基于QFD与TRIZ的车用吸附天然气储存装置设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的不断发展,我国汽车的保有量逐年剧增,汽车的增多在为人们提供方便的同时也带来了一些负面的问题。其一,汽车的主要燃料是汽油,其排放物对我们周围的环境造成了越来越严重的污染;其二,由于石油储量的日益减少,汽油的价格一路攀升,人们使用汽车的负担再在不断增大。相对于汽油来所,天然气价格便宜,对环境的污染也小很多。因此,开发合适的车用天然气储存系统,将天然气代替汽油作为汽车燃料具有很大的经济效益和环保效益。
     通过分析对比压缩天然气、液化天然气和吸附天然气三种储存方式后发现,吸附天然气具有储量足够大、储存压力小等特点,比其它两种方式在车用方面更具优势。但目前吸附天然气的储存装置大多仍然采用压缩天然气的普通钢瓶,不能解决吸附天然气作为汽车燃料的一些弊端问题,限制了吸附天然气在车用方面的发展。
     为了开发一种新的车用吸附天然气储存装置,本文引进了质量功能展开(QFD)技术和发明问题解决理论(TRIZ)两种技术方法。QFD技术是一种以满足顾客需求为依据,以提高产品质量和市场竞争力为目标的管理式设计方法。其设计理念是使用规范化的质量屋分析模型为依托,先后对产品的概念设计进行需求分析、质量展开、零件展开、工艺展开和生产计划几个阶段的管理设计,以使产品达到一次性设计成功。产品的创新势必引起矛盾的产生,QFD能够良好的指导设计过程,但不能解决设计过程中出现的各种矛盾问题,而TRIZ正是基于定义分析矛盾、解决矛盾来达到创新设计的一种发明创新方法。两种方法各有其优缺点,集成它们的优点进行产品的概念设计正是现代设计理论与方法中较为热门的研究方向之一
     本文即是在结合QFD与TRIZ优点的基础上,提出了集成两种方法的产品概念设计模型。利用此设计模型,控制本次产品的设计质量,指导产品的稳健性、创新性设计过程。在概念设计成型的基础上利用三维实体建模软件SolidWorks对车用吸附天然气的储存装置进行了实体建模,并运用该软件对天然气储存装置主体部分做了应力有限元分析,以确定其性能指标达到安全要求。
With the continuous development of our national economy, the possession of the vehicle in our country is sharply increasing year by year. Although the number of vehicle growing provides people more convenience, it also brings some negative problems. Firstly, the vehicle's main fuel is gasoline, whose emissions lead to more and more serious pollution to our environment. Secondly, because of the oil reserves decrease, the price of gasoline is always soaring, which imposes more burden on people who use the vehicle. Comparing to the gasoline, natural gas's prices is cheaper, and brings less environmental pollution. Therefore, the development of natural gas storage system for vehicle and replacing gasoline as vehicle fuel gas will bring great economic benefits and environmental benefits.
     Through comparing and analyzing compressed natural gas, liquefied natural gas and adsorped natural gas three storage solutions, found absorbed natural gas is the best storage solutions which characterized by enough adsorption, low pressure and so on compared with the other two ways. But at present natural gas adsorption storage device mostly still use ordinary compressed natural gas cylinder, which can't solve some disadvantages of adsorption natural gas as fuel for vehicles, limiting in the development of the adsorption natural gas to vehicles.
     In order to develop a new adsorption natural gas storage device for vehicle, the Quality Function Deployment (QFD) and the Theory of Inventive Problem Solving (TRIZ) design methods are introduced in this paper. QFD technology is a kind of management-type design method to meet customer demand, which taking improvement of product quality and market competitiveness as goals. Its design concept is the use of standardized house of quality analysis model to rely on, successively in the concept design requirement analysis, quality development, development, technology development and parts production planning several stages of the design management, in order to make products to one-off design success. The innovation of the product cannot leave the generation of contradiction. QFD can guide the design process, but can't solve various contradictions problems in the design process, While TRIZ is one innovative design method, which based on defining, analyzing and solving contradiction to realize innovative design Two methods each have their advantages and disadvantages, integration of their advantages in product design is one hot research branch of modern concept design theory and method.
     In this paper, based on combining the merits of the two methods, product concept design model integrated QFD and TRIZ is put forward. Use this design model to control the quality of product design, to guide product robustness and innovative guide design process. Based on this concept design model, establish solid model of natural gas reserve devices by using3D entity modeling software, and conduct finite element analysis on this solid model to determine properties can be satisfied.
引文
[1]于怀勇.谈天然气汽车客运发展趋势[EB/OL].中国客车网:http://www.chinabuses.com, 2012-01-30.
    [2]郑海心.液化天然气替代石油趋势分析[N].科技日报,2006-4-30.
    [3]程宗明.以气代油,节能环保大有好处[J].中国能源,1995,(10):41-42.
    [4]李家俊,乔志军,赵乃勤,师春生.活性炭纤维吸附甲烷的理论计算[J].天津工业大学学报,2002,21(2).
    [5]杨晓东,顾安忠.天然气汽车储气方式的技术经济性分析[J].油气储运.2000,19(11):29-33.
    [6]陈曦,厉彦忠,王强,张朝昌,苏林.液化天然气汽车的发展优势[J].低温与超导,2002,30(4):44-48.
    [7]邵家骏.质量功能展开[M].北京:机械工业出版社,2004.
    [8]张笑一.IntQFD中需求获取与智能配置系统的分析与设计[D].东北大学硕士学位论文,2006.
    [9]王春刚.矛盾问题中矛盾信心的特征提取研究[D].广东工业大学硕十学位论文,2009.
    [10]孙丽丽,刘泽锋QFD、TRIZ、田口方法与汽车产品设计开发[J].中国质量,2008,(10):21-24.
    [11]代晓东,蔡洁等.天然气吸附及其理论的研究进展[J].2009,35(2),59-63.
    [12]周理,吕昌忠,王怡林等.述评超临界温度气体在多孔固体上的物理吸附[J].化学进展,1999,11(3):221-226.
    [13]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005:54-67.
    [14]邹勇,陆绍信.活性炭吸附储存天然气的最佳压力研究[J].石油与天然气化工,1996,25(2):59-61.
    [15]蓝少健,邹华生,黄朝辉,欧兵.吸附天然气(ANG)储存技术吸附剂研究进展[M].广东化工,2006,33(10):40-43.
    [16]解强,张香兰,李兰廷,等.活性炭结构调节:理论、方法与实践[J].新型炭材料,2005,20(2):183-188.
    [17]保华,赵乃勤,李家俊等.用活性炭纤维吸附天然气的研究[J].中山大学学报(自然科学版),2003.42(增刊):126-129.
    [18]Matranga K R, Myers A L, Glandt E D. Storage of nature gas by adsorption on activated carbon[J]. Chem Eng Sci,1991,47:1569-1573.
    [19]陶北平.专用天然气(甲烷)吸附剂的研制进展[J].低温与特气,2000,18(5):5-8.
    [20]陈进富,娄世松,陆绍信.天然气吸附剂的开发及其储气性能的研究[J].燃料化学学报,1999,27(5):399-402.
    [21]赵静,张淮浩.天然气吸附剂储气性能与其微观结构的关系[J].扬州大学学报(自然科学版),2008,11(3):68-71.
    [22]Tan Z, Gubbins K E. Adsorption in carbon micropores at supercritical temperatures [J]. Phys. Chem., 1990,94:6061-6069.
    [23]Remick R J, Tiller A J . Heat Generation in Natural Gas Adsorption Storage Transportation[C]. Vancouver,1986,477~488.
    [24]Sejnoha M, Chahine R, Yaici W, et al. Adsorption Storage of Natural Gas on Activated Carbon[A]. Proceedings of AIChE Annual Meeting[C]. SanFrancisco, CA,1994,109~120.
    [25]Chang K J, Talu O. Behavior and Performance of Adsorption Natural Gas Storage Cylinders during Discharge. Applied thermal Engineering.1996,16(5): 359~374.
    [26]Firas N, Ridha, Rosli M, Yunus, Mohd, Rashid, et al. Thermal transient behavior of an ANG storage during dynamic discharge phase at room temperature[J]. Applied Thermal Engineering, 2007,27:55-62.
    [27]R. Basumatary, P. Dutta, M. Prasad, K. Srinivasan. Thermal modeling of activated carbon based adsorptive natural gas storage system. Carbon,2005.43:54]-549.
    [28]Lamari Malek, Aoufi Asdin, Malbrunot Pierre. Thermal effects in dynamic storage of hydrogen by adsorption [J]. AichE,2000,46(3):632-646.
    [29]傅国旗.天然气吸附存储的研究[D].天津大学化学工程学院博士学位论文,2000.
    [30]卜宪标.车用天然气吸附储存及热效应模拟研究[D].哈尔滨工业大学工学博士论文,2008.
    [31]卢伟.天然气吸附储存系统实验研究[D].中国石油大学硕士学位论文,2008.
    [32]孙俊芳.天然气吸附储存过程热效应数值模拟及其控制技术研究[D].北京工业大学硕士学位论文,2009.
    [33]杨晓东.超临界温度甲烷吸附存储的研究[D].上海交通大学制冷与低温工程研究所,博士学位论文,2002.
    [34]肖锦常.用作汽车燃气的天然气低压吸附储存系统的开发和研究[J].天然气工业,1996,16(1):65-69.
    [35]熊伟.质量机能展开[M].北京:化学工业出版,2005.
    [36]熊伟,权婧雅.QFD及其发展动向[J].中国质量,2008,10,16-17,37.
    [37]李跃生,邵家骏,苗宇涛.质量功能展开技术[M].北京:国防工业出版社,2011.
    [38]崔鹏亮.基于QFD的质量信息管理系统研究[D].南京理工大学硕士学位论文,2008.
    [39]赵武,张颖,石贵龙.质量机能展开(QFD)研究综述[J].世界标准与质量管理,2007,4(4):56-59.
    [40]ASI, ed. Proceedings of the Sixth Symposium on Quality Function Deployment. Dearborn:ASI and GOAL/QPC,1994.
    [41]张文峰.基于QFD的产品创新设计方法研究[D].浙江大学硕士学位论文,2008.
    [42]张彦军.基于QFD与TRIZ的机械产品概念设计研究[D].西安电子科技大学硕士学位论文,2004.
    [43]孙峰华,王亮,顾九春TRIZ研究的历史现状及前瞻[J].鲁东大学学报(自然科学版),2010,26(1):79-86.
    [44]盖峰.基于QFD和TRIZ的抽油机概念设计方法研究[D].西南石油大学博士学位论文,2006.
    [45]赵敏,史晓凌,段海波TRIZ入门及实践[M].北京:科学出版社,2009.
    [46]赵新军.技术创新理论(TRIZ)及应用[M].北京:化学工业出版社,2004.
    [47]侯磊.基于AD和TRIZ的自行车概念创新设计方法研究[D].苏州大学硕士学位论文,2011.
    [48]项媛媛.QFD与TRIZ在六西格玛设计中的应用研究[J].现代商业,2008,32:70-71.
    [49]谢东钢,王建国,杨拉道,陈坚兴,张国华."TRIZ"理论是科技创新的现代化工具[J].重型机械,2010(S1),1-9.
    [50]娄永海.基于TRIZ理论的企业商业模式研究[D].吉林大学博十学位论文,2009.
    [51]刘开兵,王通跃.论TRIZ的价值性和发展性[J].江苏科技信心(学术研究),2010.
    [52]Altshuller, G S. Greativity as an Exact Science. New York: Gordon and Breach,1988.
    [53]Altshuller, G S. And suddenly the inventor appeared, TRIZ, The Theory of Inventive Problem Solving. Massachusetts:Technical Innovation Center,1996.
    [54]Altshuller, G S.40 Principles:TRIZ Keys to Technical Innovation. Worcester: Technical Innovation Center, 1999.
    [55]Yoji Akao. Quality Function Deployment:Integrating Customer Requirements into Product Design.Cambridge, Massachusetts. Productivity Press,1990.
    [56]J P Mota, S Lyubchik, ed. ADSORBED NATURAL GAS TECHNOLOGY. Recent Advances in Adsorption Processes for Environmental Protection and Security,2008,177-192.
    [57]贺匡国.化工容器及设备简明设计手册[M].北京:化学工业出版社,2008.
    [58]叶文邦,张建荣,曹文辉.压力容器设计指导手册[M].昆明:云南科技出版社,2006.
    [59]胡仁喜,等SolidWorks 2005中文版机械设计高级应用实例[M].北京:机械工业出版社,2005.
    [60]李文杰,曾庆良,于涛,胡昊,殷亮.基于COSMOSWorks的钢制压力容器有限元分析fJ].机械设计与制造,2011,5:33-35.
    [61]成风文.基于SolidWorks的压力容器三维建模及应力分析[J].工程图学学报,2006,4:53-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700