蝎蛉科昆虫胚胎发育研究(长翅目)
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长翅目Mecoptera是全变态类昆虫中唯一在幼虫期具复眼的昆虫类群,反映出长翅目可能是全变态类昆虫最基部的分支,是联系全变态类与不全变态类昆虫的重要纽带,因此在昆虫纲(尤其是全变态类昆虫)系统发育研究中占据重要地位。深入研究长翅目胚胎发育过程中的器官发生特征以及附肢同源性关系,有望从形态发生和起源角度来探讨全变态类昆虫的进化和系统发育问题,在整个昆虫纲中具有重要意义。
     本文以长翅目蝎蛉科Panorpidae昆虫为代表,利用光镜以及电子显微镜技术,采用比较胚胎学、组织学和超微结构等方法,对蝎蛉科昆虫的胚胎发育过程进行了详细研究,特别是针对争议已久的上颚与下颚的同源关系、器官起源问题(包括胚膜、消化道以及神经系统等)、胸足与腹足的同源性等问题进行了深入的探讨。在此基础上,结合扁蚊蝎蛉(长翅目)与其他蠋式幼虫代表种粘虫Leucania separata(鳞翅目)和麦叶蜂Dolerustritici(膜翅目)的腹部附肢发育情况,分析了蠋式幼虫的腹足发育模式,探讨不同昆虫类群腹足的起源与进化,并进一步揭示其同源关系,为全变态类昆虫的系统发育和进化研究提供更多的依据。主要研究结果如下:
     蝎蛉的上颚基部在发育初期有不明显的分节,中期分节明显,随着上颚的发育以及臼齿叶和切齿叶的分化,上颚基部分节逐渐消失。根据其分节情况,我们支持上颚由两部分组成的观点,即基部较小的上颚亚基节和端部较长的上颚基节。上颚基部退化的亚基节与下颚轴节同源,臼齿叶和切齿叶为基内叶,分别与下颚的内颚叶和外颚叶具有系列同源关系。
     研究发现,太白蝎蛉Panorpa obtusa的口道和肛道由外胚层内陷发育而来,二者同时出现在胚胎的头中部和腹部末端表层;6根马氏管起源于肛道前端两侧的外胚层突起;中肠是由胚胎两端相向生长的内胚层细胞带发育而来。相向的两对细胞带结合并伸展,包裹卵黄并最终形成中肠原基;神经节细胞由成神经细胞发育而来,在神经节、神经纤维和侧神经索的形成中起到主要作用。
     通过对大蝎蛉Dicerapanorpa magna胸、腹节附肢发育过程的研究,我们发现位于胸节两侧的胸足原基,最终发育为5节的胸足,包括基节、腿节、胫节、跗节和前跗节。与胸足相比,腹足原基出现在腹部内侧靠近腹中线的位置,与胸足着生位置一致的真正的腹部附肢原基在胚胎发育过程中消失,仅在腹侧留下三角形的退化痕迹。
     而其他蠋式幼虫(粘虫和麦叶蜂)的腹足为原生构造,直接由腹足原基发育而来,其中粘虫在胚胎期与胸足原基着生位置相同,而麦叶蜂则与蝎蛉相似,其腹足的着生位置更靠近内侧的腹中线。粘虫和麦叶蜂的腹足原基最终发育形成发达的腹足,作为重要的运动器官。与之相比,长翅目蝎蛉科和蚊蝎蛉科幼虫短小的腹足基本无行动功能,很可能是为保护腹部腹面而衍生出的次生适应性构造。
     由此我们认为,蝎蛉腹足并非真正的腹部附肢,腹足与胸足也并非为系列同源;而其他蠋式幼虫的腹足无论是从起源还是从功能和形态上都各不相同,因此其腹足并不具同源关系,极有可能是独立演化而来。根据腹足的不同起源,我们对蠋式幼虫的概念进行了初步修订,认为蠋式幼虫应分为原生型和次生型两种。
Mecoptera is one of the most primitive orders in holometabolous insects because theybear a pair of prominent compound eyes in the larval stage, representing the intermediate linkbetween the Holometabola and Hemimetabola and occupying an important position inphylogenetic study of insect (especially in Holometabola). Study on the organogeneticfeatures and appendage homology in Mecoptera embryogenesis can help explore thephylogenetics and evolution of the holometabolous insects based on both morphogensis andevolutionary aspects.
     Based on the comparative embryology, histology and ultrastructural methods, we usedlight and electronic microscopy techniques to study the embryonic development ofPanorpidae in detail, in attempt to solve some long-standing controversial problems, such asthe homology between mandibles and maxillia, organogenesis (including embryonicmembrane, the alimentary canal, and nervous system), and the homology of thorax legs andprolegs. Combining with the abdominal appendages in representative species of othereruciform larvae Leucania separate (Lepidoptera) and Dolerus tritici (Hymenoptera), as wellas Bittacus planus (Mecoptera), we analyzed the developmental models of eruciform larvae,explored the origin and evolution of prolegs in different insect groups, and further revealedtheir homology. Our study may provide more evidences for the phylogenetic and evolutionarystudies of the holometabolous insects. The main results are as follows:
     The segmentation on the mandible of Panorpidae is unconspicuous in early stage anddistinct in middle stage of the embryonic development. As the development of mandibles anddifferentiation of the molar lobe and incisor lobe, the basal segment of the mandible isgradually disappeared. Based on the segmentation, we considered that the mandible consistsof two parts, the smaller basal mandibular subcoxa and longer distal mandibular coxa. Thereduced mandibular subcoxa is homologous with the cardo of maxilla. The molar and incisorlobes are endites, serially homologous with the lacinia and galea of maxilla, respectively.
     The results show that the invaginations of stomatodeum and proctodeum of Panorpobtusa are formed by the ectoderm, simultaneously occurring at the surface of embryonichead center and the end of abdominal segment. Six Malpighian tubules are derived from theectodermal processes at the end of lateral proctodaeum wall. The midgut originates from the endodermal cell bands, which are situated at the anterior and posterior embryo. Two pairedcell bands in both directions combine together and extend towards each other, finally enclosethe yolks and form the midgut rudiment. The ganglion cells formed by the neuroblast take animportant role in ganglion, nerve fiber, and lateral nerve cord formations.
     During the investigation of the thoracic and abdominal appendage development ofDicerapanorpa magna, we found that the thoracic leg rudiments are located at the lateralsides in each segment and finally develop as the five-segmented thoracic legs, including coxa,femur, tibia, tarsus, and pretarsus. Compared with the thoracic legs, the proleg primordia aresituated at the inner side near the midventral line of the abdomen. The primary true abdominalappendages along the same line of the thoracic legs are disappeared gradually duringembryogenesis, only leaving flat vestiges on the lateral sides of the abdomen.
     However, the prolegs in other eruciform larvae (Leucania separate and Dolerus tritici)are primary structures, which are developed from the proleg rudiment directly. The prolegprimordia of L. separate are located along the same line of the thoracic leg rudiments.However, the positions of the proleg primordia in both D. tritici and Panorpa obtusa aremuch closer to the inner midventral line of the abdomen. The proleg primordia of L. separateand D. tritici finally developed into stout prolegs as the important locomotion organs, whereasthe prolegs of Panorpidae and Bittacidae (Mecoptera) larvae are small and short,fundamentally no locomotory functions. The incompletely degenerated prolegs are very likelyto function as protecting the abdomen.
     Hence we speculate that the prolegs of panorpids are not the true abdominal appendages.The abdominal prolegs and thoracic legs are not serially homologous. Compared with that ofMecoptera, the prolegs of other eruciform larvae are distinct in origin, function or morphology.Therefore, the prolegs are not homologous, but very likely evolve independently. Accordingto the distinct origin of the prolegs, we modified the concept of eruciform larvae temporarilyas that they can be subdivided into primitive and secondary types.
引文
崔峰,徐洪富,宋红梅,王竑晟,许永玉.2004.甜菜夜蛾胚胎发育的研究(Ⅰ)—卵裂、胚盘、胚带的形成及胚层分化.山东农业大学学报(自然科学版)35(2):213–221.
    崔峰,徐洪富,王竑晟,许永玉,孙炳香.2004.甜菜夜蛾胚胎发育的研究(Ⅱ)—体腔、体壁、循环系统和部分器官的发育.华东昆虫学报13(1):32–37.
    崔峰,徐洪富,王竑晟,周真.2004.甜菜夜蛾胚胎发育的研究(Ⅲ)—呼吸、消化、神经、生殖系统的发育.西北农业学报13(2):64–66.
    崔峰,徐洪富,周真,许永玉,王竑晟.2003.甜菜夜蛾胚胎发育的解剖学特征.山东农业大学学报(自然科学版)34(3):339–342.
    陈伟,陈伟洲,吴伟坚,张振飞.2005.越北腹露蝗胚胎发育的研究.华南农业大学学报26(4):30–33.
    高艳,卜云,栾云霞,尹文英.2006.白符虫兆胚胎发育的形态观察(弹尾纲:等节虫兆科).动物学研究27(5):519–524.
    金翠霞,何忠.1965.粘虫饲养方法介绍.昆虫知识6:369–370.
    李顺珍.1994负子蝽的胚胎发育.昆虫学报37(2):171–176.
    刘秀琼,黄淑汉,周薰薇,张维球.1966.荔枝椿象胚胎发育研究.昆虫学报15(3):227–238.
    钦俊德,翟启慧,沙槎云.1954.蝗卵的研究: I东亚飞蝗蝗卵孵育期中胚胎形态变化的观察及野外蝗卵胚胎发育期的调查.昆虫学报4(4):383–398.
    孙少轩.1959.麦叶蜂的胚胎发育.昆虫学报9(1):29–50.
    许永玉,牟吉元,刘勇,姚相国.1998.大草蛉胚胎发育的研究(Ⅰ)—胚带、胚层、体腔的形成和部分器官的发育.华东昆虫学报7(1):71–75.
    余洋,王高平.2011.粘虫的实验室饲养方法研究.河南农业11:45–48.
    Akaike M, Ishii M, Ando H.1982. The formation of germ rudiment in the caddisfies, Gryphotaeliusadmorsus MacLachlan and Neosererina crassicornis Ulmer (Interipalpia, Trichoptera) and itsphylogenetic significance. Proc. Jpn. Soc. Syst. Zool.22:4652.
    Anderson DT.1962. The embryology of Dacus tryoni (Frogg.)[Diptera, Trypetidae (=Tephritidae)], theQueensland fruit-fly. J. Embryol. Exp. Morphol.10:248–292.
    Anderson DT.1966. The comparative embryology of the Diptera. Annu. Rev. Entomol.11:23–46.
    Anderson DT.1972a. The development of hemimetabolous insects. In: Counce SJ, Waddington CH (Eds.).Developmental Systems: Insect. vol.1. Academic Press. London and New York. pp.951–963.
    Anderson DT.1972b. The development of holometabolous insects. In: Counce SJ, Waddington CH (Eds.).Developmental Systems: Insect. vol.2. Academic Press. London and New York. pp.165–242.
    Anderson DT.1973. Embryology and Phylogeny of Annelids and Arthropods. Pergamon Press. Oxford.
    Ando H.1957. A comparative study on the development of ommatidia in Odonata. Sci. Rep. Tokyo KyoikuDaigaku B8:174216.
    Ando H.1960. Studies on the early embryonic development of a scorpion fly, Panorpa pryeri McLachlan(Mecoptera, Panorpidae). Sci. Rep. Tokyo Kyoiku Daigaku B8:227–242.
    Ando H.1962. The Comparative Embryology of Odonata with Special Reference to a Relic DragonflyEpiophlebia superstes Selys. Tokyo: Japan Society for the Promotion of Science. pp1–205.
    Ando H.1973. Old oocytes and newly laid eggs of scorpionfies and hanging-flies (Mecoptera: Panorpidaeand Bittacidae). Sci. Rep. Tokyo Kyoiku Daigaku B15:163–187.
    Ando H, Haga K.1974. Studies on the pleuropodia of Embioptera, Thysanoptera and Mecoptera. Bull.Sugadaira Biol., Lab Tokyo Kyoiku Univ.6:1–8.
    Ando H, Kobayashi Y.1978. The formation of germ rudiment in the primitive moth, Neomicropteryxnipponensis Issiki (Micropterygidae, Zeugloptera, Lepidoptera) and its phylogenetic significance.Proc. Jpn. Soc. Syst. Zool.15:47–50.
    Ando H, Suzuki N.1977. On the embryonic development of larval eyes of the scorpion-fly, Panorpa pryeriMacLachlan (Mecoptera, Panorpidae). Proc. Jpn. Soc. Syst. Zool.13:81–85.
    Ando H, Tanaka M.1976. The formation of germ rudiment and embryonic membranes in the primitivemoth, Endoclyla excrescens Butler (Hepialidae, Monotrysia, Lepidoptera) and its phylogeneticsignificance. Proc. Jpn. Soc. Syst. Zool.12:4255.
    Ando H, Tanaka M.1980. Early embryonic development of the primitive moth, Endoclyla signifier Walkerand E. excrescens Butler (Lepidoptera: Hepialidae). Int. J. Insect Morphol. Embryol.9:6777.
    Andrade-Coelho CA, Santos-Mallet J, Souza NA, Lins U, Meirelles MNL, Rangel EF.2001. Ultrastructuralfeatures of the midgut epithelium of females Lutzomyia intermedia (Lutz and Neiva,1912)(Diptera:Psychodidae: Phlebotominae). Mem. Inst. Oswaldo Cruz. Rio Janeiro96:1141–1151.
    Angelini DR, Kaufman TC.2005a. Functional analyses in the milkweed bug Oncopeltus fasciatus(Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development.Dev. Biol.283:409–423.
    Angelini DR, Kaufman TC.2005b. Insect appendages and comparative ontogenetics. Dev. Biol.286:57–77.
    Applegarth AG.1939. The larva of Apterobittacus apterus MacLachlan (Mecoptera: Panorpidae).Microentomology4:109–120.
    Ashhurst DE.1965. The connective tissue sheath of the locust nervous system: its development in theembryo. Quart. J. Microsc. Sci.106:6173.
    Baden V.1936. Embryology of the nervous system in the grasshopper, Melanoplus differentialis (Acridiae;Orthoptera). J. Morphol.60:159190.
    Baldwin KM, Hakim RS.1991. Growth and differentiation of the larval midgut epithelium during moltingin the moth Manduca sexta. Tissue Cell23:411–422.
    Baldwin KM, Hakim RS, Loeb, MJ, Sadrud-Din SY.1996. Midgut development. In: Lehane MJ,Billingsley PF (Eds.). Biology of the Insect Midgut. Chapman&Hall, London. pp.31–54.
    Bate M, Martinez-Arias A.1993. The Development of Drosophila melanogaster. Cold Spring HarborLaboratory Press, New York.
    Belles X.2011. Origin and evolution of insect metamorphosis. In: Encyclopedia of Life Sciences (ELS).John Wiley&Sons Ltd, Chichester.
    Berlese A.1913. Intorno alle metamorfosidegli insetti. Redia9:121–136.
    Bernick EP, Moffett SB, Moffett DF.2007. Organization, ultrastructure, and development of midgutvisceral muscle in larval Aedes aegypti. Tissue Cell39:277–292.
    Beutel RG, Friedrich F, H rnschemeyer T, Pohl H, Hünefeld F, Beckmann F, Meier R, Misof B, WhitingMF, Vilhelmsen L.2011. Morphological and molecular evidence converge upon a robust phylogeny ofthe megadiverse Holometabola. Cladistics27:341–355.
    Bienz M.1997. Endoderm induction in Drosophila: the nuclear targets of the inducing signals. Curr. Opin.Genet. Dev.7:683–688.
    Billingsley PF.1990. The midgut ultrastructure of hematophagous insects. Annu. Rev. Entomol.35:219–248.
    Birket-Smith SJR.1984. Prolegs, Legs and Wings of Insects. Entomonograph, Vol.5. Scandinavian SciencePress, Copenhagen. pp.1–128.
    Bitsch J.1963. Morphologie céphalique des machilides (Insecta: Thysanura). Ann. Sci. Nat. Zool.(Paris)Ser.125:501–706.
    Bitsch J.1994. The morphological ground plan of Hexapoda: critical review of recent concepts. Ann. Soc.Entomol. Fr., N.S.30:103–129.
    B rner C.1909. Neue Homologien zwischen Crustaceen und Hexapoden. Die Beibmandibel der Insektenund ihre phylogenetische Bedeutung. Archi–und Metapterygota. Zool. Anz.34:100–125.
    B rner C.1920. Die Gliedmaben der Arthropoden. In: Lang A,(Ed.). Handbuch der Morphologie derwirbellosen Tiere, Arthropoda. Jena, Gustav Fischer. pp.649–694.
    Brown SJ, Denell RE.1996. Segmentation and dorsoventral patterning in Tribolium. Semin. Cell Dev. Biol.7:553–560.
    Brown SJ, Parrish JK, Denell RE, Beeman RW.1994. Genetic control of early embryogenesis in the redflour beetle, Tribolium castaneum. Am. Zool.34:343–352.
    Byers GW, Thornhill R.1983. Biology of the Mecoptera. Annu. Rev. Entomol.28:203–228.
    Byers GW.1991. Mecoptera. In: CSIRO (Ed.). The Insects of Australia: A Textbook for Students andResearch Workers (2nd ed.). Melbourne University Press, Melbourne. pp.696–704.
    Cai LJ, Hua BZ.2009a. A new Neopanorpa (Mecoptera, Panorpidae) from China with notes on its biology.Dtsch. Entomol. Z.56:93–99.
    Cai LJ, Hua BZ.2009b. Morphology of the immature stages of Panorpa qinlingensis (Mecoptera:Panorpidae) with notes on its biology. Entomol. Fenn.20:215–224.
    Campos-Ortega JA, Hartenstein V.1985. The Embryonic Development of Drosophila melanogaster.Springer-Verlag Press, Berlin.
    Chapman RF.1985. Structure of digestive system. In: Kerkut GA, Gilbert LI (Eds.). Comprehensive InsectPhysiology. Biochemistry and Pharmacology. vol.4. Pergamon Press. Oxford. pp.70–211.
    Chapman RF.1998. The Insects: Structure and Function (4th ed.). Cambridge University Press,Cambridge.
    Chaudonneret J.1950. La morphologie ce′phalique de Thermobia domestica (Packard)(Insecte AptérygoteThysanoure). Ann. Sci. Nat. Zool. Ser.1112:145–302.
    Chen HM, Hua BZ.2011. Morphology and chaetotaxy of the first instar larva of the scorpionflySinopanorpa tincta (Mecoptera: Panorpidae). Zootaxa2897:18–26.
    Chen SC.1946. Evolution of the insect larva. Trans. R. Entom. Soc. Lond.97:381–404.
    Cheng FY.1949. New species of Mecoptera from northwest China. Psyche56:139–173.
    Church NS, Rempel JG.1971. The embryology of Lylta viridana Le Conte (Coleoptera: Meloidae). VI. Theappendiculate,72-h embryo. Can. J. Zool.49:1563–1570.
    Cobben RH.1968. Evolutionary trends in Heteroptera. Part I. Eggs, architecture of the shell, grossembryology and eclosion. Agri. Res. Rep. Wageningen707:1–475.
    Cobben RH.1979. Evolutionary trends in Heteroptera. Part II. Mouthpart-structures and feeding strategies.Syst. Zool.28:653–656.
    Crampton GC.1921. The phylogenetic origin of the mandibles of insects and their arthropodan relatives—a contribution to the study of the evolution of the Arthropoda. J. NY Entomol. Soc.29:63–100.
    Cristofoletti PT, Ribeiro AF, Deraison C, Rahbé Y, Terra WR.2003. Midgut adaptation and digestiveenzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. J. Insect Physiol.49:11–24.
    Cruz-Landim C.1999. Ultrastructural features of the regenerative cells of the bees (Hymenoptera, Apidae)midguts. Sociobiology34:597–603.
    Currie GA.1932. Some notes on the biology and morphology of the immature stages of Harpobittacustillyardi (Mecoptera). Proc. Linn. Soc. NSW.57:116–122.
    Dallai R, Lupetti P, Afzelius BA, Frati F.2003. Sperm structure of Mecoptera and Siphonaptera (Insecta)and the phylogenetic position of Boreus hyemalis. Zoomorphology122:211–220.
    Dettman RW, Turner FR, Raff EC.1996. Genetic analysis of the Drosophila β3-tubulin gene demonstratesthat the microtubule cytoskeleton in the cells of the visceral mesoderm is required for morphogenesisof the midgut endoderm. Dev. Biol.177:117–135.
    Diaz E, Arciniega O, Sanchez L, Cisneros R, Zuniga G.2003. Anatomical and histological comparison ofthe alimentary canal of Dendoctonus sp., D. ponderosae, D. pseudotsugae, D. rufipennis and D.terebrans (Coleoptera: Scolytidae). Ann. Entomol. Soc. Am.96:144–152.
    Diaz E, Cisneros R, Zuniga G.2000. Comparative anatomical and histological study of the alimentary canalof the Dendroctonus frontalis (Coleoptera: Scolytidae) complex. Ann. Entomol. Soc. Am.93:303–311.
    Diaz E, Cisneros R, Zuniga G, Uria-Galicia E.1998. Compara-tive anatomical and histological study of thealimentary canal of Dendroctonus parallelocolis, D. rhizophagus, and D. valens (Coleoptera:Scolytidae). Ann. Entomol. Soc. Am.91:479–487.
    Diederich RJ, Pattatucci AM, Kaufman TC.1991. Development and evolutionary implications of labial,Deformed and engrailed expression in the Drosophila head. Development113:273–281.
    Dimitriadis VK, Kastritsis CD.1984. Ultrastructural analysis of the midgut of Drosophila auraria larvae.Can. J. Zool.62:659–669.
    Dorn A.1972. Die endokrinen Drüsen im Embryon von Oncopellis fasciatus Dallas (Insecta, Heteroptera).Z. Morphol. kol. Tiere71:52–104.
    Dow JAT.1986. Insect midgut formation. Adv. Insect Physiol.19:187–328.
    Du XL, Yue C, Hua BZ.2009. Embryonic development of the scorpionfly Panorpa emarginata Cheng withspecial reference to external morphology (Mecoptera: Panorpidae). J. Morphol.270:984–995.
    DuPorte EM.1962. The morphology of the insect mandible. Can. J. Zool.40:1229–1232.
    Eastham L.1927. A contribution to the embryology of Pieris rapae. Quart. J. Micr. Sci.71:353–394.
    Eastham L.1930. The embryology of Pieris rapae. Oranogeny. Phil. Trans. Roy. Soc. B219:1–50.
    Ereskovsky AV, Renard E, Borchiellini C.2013. Cellular and molecular processes leading to embryoformation in sponges: evidences for high conservation of processes throughout animal evolution. Dev.Genes Evol.223:5–22.
    Erezyilmaz DF.2006. Imperfect eggs and oviform nymphs: a history of ideas about the origins of insectmetamorphosis. Integr. Comp. Biol.46:795–807.
    Evangelista LG, Leite ACR.2003. Midgut ultrastructure of the third instar of Dermatobia hominis (Diptera:Cuterebridae) based on transmission electron microscopy. Ann. Entomol. Soc. Am.40:133–140.
    Farooqi MM.1963. The embryology of the mustard sawfly Athalia proxima Kulg.(Tenthredinidae,Hymenoptera). Aligarh Musl. Univ. Publs.61:1–68.
    Fleig R.1990. Engrailed expression and body segmentation in the honeybee, Apis mellifera. Roux’s Arch.Dev. Biol.198:467–473.
    Fleig R, Sander K.1986. Embryogenesis of the honeybee Apis mellifera L.(Hymenoptera: Apidae): AnSEM study. Int. J. Insect Morphol. Embryol.15:449–462.
    Garcia JJ, Li G, Wang P, Zhong J, Granados RR.2001. Primary and continuous midgut cell cultures fromPseudaletia unipunctata (Lepidoptera, Noctuidae). In Vitro Cell Dev. Biol. Anim.37:353–359.
    Gilbert C.1994. Form and function of stemmata in larvae of Holometabolous insects. Ann. Rev. Entomol.39:323–349.
    Giribet G.2009. On velvet worms and caterpillars: Science, fiction, or science fiction? PNAS.106: E131.
    Govind S, Steward R.1991. Dorsoventral pattern formation in Drosophila. Trends Genet.7:119–124.
    Grimaldi D, Engel MS.2005. Evolution of the insects. Cambridge University Press, Cambridge.
    Hafen E, Basler K, Edstroem JE, Rubin GM.1987. Sevenless, a cell-specific homeotic gene of Drosophila,encodes a putative transmembrane receptor with a tyrosine kinase domain. Science236:55–63.
    Haga K.1985. Oogenesis and embryogenesis of the Idolothripine thrips, Bactrothrips brebitubus(Thysanoptera, Phlaeothripidae). In: Ando H, Miya K (Eds.). Recent Advances in Insect Embryologyin Japan and Poland. Arthorpod. Embryol. Soc. Jpn. Tsukuba. pp.45–106.
    Haget MA.1951. Quelques precisions sur le phenomene d’induction dans la morphogenese de l’intestinmoyen chez l’embryon de Leptinotarsa (Insecta, Coleoptera). Comptes rendus, Paris,232:2480–2482.
    Hakim RS, Baldwin KM, Bayer PE.1988. Cell differentiation in the embryonic midgut of the tobaccohornworm, Manduca sexta. Tissue Cell20:51–62.
    Hakim RS, Baldwin KM, Loeb M.2001. The role of stem cells in midgut growth and regeneration. In VitroCell Dev. Biol. Anim.37:338–342.
    Handel K, Basal A, Fan X, Roth S.2005. Tribolium castaneum twist: gastrulation and mesoderm formationin a short-germ beetle. Dev. Genes Evol.215:13–31.
    Handel K, Grünfelder C, Roth S, Sander K.2000. Tribolium embryogenesis: a SEM study of cell shapesand movements from blastoderm to serosal closure. Dev. Genes Evol.210:167–179.
    Hart MW, Grosberg RK.2009. Caterpillars did not evolve from onychophorans by hybridogenesis. PNAS.106:19906–19909
    Headrick DH, Gordh G.2003. Anatomy: head, thorax, abdomen, and genitalia. In: Resh VH, Cardé RT(Eds.). Encyclopedia of Insects. Academic Press, San Diego. pp.12–26.
    Hecker M.1977. Structure and function of midgut epithelial cells in Culicidae mosquitoes (Insecta,Diptera). Cell Tissue Res.184:321–341.
    Heemskerk J, DiNardo S.1994. Drosophila hedgehog acts as a morphogen in cellular patterning. Cell76:449–460.
    Heming BS.1979. Origin and fate of germ cells in male and female embryos of Haplothrips verbasci(Osborn)(Insecta, Thysanoptera, Phlaeothripidae). J. Morphol.160:323–344.
    Heming BS.1980. Development of the mouthparts in embryos of Haplothrips verbasci (Osborn)(Insecta,Thysanoptera, Phlaeothripidae). J. Morphol.164:235–263.
    Henson H.1931. The structure and post-embryonic development of Vanessa urticae (Lepidoptera). I. Thelarval alimentary canal. Quart. J. Micr. Sci.74:321–360.
    Henson H.1932. The development of the alimentary canal in Pieris brassicae and the endodermal origin ofthe Malpighian tubules in insects. Quart. J. Micr. Sci.75:283–305.
    Hinton HE.1955. On the structure, function, and distribution of the prolegs of the Panorpoidea, with acriticism of the Berlese-Imms theory. Trans. R. Entomol. Soc. Lond.106:455–545.
    Hinton HE.1958. The phylogeny of the panorpoid orders. Annu. Rev. Entomol.3:181–206.
    Hua BZ, Cai LJ.2009. A new species of the genus Panorpa (Mecoptera: Panorpidae) from China withnotes on its biology. J. Nat. Hist.43:545–552.
    Hübner C.2006. Hox genes, homology and axis formation--the application of morphological concepts toevolutionary developmental biology. Theor. Biosci.124:371–396.
    Humbert W.1979. The midgut of Tomocerus minor Lubbock (Insecta, Collembola): Ultrastructure,cytochemistry, ageing and renewal during a moulting cycle. Cell Tissue Res.196:39–57.
    Ikeda Y, Machida R.1998. Embryogenesis of the Dipluran Lepidocampa weberi Oudemans (Hexapoda,Diplura, Campodeidae): External Morphology. J. Morphol.237:101–115.
    Ikeda Y, Machida R.2001. Embryogenesis of the Dipluran Lepidocampa weberi Oudemans (Hexapoda:Diplura, Campodeidae): Formation of dorsal organ and related phenomena. J. Morphol.249:242–251.
    Imms AD.1937. Recent Advances in Entomology. Philadelphia, PA: Blakiston.
    J gersten G.1972. Evolution of the Metazoan Life Cycle. A ComprehensiveTheory. Academic Press, NewYork.
    Jiang L, Hua BZ.2013. Morphology and chaetotaxy of the immature stages of the scorpionfly Panorpa liuiHua (Mecoptera: Panorpidae) with notes on its biology. J. Nat. Hist.47: DOI:10.1080/00222933.2013.791885.
    Jockusch EL, Ober KA.2004. Hypothesis testing in evolutionary developmental biology: a case study frominsect wings. J. Hered.95:382–396.
    Johannsen OA, Butt FH.1941. Embryology of Insects and Myriapods. McGraw Hill. New York.
    Johanson Z, Trinajstic K, Carr R, Ritchie A.2013. Evolution and development of the synarcual in earlyvertebrates. Zoomorphology132:95–110.
    Jura Cz.1956. Spo o entoderme u owadów. Kosmos7:493–500.
    Jura Cz.1958. The alimentary canal of the Tetrodontophora bielanensis (Waga)(Collembola). Pol. Pismo.Entomol.27:85–89.
    Jura Cz.1959. Spo o endoderme u owadów trwa. Kosmos5:483–486.
    Jura Cz.1966. Origin of the endoderm and embryogenesis of the alimentary system in Tetrodontophorabielanensis (Waga)(Collembola). Acta Biol. Cracov. Ser. Zool.9:93–102.
    Jura Cz.1972. Development of Apterygote Insects. In: Counce SJ, Waddington CH (Eds.). DevelopmentalSystems: Insects, vol.1. Academic Press, New York. pp.49–94.
    Jura Cz, Krzysztofowicz A.1977. Ultrastructural changes in embryonic midgut cells developing into larvalmidgut epithelium of Tetrodontophora bielanensis (Waga)(Collembola). Rev. Ecol. Biol. Sol.14:103–115.
    Jura Cz, Krzysztofowicz A, Kisiel E.1987. Embryonic development of Tetrodontophora bielanensis(Collembola): Descriptive, with scanning electron micrographs. In: Ando H, Jura Cz (Eds.). RecentAdvances in Insect Embryology in Japan and Poland. Arthropodan Embryological Society of Japan,Tsukuba. pp.77–124.
    Kadiri Z, Louvet JP.1982. Ultrastructural study of midgut embryonic cytodifferentiation in the phasmidClitumnus extradentatus. Br. J. Morphol.172:323–334.
    Kelly GM, Huebner E.1989. Embryonic development of the Hemipteran insect Rhodnius prolixus. J.Morphol.199:175–196.
    Kessel EL.1939. The embryology of fleas. Smithsonian Misc. Coll.98:1–78.
    Kimm MA, Prpic NM.2006. Formation of the arthropod labrum by fusion of paired and rotatedlimb-bud-like primordia. Zoomorphology125:147–155.
    Kishimoto T, Ando H.1985. External features of the developing embryo of the stonefly, Kamimuria tibialis(Pictet)(Plecoptera, Perlidae). J. Morphol.183:311–326.
    Klag J.1978. Differentiation of ectodermal cells and cuticle formation during embryogenesis of the firebrat,Thermobia domestica (Packard)(Thysanura). Acta Biol. Cracov. Ser. Zool.21:47–55.
    Klag J, Ksia kiewicz M, Ro ciszewska E.1981. The ultrastructure of the midgut in Xenylla grisea(Collembola). Acta Biol. Cracov. Ser. Zool.23:47–52.
    Klag J, Mesjasz-Przyby owicz J, Nakonieczny M, Augustyniak M.2002. Ultrastructure of the midgut ofthe chrysomelid beetle Chrysolina pardalina. Proceedings in15th International Symposium ofElectron Microscopy. Durban.
    Kobayashi Y.1998. Embryogenesis of the fairy moth, Nemophora albiantennella issiki (Lepidoptera,Adelidae), with special emphasis on its phylogenetic implications. Int. J. Insect Morphol. Embryol.27:157–166.
    Kobayashi Y, Ando H.1981. The embryonic development of the primitive moth, Neomicropteryxnipponensis Issiki (Lepidoptera, Micropterygidae): Morphogenesis of the embryo by externalobservation. J. Morphol.169:49–59.
    Kobayashi Y, Ando H.1982. The early embryonic development of the primitive moth, Neomicropteryxnipponensis Issiki (Lepidoptera, Micropterygidae). J. Morphol.172:259–269.
    Kobayashi Y, Ando H.1983. Embryonic development of the alimentary canal and ectodermal derivatives inthe primitive moth, Neomicropteryx nipponensis Issiki (Lepidoptera, Micropterygidae). J. Morphol.176:289–314.
    Kobayashi Y, Ando H.1984. Mesodermal organogenesis in the embryo of the primitive moth,Neomicropteryx nipponensis Issiki (Lepidoptera, Micropterygidae). J. Morphol.181:29–47.
    Kobayashi Y, Ando H.1987. Early embryonic development and external features of developing embryos inthe primitive moth, Eriocrania sp.(Lepidoptera, Eriocraniidae). In: Ando H, Jura Cz.(Eds.). RecentAdvances in Insect Embryology in Japan and Poland. Arthorpod. Embryol. Soc. Jpn. Tsukuba. pp.159–180.
    Kobayashi Y, Ando H.1988. Phylogenetic relationships among the lepidopteran and trichopteran suborder(Insecta) from the embryological standpoint. Z. Zool. Syst. Evol. Forsch.26:186–210.
    Kobayashi Y, Ando H.1990. Early embryonic development and external features of developing embryos ofthe caddisfly, Nemotaulius admorsus (Trichoptera: Limnephilidae). J. Morphol.203:69–85.
    Kobayashi Y, Suzuki H, Ohba N.2002. Embryogenesis of the glowworm Rhagophthalmus ohbai Wittmer(Insecta: Coleoptera, Rhagophthalmidae), with emphasis on the germ rudiment formation. J. Morphol.253:1–9.
    Kobayashi Y, Tanaka M, Ando H, Miyakawa K.1981. Embryonic development of alimentary canal in theprimitive moth, Endoclita signifier Walker (Lepidoptera, Hepialidae). Konty49:641–652.
    Krause G.1939. Die Eitypen der Insekten. Biol. Zent.59:495536.
    Kristensen NP.1998. The groundplan and basal diversification of the hexapods. In: Fortey RA, Thomas RH(Eds.), Arthropod Relationships. Chapman&Hall, London. pp.281–293.
    Kristensen NP.1999. Phylogeny of endopterygote insects, the most successful lineage of living organisms.Eur. J. Entomol.96:237–253.
    Krzysztofowicz A.1960. Comparative investigations on the embryonic development of the weevils(Coleoptera, Curculionidae), and an attempt to apply them to the systematic of this group. Zool. Pol.10:3–27.
    Krzysztofowicz A, Jura Cz, Biliński S.1973. Ultrastructure of midgut epithelium cells of Tetrodontophorabielanensis (Waga)(Collembola). Acta Biol. Cracov. Ser. Zool.20:257–265.
    Kukalová-Peck J.1992. The “Uniramia” do not exist: the ground plan of the Pterygota as revealed byPermian Diaphanopterodea from Russia (Insecta: Paleodictyopteroidea). Can. J. Zool.65:2327–2345.
    Kukalová-Peck J.2008. Phylogeny of higher taxa in Insecta: finding synapomorphies in the extant faunaand separating them from homoplasies. Evol. Biol.35:4–51.
    Larink O.1969. Zur Entwicklungsgeschichte von Petrobius brevistylis (Thysanura, Insecta). Helgol nderWiss. Meeresunters19:111155.
    Larink O.1983. Embryonic and postembryonic development of Machilidae and Lepismatidae (Insecta:Archaeognatha et Zygentoma). Entomol. Gen.8:125–126.
    Lauga-Reyrel F.1980. Aspect histophysiologique de l’écomorphose: étude ultrastructurale du mesenteronchez Hypogastrura tullbergi (Collemboles). Trav. Lab. Ecobiol. Arthropod. Ed., Toulouse2:1–11.
    Lewis EB.1978. A gene complex controlling segmentation in Drosophila. Nature276:565–570.
    Li X, Hua BZ, Cai LJ, Huang PY.2007. Two new species of the genus Panorpa (Mecoptera: Panorpidae)from Shaanxi, China with notes on their biology. Zootaxa1542:59–67.
    Lima-de-Faria A.2012. Chapter7: How to Redesign the Body Pattern of an Organism. In: MolecularGeometry of Body Pattern in Birds. Springer Berlin Heidelberg, pp.63–74.
    Ma N, Hua BZ.2009. Fine structure and formation of the eggshell in scorpionfly Panorpa liui Hua(Mecoptera: Panorpidae). Microsc. Res. Tech.72:495–500.
    Machida R.1981a. External features of embryonic development of a jumping bristletail Pedetontusunimaculatus Machida (Insecta, Thysanura, Machilidae). J. Morphol.168:339–355.
    Machida R.1981b. The embryology of the jumping bristletail Pedetontus unimaculatus Machida (Insecta,Machilidae, Machilidae). The Doctoral Thesis, University of Tsukuba. pp.225.
    Machida R.2000. Serial homology of the mandible and maxilla in the jumping bristletail Pedetontusunimaculatus Machida, based on external embryology (Hexapoda: Archaeognatha, Machilidae). J.Morphol.245:19–28.
    Machida R, Ando H.1981. Formation of midgut epithelium in the jumping bristletail Pedetontusunimaculatus (Machida)(Archaeognatha, Machilidae). Int. J. Insect Morphol. Embryol.10:297–307.
    Machida R, Nagashima T, Ando H.1990. The early embryonic development of the jumping bristletailPedetontus unimaculatus Machida (Hexapoda: Microcoryphia, Machilidae). J. Morphol.206:181–195.
    Machida R, Nagashima T, Ando H.1994. Embryonic development of the jumping bristletail Pedetontusunimaculatus Machida, with special reference to embryonic membranes (Hexapoda: Microcoryphia,Machilidae). J. Morphol.220:147–165.
    Mansour K.1927. The development of the larval and adult mid-gut of Calandra oryzae (Linn.): the riceweevil. Quart. J. Micr. Sci.71:313–352.
    Manton SM.1977. The Arthropoda—habits, functional morphology and evolution. Clarendon Press,Oxford. pp.527.
    Marshall CR, Raff EC, Raff RA.1994. Dollo’s law and the death and resurrection of genes. PNAS.91:1283–1287.
    Martins GF, Neves CA, Campos LA, Serr o JE.2006. The regenerative cells during the metamorphosis inthe midgut of bees. Micron37:161–168.
    Masumoto M, Yaginuma T, Niimi T.2009. Functional analysis of Ultrabithorax in the silkworm,Bombyxmori, using RNAi. Dev. Genes. Evol.219:437–444.
    Mathew LG, Campbell EM, Yool AJ, Fabrick JA.2011. Identification and characterization of functionalaquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci. Insect Biochem.Mol. Biol.41:178–190.
    Matsuda R.1965. Morphology and evolution of the insect head. Mem. Am. Entomol. Inst.4:1–334.
    Matsuda R.1976. Morphology and Evolution of the Insect Abdomen. Pergamon Press, Oxford.
    Miller A.1940. Embryonic membranes, yolk cells, and morphogenesis of the stonefly Pteronarcys proteusNewman (Plecoptera: Pteronarcidae). Ann. Entomol. Soc. Am.33:437–477.
    Miyakawa K.1974. The embryology of the caddishfly Stenopsyche griseipennis MacLachlan (Trichoptera:Stenopsychidae). III. Oranogenesis: Ectodermal derivatives. Konty42:305–324.
    Miyake T.1912. The life-history of Panorpa klugi McLachlan. J. Coll. Agric. Imp. Univ Tokyo4:117–139.
    Morris VB.2012. Early development of coelomic structures in an echinoderm larva and a similarity withcoelomic structures in a chordate embryo. Dev. Genes Evol.222:313–323.
    Nagabhushanam R, Sarojini R.1985. Invertebrate Embryology. New Delhi, Mohan Primlani for Oxford&IBH.
    Nagy LM, Grbic M.1999. Cell lineages in larval development and evolution of holometabolous insects. In:Hall BK, Wake MH (Eds.). The Origin and Evolution of Larval Forms. Academic Press, San Diego.pp.275–300.
    Nardi BJ, Bee MC, Miller AL, Taylor JS.2009. Distinctive features of the alimentary canal of afungus-feeding hemipteran, Mezira granulata (Heteroptera: Aradidae). Arthropod Struct. Dev.38:206–215.
    Nelson JA.1915. The Embryology of the Honey Bee. Princeton Univ. Press, Princeton.
    Neves CA, Gitirana LB, Serr o JE.2003. Ultrastructural study of the metamorphosis in the midgut ofMelipona quadrifasciata anthidioides (Apidoe, Meliporuni). Worker Sociobiol.41:443–459.
    Niwa N, Saitoh M, Ohuchhi H, Yoshioka H, Noji S.1997. Correlation between Distal-less expressionpatterns and structures of appendages in development of the two-spotted cricket, Gryllus bimaculatus.Zool. Sci.14:115–125.
    Oka K, Yoshiyama N, Tojo K, Machida R, Hatakeyama M.2010. Characterization of abdominalappendages in the sawfly, Athalia rosae (Hymenoptera), by morphological and gene expressionanalyses. Dev. Genes. Evol.220:53–59.
    Okada M.1960. Embryonic development of the rice stem-borer. Sci. Rep. Tokyo Kyoiku Daigaku B9:275–276.
    Okuda K, de Souza Carowi A, Ribolla PEM, de Bianchi AG, Bijovsky AT.2002. Functional morphology ofadult female Culex quinquefasciatus midgut during blood digestion. Tissue Cell34:210–219.
    Oulion S, Borday-Birraux V, Debiais-Thibaud M, Mazan S, Laurenti P, Casane D.2011. Evolution ofrepeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus caniculaHox code. Evol. Dev.13:247–259.
    Page LR.2010. Inordinate fondness for prolegs. Evol. Dev.12:1–2.
    Panganiban G, Nagy L, Carroll SB.1994. The role of the Distal-less gene in the development and evolutionof insect limbs. Curr. Biol.4:671–675.
    Panganiban G, Sebring A, Nagy L, Carroll S.1995. The development of crustacean limbs and the evolutionof arthropods. Science270:1363–1366.
    Pavlinov IY.2012. The contemporary concepts of homology in biology: A theoretical review. Biol. Bull.Rev.2:36–54.
    Pilgrim RLC.1972. The aquatic larva and the pupa of Choristella pholpotti Tillyard,1917(Mecoptera:Nannochoristidae). Pac. Insects14:151–168.
    Popadi A, Panganiban G, Rush D, Shear WA, Kaufman TC.1998. Molecular evidence for the gnathobasicderivation of arthropod mandibles and for the appendicular origin of the labrum and other structures.Dev. Genes Evol.208:142–150.
    Poulson DF.1950. Histogenesis, organogenesis and differentiation in the embryo of Drosophilamelanogaster Meigen, In: Demerec M (Ed.). Biology of Drosophila. John Wiley and Sons, New York.pp.168–274.
    Prpic NM, Janssen R, Wigand B, Klingler M, Damen WGM.2003. Gene expression in spider appendagesreveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergentdistal morphogen signaling. Dev. Biol.264:119–140.
    Raes H, Verbeke M, Meulemans W, De Coster W.1994. Organisation and ultrastructure of the regenerativecrypts in the midgut of the adult worker honeybee (Apis mellifera). Tissue Cell26:231–238.
    Raff RA.1996. The shape of life. Genes, development, and the evolution of animal form. University ofChicago Press,520p.
    Raff RA, Wray GA, Henry JJ.1991. Implications of radical evolutionary changes in early development forconcepts of developmental constraints. In Waren L, Koprowski H (Eds.), New Perspectives onEvolution. Wiley-Liss, New York. pp.189–207.
    Raminani LN, Cupp EW.1978. Embryology of Aedes aegypti L.(Diptera: Culicidae): organogenesis. Int. J.Insect Morphol. Embryol.7:273–296.
    Reinhard C, Schultz U, Hecker H, Freyvogel TA.1972. Ultrastructural study of the midgut of the Glossinamorsitans (Diptera: Brachycera). Acta Trop.29:280–288.
    Rempel JG, Church NS.1972. The embryology of Lytta viridana Le Conte (Coleoptera, Meloidae) VII.Eighty-eight to132h: the appendages, the cephalic apodemes, and head segmentation. Can. J. Zool.50:1547–1554.
    Rempel JG, Heming BS, Church NS.1977. The embryology of Lytta viridana Le Conte (Coleoptera,Meloidae). IX. The central nervous system, stomatogastric nervous system, and endocrine system.Quaest. Entomol.13:5–23.
    Reuter R, Grunewald B, Leptin M.1993. A role for the mesoderm in endodermal migration andmorphogenesis in Drosophila. Development119:1135–1145.
    Reuter R, Leptin M.1994. Interacting functions of snail, twist and huckebein during the early developmentof germ layers in Drosophila. Development120:1137–1150.
    Richter S.2005. Homologies in phylogenetic analyses concept and tests. Theor. Biosci.124:105–120.
    Rickoll WL, Counce SJ.1980. Morphogenesis in the embryo of Drosophila melanogaster–germ bandextension. Dev. Biol.188:163–177.
    Rogers, BT, Kaufman, TC.1996. Structure of the insect head as revealed by the EN protein pattern indeveloping embryos. Development122:34193432.
    Roonwal ML.1937. Studies on the embryology of the Agrican migratory locust, Locusta migratoriamigratorioides R. and F. II. Organogeny. Phil. Trans. Roy. Soc. Lond., Ser. B227:175–244.
    Rost MM.2006a. Ultrastructural changes in the midgut epithelium in Podura aquatica L.(Insecta,Collembola, Arthropleona) during regeneration. Arthropod Struct. Dev.35:69–76.
    Rost MM.2006b. Comparative studies on the regeneration of the midgut epithelium in Lepisma saccharinaL. and Thermobia domestica Packard (Insecta, Zygentoma). Ann. Entomol. Soc. Am.99:910–916.
    Rost MM, Kuczera M, Malinowska J, Polak M, Sidor B.2005. Midgut epithelium formation in Thermobiadomestica (Packard)(Insecta, Zygentoma).Tissue Cell37:135–143.
    Rost-Roszkowska M, Kubala A, Nowak B, Pilarczyk S, Klag J.2007a. Ultrastructure of alimentary tractformation in embryos of two insect species: Melasoma saliceti and Chrysolina pardalina (Coleoptera,Chrysomelidae). Arthropod Struct. Dev.36:351–360.
    Rost-Roszkowska MM, Pi ka M, Szymska R, Klag J.2007b. Ultrastructural studies of midgut epitheliumformation in Lepisma saccharina L.(Insecta, Zygentoma). J. Morphol.268:224–231.
    Rottmar B.1966. über Züchtung, Diapause und postembryonale Entwicklung von Panorpa communis L.Zool. Jahrb. Anat.83:497–570.
    Sadrud-Din S, Loeb M, Hakim R.1996. In vitro differentiation of isolated stem cells from the midgut ofManduca sextalarvae. J. Exp. Biol.199:319–325.
    Sahrhage D.1953. kologische Untersuchungen an Thermobia domestica (Packard) und Lepismasaccharina L. Zeitschr. wiss. Zool.(Leipzig)157:77–168.
    Saito S.1934. A study on the development of the tusser worm, Antheraea pernyi Guér. J. Faculty Agric.Hokkaido. Imp. Univ.33:249–266.
    Sander K.1956. The early embryology of Pyrilla perpusilla Walker (Homoptera), including someobservations on the later development. Aligarh Musl. Univ. Publs. Zool., Indian Insect Types4:1–61.
    Sato M, Tanaka-Sato H.2002. Fertilization, syngamy, and early embryonic development in the cricketGryllus bimaculatus (De Geer). J. Morphol.254:266–271.
    Schmidt-Ott U, González-Gaitán M, Technau GM.1995. Analysis of neural elements in head-mutantDrosophila embryos suggests segmental origin of the optic lobes. Roux’s Arch. Dev. Biol.205:3144.
    Schmidt-Ott U, Sander K, Technau GM.1994. Expression of engrailed in embryos of a beetle and fivedipteran species with special reference to the terminal regions. Roux’s Arch. Dev. Biol.203:298303.
    Schmidt-Ott U, Technau GM.1992. Expression of en and wg in the embryonic head and brain ofDrosophila. Development116:111125.
    Scholtz G.2010. Deconstructing morphology. Acta Zool.91:44–63.
    Scholtz G, Mittmann B, Gerberding M.1998. The pattern of Distal-less expression in the mouthparts ofcrustaceans, myriapods and insects: new evidence for a gnathobasic mandible and the common originof Mandibulata. Int. J. Dev. Biol.42:801–810.
    Schwalm FE.1988. Insect Morphogenesis. In: Sauer HW (Ed.). Karger. Basel.
    Scoble MJ.1995. The Lepidoptera: Form, Function and Diversity. Oxford University Press, New York.
    Shafiq SA.1954. A study of the embryonic development of the gooseberry sawfly, Pteronidea ribesii.Quart. J. Micr. Sci.95:93–114.
    Sharov AG.1953. Razvityje shchetinnokhvostok (Thysanura, Apterygota) v svyzi s problemoi filogeniinasekomykh. Trudy. Inst. Morf. Shivot.8:63–127.
    Sharov AG.1966. Basic Athropodan Stock with Speical Reference to Insects. Pergamon Press, Oxford.
    Silva CP, Silva JR, Vasconcelos FF, Petretski MDA, DaMatta RA, Ribeiro AF, Terra WR.2004. Occurrenceof midgut perimicrovillar membranes in paraneopteran insect orders with comments on their functionand evolutionary significance. Arthropod Struct. Dev.33:139–148.
    Silva-Olivares A, Diaz E, Shibayama M, Tsutsmi V, Cisneros R, Zuniga G.2003. Ultrastructural study ofthe midgut and hindgut in eight species of the genus Dendroctonus Erichson (Coleoptera: Scolytidae).Ann. Entomol. Soc. Am.96:883–900.
    Simon TC, Gordon JI.1995. Intestinal epithelial cell differentiation: new insights from mice, flies andnematodes. Curr. Opin. Genet. Dev.5:577–586.
    Slifer EH.1937. The origin and fate of the membranes surrounding the grasshopper egg, together withsome experiments on the source of the hatching emzyme. Quart. J. Microsc. Sic.79:493–507.
    Sly BJ, Snoke MS, Raff RA.2003. Who came first larvae or adults? Origins of metazoan bilaterianlarvae. Int. J. Dev. Biol.47:623–632.
    Snodgrass RE.1935. Principles of Insect Morphology. McGraw-Hill, New York.
    Sonnenblick BP.1950. The early embryology of Drosophila melanogaster. In: Demerec M (Ed.). Biologyof Drosophila. Wiley, New York. pp.62–167.
    Springer CA.1967. Embryology of the thoracic and abdominal ganglia of the large milkweed bug,Oncopeltus fasciatus (Dallas),(Hemiptera, Lygaeidae). J. Morphol.122:1–18.
    Springer CA, Rutschky CW.1969. A comparative study of the embryological development of the mediancord in Hemiptera. J. Morphol.129:375–400.
    Stehr FW.2003. Larva. In: Resh VH, Cardé RT (Eds.). Encyclopedia of Insects. Academic Press, SanDiego. pp.622–624.
    Strathmann RR.1993. Hypotheses on the origins of marine larvae. Annu. Rev. Ecol. Syst.24:89–117.
    Stuart RR.1935. The development of the mid-intestine in Melanoplus differentialis (Acrididae, Orthoptera).J. Morphol.58:419–437.
    Sun SS.1959. The embryonic development of Dolerus tritici Chu. Acta Entomol. Sin.9:29–50.
    Suzuki N.1985. Embryonic development of the scorpion fly, Panorpodes paradoxa (Mecoptera,Panorpodidae) with special reference to larval eye development. In: Ando H, Miya K (Eds.). RecentAdvances in Insect Embryology in Japan. ISEBU Co. Ltd., Tsukuba. pp.231–238.
    Suzuki N.1990. Embryology of the Mecoptera (Panorpidae, Panorpodidae, Bittacidae and Boreidae). Bull.Sugadaira Mont. Res. Cent. Univ. Tsukuba11:1–87.
    Suzuki N, Ando H.1981. Alimentary canal formation of the scorpion fly, Panorpa pryeri MacLachlan(Mecoptera: Panorpidae). Int. J. Insect Morphol. Embryol.10:345–354.
    Suzuki N, Shimizu S, Ando H.1981. Early embryology of the alderfly, Sialis mitsuhashii Okamoto(Megaloptera: Sialidae). Int. J. Insect. Morphol. Embryol.10:409–418.
    Suzuki Y, Palopoli MF.2001. Evolution of insect abdominal appendages: are prolegs homologous orconvergent traits. Dev. Genes Evol.211:486–492.
    Tan JL, Hua BZ.2008. Morphology of immature stages of Bittacus choui (Mecoptera: Bittacidae) withnotes on its biology. J. Nat. Hist.42:2127–2142.
    Tan JL, Hua BZ.2009. Description of the immature stages of Bittacus planus Cheng (Mecoptera:Bittacidae) with notes on its biology. Proc. Entomol. Soc. Wash.111:111–121.
    Tanaka M.1987. Embryonic development of the corpora allata of Papilionidae (Lepidoptera). In: Ando H,Miya K (Eds.). Recent Advances in Insect Embryology in Japan and Poland. Arthorpod. Embryol. Soc.Jpn. Tsukuba. pp.267–271.
    Technau GM, Campos-Ortega JA.1986. Lineage analysis of transplanted individual cells in embryos ofDrosophila melanogaster. III. Commitment and proliferative capabilities of pole cells and midgutprogenitors. Roux’s Arch. Dev. Biol.195:489–498.
    Terra WR.1990. Evolution of digestive systems of insects. Annu. Rev. Entomol.35:181–200.
    Tiegs OW, Manton SM.1958. The evolution of the Arthropoda. Biol. Rev.33:255–337.
    Tiegs OW, Murray FV.1938. Embryonic development of Calandra oryzae. Quart. J. Micr. Sci.80:159–273.
    Tojo K, Machida R.1997. Embryogenesis of Ephemera japonica McLachlan (Insecta: Ephemeroptera).Proc. Arthropod Embryol. Soc. Jpn.32:25–28.
    Tojo K, Machida R.1998. Early embryonic development of the mayfly Ephemera japonica McLachlan(Insecta: Ephemeroptera, Ephemeridae). J. Morphol.238:327–335.
    Tomita S, Kikuchi A.2009. Abd-B suppresses lepidopteran proleg development in posterior abdomen. Dev.Biol.328:403–409.
    Truman JW, Riddiford LM.1999. The origins of insect metamorphosis. Nature401:447–452.
    Truman JW, Riddiford LM.2002. Endocrine insights into theevolution of metamorphosis in insects. Annu.Rev. Entomol.47:467–500.
    Tuner FR, Mahowald AP.1977. Scanning electron microscopy of Drosophila metanogaster embryogenesisII, Gastrulation and segmentation. Dev. Biol.57:403–416.
    Uchifune T, Machida R.2005. Embryonic development of Galloisiana yuasai Asahina, with specialreference to external morphology (Insecta: Grylloblattodea). J. Morphol.266:182–207.
    Uemiya H, Ando H.1987a. Embryogenesis of a springtail Tomocerus ishibashii (Collembola,Tomoceridae): external morphology. J. Morphol.191:37–48.
    Uemiya H, Ando H.1987b. Blastodermic cuticles of a springtail, Tomocerus ishibashii Yoshii (Collembola,Tomoceridae). Int. J. Insect Morphol. Embryol.16:287–294.
    Ullmann SL.1967. The development of the nervous system and other ectodermal derivatives in Tenebriomolitor L.(Insecta, Coleoptera). Phil. Trans. R. Soc. Lond. B252:1–25.
    Uwo MF, Ui-Tei K, Park P, Takeda M.2002. Replacement of midgut epithelium in the great wax moth.Galleria mellonela, during larval-pupal moult. Cell Tissue Res.308:319–331.
    Van der Starr-van der Molen LG, Planque-Huidekiper B, de Priester W.1973. Embryogenesis of Calliphoraerythrocephala. III. Ultrastructure of the midgut epithelial cells during late embryonic development. Z.Zellforsch.144:117–138.
    Warburg A.2008. The structure of the female sand fly (Phlebotomus papatasi) alimentary canal. Trans. R.Soc. Trop. Med. Hyg.102:161–166.
    Wellhouse WT.1954. The embryology of Thermobia domestica Packard. Iowa. St. Coll. J. Sci.28:416–417.
    Whiting MF.2002. Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera andSiphonaptera. Zool. Scr.31:93–104.
    Williamson DI.2009. Caterpillars evolved from onychophorans by hybridogenesis. PNAS.106:19901–19905.
    Wolff C, Scholtz G.2006. Cell lineage analysis of the mandibular segment of the amphipod Orchestiacavimana reveals that the crustacean paragnaths are sternal outgrowths and not limbs. Front. Zool.3:19.
    Woodland JT.1957. A contribution to our knowledge of lepismatid development. J. Morphol.101:523–578.
    Wood-Masson J.1879. Morphological notes bearing on the origin of insects. Trans. Entomol. Soc. Lond.1879:145–167.
    Xie YP, Liu WM, Zhang YF, Xiong Q, Xue JJ, Zhang XM.2011. Morphological and ultrastructuralcharacterization of the alimentary canal in Japanese wax scale (Ceroplastes japonicus Green). Micron42:898–904.
    Younossi-Hartenstein A, Tepass U, Hartenstein V.1993. Embryonic origin of the imaginal discs of the headof Drosophila melanogaster. Roux’s Arch. Dev. Biol.203:6073.
    Yue C, Hua BZ.2010. Are abdominal prolegs serially homologous with the thoracic legs in Panorpidae(Insecta: Mecoptera)? Embryological evidence. J. Morphol.271:1366–1373.
    Zakhvatkin YA.1968. Comparative embryology of Chrysomelidae. Zool. Zhurhal.47:13331342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700