灵芝孢子低聚糖的制备及其改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以开平健之源保健食品有限公司提供的破壁去油后的灵芝孢子粉为原料,经羧甲基化改性获得羧甲基灵芝孢子粉,再经酶降解获得羧甲基灵芝孢子低聚糖。
     1、对破壁去油后的灵芝孢子粉进行羧甲基化改性,以取代度为指标优化改性条件,得出最佳条件为:乙醇浓度80%、碱化时间2h、NaOH浓度1.5mol/L、氯乙酸浓度0.625mol/L、醚化温度45℃、醚化时间20h。此条件下,羧甲基取代度达到0.78;接着研究了影响改性样品溶解率的因素,得出较佳溶解条件为:pH值5.15、取代度0.78(最高DS)、溶解温度50℃、溶解时间3d;分别用水煮法、冻融-水煮法、超声波-水煮法提取破壁去油后的灵芝孢子粉中总糖,测得总糖提取率分别为:3.12%、3.68%、4.36%;DS为0.78的羧甲基灵芝孢子粉(以下简称改性样品)充分溶解后,测得总糖提取率为24.6%,是水煮法提取率的7倍以上;
     2、苯酚硫酸法测定了取代度为0.721的改性样品溶液以及高速离心后上清液中总糖含量,实验得出改性样品中总糖含量占样品干重的26.7%,其中可溶性糖含量占样品干重的23.8%,即可溶性糖占改性样品中总糖的80.9%;改性样品通过纤维素酶降解,获得羧甲基灵芝孢子低聚糖。为获得聚合度在6~10的低聚糖,确定了纤维素酶降解改性样品的适合条件为:pH 4.4,酶解温度50℃,酶用量200U/g底物,酶解时间2h。在此条件下,所得到的羧甲基灵芝孢子低聚糖的平均聚合度为7.7;
     3、分别以1%的葡萄糖和不同浓度羧甲基灵芝孢子低聚糖作为碳源,培养青春双歧杆菌。通过测定培养液的pH值、620nm波长下的吸光值以及菌体质量浓度,考察青春双歧杆菌的生长繁殖情况。实验得出,羧甲基灵芝孢子低聚糖对双歧杆菌的增殖效果明显,且糖浓度越高,增殖倍数越大。糖浓度从0.5%~3%,菌体增长倍数依次为:2.2、2.9、3.3、3.6。但在同一糖浓度水平上,葡萄糖在双歧杆菌体外增殖方面要优于羧甲基灵芝孢子低聚糖;
     4、对羧甲基灵芝孢子粉和羧甲基灵芝孢子低聚糖的工业化生产作了粗略设计,主要设计内容有:工艺流程、关键工艺参数、车间组成及其平面布局,为其工业化生产提供一定的依据。
In this paper, SDGLS (sporoderm-broken and defatted Ganoderma lucidum spores) provided by Kaiping healthwise Co., LTD was taken as the raw material. Carboxy methyl SDGLS was prepared by carboxy methylated reaction. And carboxy methyl oligosaccharides were made by the enzyme degradation of Carboxy methyl SDGLS.
     1 The raw material was carboxy methylated modified. Taking the DS (degree of substitution) as the standard, the reaction conditions were optimized. The results indicated the optimal conditions: the SDGLS was 1g, the concentration of thanol was 80%, the dose of sodium hydroxide was 1.20g, the dose of chloroactic acid was 1.18g, alkalization was 2h, reaction temperature was 45℃, and etherification time was 20h. In these conditions, the DS of carboxy methyl reached to 0.78. Then we studied the factors which would influence the solubility of the modified samples. And the results indicated the optimum solution conditions: pH5.15, DS 0.78(the maximum value of DS), temperature was 50℃and solution time was 3d. Three kinds of methods were used to extract the saccharides. There were water boiling method, freeze thaw and water boiling method, ultrasonic and water boiling method. And the extraction yields of these methods were: 3.12%, 3.68% and 4.36%.The sample, whose DS was 0.78, was dissolved in these conditions and its extraction yield of total saccharides was 24.6%, which was 7 times more than water boiling method’s.
     2 The total saccharides contents of the sample solution and its liquid supernatant were determined using the phenol-sulfuric method. The results showed that the total saccharides contents were 26.7% and 23.8%. The oligosaccharides with carboxymethyl group were prepared by cellulose enzyme degradation. In order to get the oligosaccharides with a certain range (6~10) of polymerization degree, the conditions of enzyme degradation were studied. The appropriate conditions were that pH was 4.4, temperature was 50℃, concentration of the enzyme was 200U/g of substrate, and time was 2h. In these conditions, the oligosaccharides with an average polymerization degree of 7.7 were abtained.
     3 The Bifidobacterium was proliferation in vitro taking glucose with the concentration of 1% and homemade oligosaccharides with different concentrations as the carbon source. And we studied its proliferation situation by determining the pH, the absorbance at 620nm and the bacteria concentration of the culture solution. The results showed that the effect of homemade oligosaccharides on proliferation of Bifidobacterium was obvious and the effect would become better and better with the concentration of oligosaccharides increasing. From 0.5% to 3%, its growth times would be 2.2, 2.9, 3.3, 3.6. And when their concentrations were the same, the effect of glucose would be better than homemade oligosaccharides.
     4 A preliminary industrial design was made for Carboxy methyl SDGLS and carboxy methyl oligosaccharides. The main jobs were: process, key parameters, workshop design. And this design provided a certain basis for their industrial production.
引文
[1]南京药学院《中草药学》编写组.中草药学(中册)[M].江苏人民出版社,1976,14-15.
    [2]陈康林.野生灵芝和人工栽培灵芝的不同[J].医药世界,2008,7:70-71
    [3]叶纪沟,叶敏平.野生灵芝与栽培灵芝的质量分析[J].传统医药,2011,20(8):69-70.
    [4]叶美凤,覃勇荣,刘旭辉等.桂西北野生灵芝和人工栽培灵芝多糖含量比较[J].中草药,2010,14:186-188.
    [5]周春红,董佳.人工栽培灵芝与野生灵芝活性成分的比较分析[J].中国食物与营养,2010,12:65-68.
    [6]张含波.灵芝的栽培[J].药用植物,2009.6:36-37.
    [7]周全,陈灵芝.灵芝栽培培养基筛选试验[J].武汉生物工程学院学报,2006,2(1):15-17.
    [8]邹向英,乔得生等.添加剂在灵芝栽培中的施用技术研究[J].山东农业科学,2002,6:19-20.
    [9]石磊.保健灵芝栽培新技术[J].农业科学,2011,1:54.
    [10]郭惠东,万鲁长.北方灵芝大棚规模袋栽高产技术[J].山东蔬菜,2000,1:36-37.
    [11]沈慧.灵芝袋料高产栽培技术[J].山东蔬菜,2008,4:42-43.
    [12]蒋冬花.三种杀菌剂对灵芝栽培中4种霉菌生长的影响[J].植物保护学报,2000,27(3):287-288.
    [13]宋景平,兰亦珑等.药用灵芝栽培中集中主要虫害及防治[J].景德镇高专学报,2000,15(4):17-19.
    [14]丘志忠,何焕清等.袋料栽培灵芝孢子粉收集方式比价实验[J].广东农业科学2008,10:88-90.
    [15]吕明亮,斯金平等.一种灵芝孢子粉收集器的研究[J].中国中药杂志,2009,34(5):539-541.
    [16]李忠,陈逸湘等.赤灵芝孢子粉采收于贮存技术[J].现代农业科技,2010,19:132.
    [17]王国征.灵芝栽培管理技术[J].安徽农学报,2005,11(1):66.
    [18]曹隆枢.断木灵芝栽培及孢子粉采集技术[J].食用菌,2003(增刊):39-40.
    [19]武深秋.灵芝椴木栽培覆土技术要点[J].现代种业,2004,5:32.
    [20]夏长水.短椴木熟料栽培灵芝褐斑病防治技术要点[J].食用菌,2009,2:65-68.
    [21]刘国辉,谢宝贵等.有机灵芝栽培技术[J].海峡药学,2010,22(1):71-73.
    [22]郑虎占,董泽洪.重要现代研究与应用[M].北京:学苑出版社,1997:2496-2499.
    [23] Shiao MS. Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities, and pharmacological functions [J]. ChemRec, 2003, 3( 3) : 172- 180.
    [24]生东明,马莺.灵芝多糖研究综述[J].粮食与油脂,2004,7:44-46.
    [25]于淑娟,高大雄等.超声波酶法提取灵芝多糖的机理研究[J].华南理工大学学报(自然科学版),1998,26(2):123-127.
    [26]张亮,程一伦.灵芝主要有效成分超声提取工艺的优化[J].北华大学学报(自然科学版),2010,11(2):140-144.
    [27]何来英,灵芝的研究及进展(综述[J].中国食品卫生杂志,1997,9(2):32-35.
    [28]曲红光,高磊等.灵芝多糖逆转卵巢癌细胞株顺铂耐药的作用及其机制[J].吉林大学学报(医学版),2011,37(2):250-254.
    [29]曹慧,郭秀珍.灵芝多糖对2型糖尿病大鼠模型的治疗作用[J].现代生物医学进展.2010,10(12):2256-2258.
    [30]陈洁,杨红梅等.灵芝多糖对肝缺血再灌注损伤保护作用的研究[J].实用医学杂志2010,26(4):700-701.
    [31]魏晓霞,李鹏.等灵芝三萜组分GLA体内外抗肿瘤作用的研究[J].福建医科大学学报,2010,44(6):417-420.
    [32] Kino K, Yamashita A, Yamaoka K, etal. Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8) , from Ganoderma lucidium. J B iol Chem , 1989, 264: 4722478.
    [33] Lin WH, Huang CH, Hsu CI, et al. Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae ( Fip2gts) defined by a yeast two-hybrid system and site-directed mutagenesis. JB iol Chem , 1997, 272: 200442-20048.
    [34]王晓林,梁重阳等,灵芝免疫调节蛋白(Rlz-8)诱导K562细胞发生细胞核介导的细胞凋亡研究[J]中国免疫学杂志,2010,26:616-623.
    [35] Liang CY, Zhang SQ et al. Ganoderma lucidum immunomodulatory protein(Lz-8) expressed in Pichia pastoris and the identification of immunocompetence[J].Chin J Biotech,2009,25(3): 441-447.
    [36]周选围,林娟等.灵芝蛋白类活性成分的研究进展[J].天然产物研究与开发,2007,19:917-924.
    [37]陆慧,贾晓斌等.灵芝甾醇类活性成分及其抗肿瘤作用机制的研究进展[J].中华中医药杂志,2011,26(2):325-329.
    [38] Masuko K, Mitsuru Y, Mayumi O K, et al.5α,8α-Epidioxy-22E- ergosta-6,9(11),22-trien-3β-ol from an Edible Mushroom Suppresses Growth of HL60 Leukemia and HT29 Colon Adenocarcinoma Cells.Biol Pharm Bul,2006,29(4):755-759.
    [39]于志,王萌.灵芝硒多糖的研究进展与前景[J].安徽农学通报,2010,16(5):71-73.
    [40]毛健,马海乐.灵芝菌体液态深层发酵条件的优化[J].食品科学2009,30(23):377-382.
    [41]肖志杰,王进军等.灵芝产品的研究与开发现状[J].食品科学,2006,27(12):837-341.
    [42]周连娟.上海市在售灵芝产品卫生状况调查分析[J].上海食品药品监管情报研究,2011,110:31-35.
    [43]倪伟峰,邢增涛.破壁灵芝孢子粉破壁率测定的研究[J].上海农业学报,2008,24(3):45-49.
    [44]蒋家新,赵澎涛等.灵芝孢子酶法破壁的研究[J].食品科学,1996,27(1):19-22.
    [45]周顺华,陶乐仁等.一种新的灵芝孢子破壁工艺[J].食品科学,2002,23(9):80-83.
    [46]洪亮,杨开.破壁灵芝孢子粉的制备及体外抗氧化活性研究[J].浙江食用菌,2009,17 (4): 55-58
    [47] Fu YJ, Liu W. Breaking the spores of the fungus Ganoderma Lucidum by supercritical CO2[J].Food Chemistry,2009,112:71-76.
    [48]李琴韵,粱静,何威之,等.超临界CO2萃取灵芝孢子油的工艺条件研究[J].中成药,2008,30(3):447-449.
    [49]朱坚,李晔等.超临界CO2灵芝孢子油的工艺研究[C].第九届全国药用真菌学术会议暨药用真菌专业组织成立三十周年庆,2009.10:148-151.
    [50]吕伟,刘祥等.高粘度羧甲基淀粉钠的研究进展[J].材料导报,2006,20:400-403.
    [51]李成吾,张天罡等.超声辅助制高取代度羧甲基淀粉钠的研究[J].化学与黏合,2011,33(2):39-41.
    [52]谭义秋.羧甲基淀粉的合成及应用研究进展[J].江苏农业科学,2009,4:291-293.
    [53]易喻,江威等.羧甲基壳聚糖的制备及性能研究[J].浙江工业大学学报,2011,39(,1):16-20.
    [54] Liu PF, Peng J. Radiation crosslinking of CMC-Na at low dose and its application as substitute of hydrogel [J].Radiation Physics and Chemistry,2005,72:635-638.
    [55] Thomas G, Majewicz, Pa. Chadds Ford. Preparation of CMC with improved substituent uniformity using Borax [P] . US: 4, 306, 061, 1981- 01- 06.
    [56]胡玉涛,梅光明等.茯苓全粉羧甲基化改性工艺研究[J].中草药,2010,41(12):1977-1981.
    [57]李和平,何利霞等.羧甲基蔗渣木聚糖的合成与表征[J].精细化工,2010,27(3):254-259.
    [58]谭凤芝,丛日昕等.利用玉米秸秆制备羧甲基纤维素[J].大连工业大学学报,2011,30(2):137-140.
    [59]王周,胡丽萍等.一步法制备羧甲基灵芝多糖[J].现代食品科技,2011,27(3):341-345.
    [60]张桂生,郑素琴.等功能性低聚糖的生理功效及开发[J].中国食物与营养,2004,4:20-22.
    [61]姜竹茂.功能性低聚糖的发展及应用[J].食品安全导刊,2010,9:58-60.
    [62]魏红军,功能性低聚糖的生理功能及其在食品中的应用[J].农产品加工学刊,2009,9:126-128.
    [63] Lucía F A,Dolores M,Aranzazu G,et al. Transformation of maltose into prebiotic isomaltooligosaccharides by a novelα-glucosidase from Xantophyllomyces dendrorhous[J].Process Biochemistry,2007,42: 1530 - 1 536.
    [64]张晓萍,段钢等.功能性低聚糖酶法制备研究进展[J].食品与发酵工业,2011,37(4):159-165.
    [65]管小冉,张德纯.功能性低聚糖生产工艺的研究现状[J].中国微生态学杂志,2009,21(8):762-764.
    [66]陈云,赵国骏等.中性蛋白酶对壳聚糖的降解功能[J].高分子学报,1999,12:293-296.
    [67]张洪伟,朱玲等.脂肪酶法降解壳聚糖的研究[J].哈尔滨师范大学自然科学学报,2009,25(1):64-66.
    [68]胡学智.与生产功能性低聚糖相关的酶(下)[J].江苏调味副食品,2006,23(1):1-5.
    [69]甘志国.农作物秸秆纤维素酶法降解工艺研究[J].甘肃农业科技,2008,10:25-26.
    [70]李文华,温忠文等.竹质纤维素的酶解糖化条件研究[J].中国酿造,2011,6:51-53.
    [71]靳振江.纤维素酶降解纤维素的研究进展[J].广西农业科学,2007,38(2):127-130.
    [72]劳文艳,邱红.双歧杆菌微生态调节作用的应用[J].中国微生态学志,2002,14(5):310-311.
    [73]刘辉,周迪,刘文波.双歧杆菌的研究与应用[J].微生态制剂,2002,3:36~38.
    [74]李文桂,陈雅棠.双歧杆菌生物学作用研究进展[J].地方病通报,2006,20(1): 85~87.
    [75]王记成,高鹏飞等.双歧杆菌V9对便秘和腹泻患者的临床研究[J].营养学报,2011,33(1):70-74.
    [76]冷松,石金山.双歧杆菌的免疫及抗肿瘤机制实验研究[J].大连医科大学学报,2006,28(2):94-97.
    [77]鲍仕慧.双歧杆菌的临床应用[J].海峡药学,2006,18(4):162~163.
    [78]吕志勇,吕志刚.双歧杆菌的保健功能及其产品研发[J].安徽农业科学,2006,34(19): 5031-5032.
    [79]苏爱国.双歧杆菌的保健功能及应用[J].扬州大学烹饪学报,2011(2):61-64.
    [80]宋泽.我国老年化进程中的消费问题[J].企业家天地:206-207.
    [81]张友松.变性淀粉生产与应用手册[M ].北京:中国轻工业出版社, 1999: 133- 141.
    [82]钟新仙.灰分分析法测定羧甲基壳聚糖羧甲基取代度的改进[J].邵阳学院学报,2006.3(2):88-90.
    [83]黄少斌,方建章.田菁胶羧甲基取代度的定量分析[J].华南理工大学学报(自然科学版),1977,25(12):116-119.
    [84]卢艳芬,卢桂琴.几种变性淀粉的集团分析测定[J].湖南化工,1999,29(4):40-42.
    [85]张炯亮,李芝藩.羧甲基淀粉取代度测定方法的改进[J].石油化工与应用,2006,6:30-32.
    [86]张惟杰.糖复合物生化技术研究[M].杭州:浙江大学出版社,1944:11-12.
    [87]王孝平,邢树礼.考马斯亮蓝法测定蛋白含量的研究[J].天津化工,2009.23(3):40-41.
    [88]仝瑛,倪士峰.DNS法测定菊芋中还原糖含量的研究[J].陕西中医,2009,30(11):1535-1537.
    [89]蒋挺大.甲壳素[M].化学工业出版社,2003:326-327.
    [90]赵东旭,杨新林等.灵芝孢子研究进展[J].中草药,1999,30(4):305-307.
    [91]张晓萍,勇强等.青春双歧杆菌体外代谢低聚木糖的研究[J].南京林业大学学报(自然科学版),2010,34(1):5-8.
    [92]卜晓莉,余世袁等.双歧杆菌在低聚木糖基质中的增值和代谢[J].林产化学与工业,2007,27(3):11-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700