoculture media using proton nuclear magnetic resonance correlates with reproductivepotential of embryos in women undergoing in vitro fertilization. Fertil Steril.2008,90:2183–2189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700