底商多层砌体房屋地震破坏机理及加固研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“小震大害”是我国地震灾害的真实写照,其中房屋的严重破坏和倒塌是造成人员伤亡和财产损失的重要原因。而底商多层砌体结构房屋是地震中破坏和倒塌最严重的一类房屋。在汶川地震极震区,这种类型房屋倒塌率达80%。底商多层砌体结构房屋在我国长江以南地区的中小城市非常普遍,据不完全统计,我国现存该类型的房屋约200万栋,涉及居住人口1.2亿。研究该类型结构抗震机理及对现有房屋的加固方法是当前防震减灾的迫切需求。
     本文主要工作如下:
     1、通过地震灾害现场调查,发现多数底商多层砌体结构的破坏特点不同于一般混凝土结构的整体倒塌或是承重构件的开裂,而是底层以薄弱层的状态出现。一般表现为底层沿纵向倒塌,二层及以上各层略有破坏,造成这种震害的原因有框架节点配筋锚固不合理、粗骨料材料使用不当、平面布置不合理等因素。另外,通过现场勘查发现同样是在极震区,个别底商多层砌体结构却表现出了非常好的抗震性能,此建筑物与其他底商多层砌体结构的不同之处在于该建筑物底层临街面纵墙在柱的两侧增设了“翼墙”和“翼柱”。这种构造措施增加了结构的抗震承载能力,同时也减小了底层前后纵墙的刚度差异,亦即减小了地震作用在各道纵墙间分配的差异,使得该建筑Ⅺ度极震区仅中等破坏程度。
     2、通过一组2个单层模型地震模拟振动台对比试验,对比分析了前脸框架节点配筋锚固形式对结构抗震性能的影响。试验表明,节点配筋锚固长度及弯钩的设置对节点失效起到了一定延缓作用,并推迟或避免了整个结构的倒塌。节点配筋锚固不良的模型在0.34g后达“倒塌”破坏状态,而节点配筋锚固良好的模型为“中等破坏”等级。
     3、通过一组2个单层模型地震模拟振动台对比试验,对比分析了增设“翼柱”、“翼墙”对提高结构整体抗震性能的影响。试验表明,增设“翼柱”和“翼墙”后,结构在0.66g时“裂而不倒”,对比结构则发生突然倒塌;0.31g后自振频率下降很少,而对比结构下降达60%;加速度放大倍数也低于对比结构。
     4、通过一组3个双层模型的地震模拟振动台对比试验,对比分析了普通底商多层砌体结构、增设“翼墙”、“翼柱”的底商多层砌体结构及采用矩形钢管+型钢加固普通底商多层砌体结构后在结构自振频率、加速度、位移、应变状态等方面的不同。通过试验及数据分析,获得了底商多层砌体结构在地震时各道纵墙的破坏方式及失效顺序;验证了“翼墙”、“翼柱”在结构抗震中的关键作用;验证了矩形钢管+型钢加固普通底商多层砌体结构的可行性和实用性;提出了“平衡刚度、增加延性”的加固理念。
Weak earthquake vs severe disaster is a predominant characteristic in China. Oneimportant reason of casualty and loss is the severe damages and collapse ofbuildings. The bottom-business multi-story masonry structure is the mostseverely damaged building form. In Wenchuan earthquake,80%of this kind ofbuildings were ruined, while bottom-business multi-story masonry structure isvery popular in the small and middle towns in the south of China. According toinadequate statistics, there are about two million such buildings existing in China,and120million residents are involved. As a result, it is urgent to study theearthquake resistant mechanism of this building form and the methods toreinforce the existing buildings in order to reduce the damages caused byearthquakes.
     The main content of this paper can be concluded as follows:
     1. After investigating the post-earthquake sites, we found that different from theoverall collapse of ordinary concrete structure and the cracking of the bearingparts, the most vulnerable parts of the bottom-business multi-story masonrystructure distribute among the weak layers of the bottom story. As a result, thebottom story usually collapses along the longitudinal direction, while the secondstory suffers slight damages. The reasons lie in the inconsequence of frame nodesteel anchorage, the misusing of coarse aggregate materials, the unreasonableplane layout and so on. In addition, it is also found that in the same meizoseismalarea, individual bottom-business multi-story masonry structure has shown verygood seismic performance. The difference between these buildings and otherbottom-business multi-story masonry buildings lies in the fact that winged wallsand winged columns were added to the side of columns in the longitudinal wall ofthe bottom floor. This structural measure raises the earthquake resistant capacityof the building, and reduces the rigidity difference between the front and backvertical walls in the bottom floor, namely reduces the earthquake load differencebetween the longitudinal walls, so as to remain the damage rate of this building aslow as middle in zone.
     2. Through a comparative experiment between the earthquake simulation shakingtable test of two single-deck models, the influence of the steel anchorage shape ofthe front frame node on earthquake resistant performance is analyzed. Theexperiment proves that the length of steel anchorage and the set of hook may putoff the invalidation of the node and the collapse of the whole structure. Themodels with poor steel anchorage reach "collapse" state after0.34g, while themodels with good steel anchorage just reach the "moderate damage" level.
     3. Through a comparative experiment between the earthquake simulation shakingtable test of two single-deck models, the influence of adding winged wall andwinged column on the earthquake resistant capacity of the whole structure isstudied. The experiment shows that after adding winged wall and winged column,the structures "crack but not collapse", while the structures without them collapse suddenly; the self-quake frequency of the winged structure decreases little after0.31g, while the self-quake frequency of the contrast structure decreases60%;and the acceleration amplification is lower as well.
     4. Through a comparative experiment between the earthquake simulation shakingtable test of three double-deck models, the differences in the aspects of structurefrequency, acceleration, displacement and strain state between the commonbottom-business multi-story masonry structure, bottom-business multi-storymasonry structure with adding winged wall and winged column, and thebottom-business multi-story masonry structure reinforced through rectangle steelpipe and profiled bar are analyzed. Based on the test results, the destroy mode ofeach longitudinal wall and the invalidate order are obtained; the key function ofwinged wall and winged column in earthquake resistance is validated; thefeasibility and practicality of the reinforcement method through rectangle steelpipe is proved. Finally, the reinforcement method of balancing stiffness andincreasing ductility is put forward.
引文
[1]宝志雯,陈志鹏.从实测数据分析建筑物的扭转效应[J].土木工程学报,1989,22(4):17-26.
    [2]宝志雯,来晋炎,陈志鹏.建筑物的脉动试验及其数据处理的方法[J].振动与冲击,1987,(2):57-63.
    [3]陈大川,唐利飞,张成强.竖向荷载差引起砌体顶部开裂有限元分析[J].工业建筑,2010,40(10):61-64.
    [4]董军,李炳颖,王琪等.绵竹市住宅房屋震损特点及鉴定关键问题[J].南京工业大学学报(自然科学版),2009,31(1):39-43
    [5]杜永峰,朱翔,耿继芳.纤维砂浆带加固砌体墙片的抗震性能研究[J].地震工程与工程振动,2012,32(3):99-103.
    [6]冯学刚.砌体结构地震破坏模式研究[D].哈尔滨:中国地震局工程力学研究所,2010.
    [7]傅剑平,皮天祥,韦锋等.钢筋混凝土联肢墙小跨高比复合斜筋连梁抗震性能试验研究[J].土木工程学报,2011,44(2):57-64.
    [8]高志兵,陶小三,孔建国等.北川县城汶川地震震害特征及其成因探讨[J].防灾减灾工程学报,2009,29(1):114-118
    [9]GB50203-2001,砌体工程施工质量验收规范[S].北京:中国建筑工业出版社,2002.
    [10]GB50204-2003,混凝土工程施工质量验收规范[S].北京:中国建筑工业出版社,2003.
    [11]GB50003-2001,砌体结构设计规范[S].北京:中国建筑工业出版社,2009.
    [12]GB50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2009.
    [13]GB50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社,2008.
    [14]GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [15]GB/T50081-2002,普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2006.
    [16]GB/T50081-2002,普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2006.
    [17]郭迅.汶川大地震震害特点与成因分析[J].地震工程与工程振动,2009,29(6):74-87.
    [18]郭迅.汶川地震震害与抗倒塌新认识[C].第八届全国地震工程学术会议论文集,2010,291-297.
    [19]哈尔滨工业大学,华北水利水电学院,东南大学.混凝土及砌体结构(下册)[M].北京:中国建筑工业出版社,2011.
    [20]何福,郭迅,李宝宽.牛栏江大桥模态测试及数值模拟[J].土木工程学报,2012,45增刊1:117-120,141.
    [21]黄思凝,郭迅,张敏政等.钢筋混凝土小比例尺模型设计方法及相似性研究[J].土木工程学报,2012,45(7):31-38
    [22]黄思凝,郭迅,刘红彪.高层钢筋混凝土斜交网格结构振动台试验.振动与冲击[J].2012,31(11):128-133
    [23]黄思凝,郭迅,孟庆利等.地震模拟试验中单质点体系小比例尺模型的分级相似关系[J].应用基础与工程科学学报,2013,21(1):71-77
    [24]黄襄云,周福霖,曹京源.纤维橡胶隔震结构模拟地震振动台试验研究及仿真分析[J].广州大学学报(自然科学版),2010,9(5):21-26.
    [25]胡夏闽.汶川地震绵竹市建筑震害分析和设计建议[J].南京工业大学学报(自然科学版),2009,31(1):30-39
    [26]胡聿贤.地震工程学[M].北京:地震出版社,1988年.
    [27]JGJ116-2009(备案号J886-2009)建筑抗震加固技术规程[S].北京:中国建筑工业出版社,2009.
    [28]《建筑施工手册》(第四版)编写组.建筑施工手册(第四版)[M].北京:中国建筑工业出版社,2008.
    [29]江见鲸,李杰,金伟良.高等混凝土结构理论[M].北京:中国建筑工业出版社,2007.
    [30]金国芳,周德源,朱伯龙.混凝土中型空心砌块墙片的地震模拟振动台试验研究[J].工程抗震,1992,(4):7-10.
    [31]李碧雄,谢和平,邓建辉等.汶川地震中房屋建筑震害特征及抗震设计思考[J].防灾减灾工程学报,2009,29(2):224-236.
    [32]李小军,于爱勤,甘朋霞等.汶川8.0级地震北川县城区灾害调查与分析[J].震灾防御技术,2008,3(4):352-362.
    [33]李英民,卜长明,刘立平等.碳纤维加固严重破坏砌体墙的试验研究[J].地震工程与工程振动,2012,31(6):129-135.
    [34]林旭川,陆新征,叶列平.砌体结构的地震倒塌模拟与分析,汶川地震建筑震害调查与灾后重建分析报告[R].北京:中国建筑工业出版社,2008:285-292.
    [35]刘冬柏,王安玲.基于汶川地震房屋建筑破坏特征的几点启示[J].中外建筑,2008(6):21-26
    [36]刘富军,朱玉华,马晓辉.内构造柱加固砌体墙抗震性能有限元分析[J].结构工程师,2011,27(3):62-66.
    [37]刘桂秋.砌体结构基本受力性能的研究[D].长沙:湖南大学,2005.
    [38]刘海卿,倪镇国,欧进萍.强震作用下砌体结构倒塌过程仿真分析[J].地震工程与工程振动,2008,28(5):38-42
    [39]刘红彪.底商多层砌体结构倒塌机理研究[D].哈尔滨:中国地震局工程力学研究所,2012.
    [40]卢文浩,鲍平强,王建德等.汶川地震中多层砌体房屋震害特征分析[J].浙江建筑,25(8):22-23
    [41]孟东.基于有限元分析的砌体结构抗震性能评估[J].灾害学,2010,25(B10):355-355
    [42]清华大学等.汶川地震建筑震害分析及设计对策[M].北京:中国建筑工业出版社,2009.
    [43]清华大学土木工程系,香港理工学院土木与结构工程系.香港几幢高层建筑的脉动实验[M].清华大学出版社,1985.
    [44]任晓崧,翁大根,吕西林.四川灾区砌体结构房屋震害与中小学建筑的抗震设计[J].工程抗震与加固改造,2008,30(4):71-76
    [45]日本建築学会近畿支部铁骨构造部会.1995年兵库县南部地震铁骨造建物被害调查报告书[R],1995年5月.
    [46]施楚贤.对砌体结构类型的分析与抗震设计建议[J].建筑结构,2010,40(1):74-76.
    [47]施楚贤.砌体结构理论与设计(第二版)[M].北京:中国建筑工业出版社,2003.
    [48]孙柏涛,闫培雷,张明宇,胡春峰.汶川8.0级大地震极重灾区映秀镇不同建筑结构震害概述及原因简析[J].地震工程与工程振动,2008,28(5):1-9.
    [49]孙景江,唐玉红,孙忠贤等.汶川地震Ⅷ度和Ⅶ度区城市房屋震害及若干典型震害讨论[J].地震工程与工程振动,2008,29(6):65-73
    [50]孙治国,王东升,杜修力等.钢筋混凝土桥墩塑性铰区约束箍筋用量研究[J].中国公路学报,2010,23(3):48-57
    [51]孙治国,王东升,李宏男等.汶川地震钢筋混凝土框架震害及震后修复建议[J].自然灾害学报,2010,19(4):114-123
    [52]孙治国,王东升,郭迅等.钢筋混凝土墩柱等效塑性铰长度研究[J].中国公路学报,2011,24(5):56-64
    [53]台湾地震工程研究中心,内政部建築研究所.921集集大地震建築物震害调查初步报告[R],1999年.
    [54]唐岱新.砌体结构(第2版)[M].北京:高等教育出版社,2009.
    [55]王翠坤,杨沈.汶川地震对建筑结构设计的启示[J].震灾防御技术,2008,3(3):230-236
    [56]王达诠,武建华.砌体RVE均质过程的有限元分析[J].重庆建筑大学学报,2002,24(4):35-39.
    [57]王茂龙,刘明,朱浮声等.有限元法在砌体结构分析中的应用[J].沈阳建筑大学学报(自然科学版),2006,22(1):40-44.
    [58]王曙光,苗启松,刘金龙等.砌体结构外套预制钢筋混凝土墙板加固及隔震加层振动台试验研究[J].建筑结构学报,2012,33(11):99-106.
    [59]王亚勇.汶川地震建筑震害启示-三水准设防和抗震设计基本要求[J].建筑结构学报,2008,29(4):20-25.
    [60]王亚勇,高孟潭,叶列平等.基于大震和特大震下倒塌率目标的建筑抗震设计方法研究方案[C].第八届全国地震工程学术会议论文集,2010:291-297.
    [61]王亚勇,王言诃.汶川大地震建筑震害启示[J].建筑结构,2008,38(7):1-6.
    [62]夏云霞.砌体结构窗下墙的震害机理研究[D].哈尔滨:中国地震局工程力学研究所,2011.
    [63]熊立红,高连军,熊朝晖等.底框剪-砌体房屋抗震性能研究[J].沈阳建筑大学学报(自然科学版),2008,24(4):586-591.
    [64]徐珂.对汶川地震中几种震害的认识[J].工程抗震与加固改造,2008,30(6):19-23.
    [65]徐有邻.汶川地震震害调查及初步分析提纲[C].第17届全国结构工程学术会议论文集,2008,164-175.
    [66]徐有邻.汶川地震震害调查及对建筑结构安全的反思[M].北京:中国建筑工业出版社,2009年5月.
    [67]杨红卫.建筑安全抗震鉴定与加固设计指南(2009版规范)[M].北京:中国建筑工业出版社,2010年8月.
    [68]杨卫忠.砌体受压本构关系模型[J].建筑结构,2008,38(10):80-82.
    [69]叶列平,程光煜,陆新征等.论结构抗震的鲁棒性[J].建筑结构,2008,38(6):11-15.
    [70]叶列平,曲哲,陆新征,冯鹏.提高建筑结构抗地震倒塌能力的设计思想与方法[J].建筑结构学报,2008,29(4):42-50.
    [71]衣华伟.底商多层砌体结构抗倒塌加固方法研究[D].哈尔滨:中国地震局工程力学研究所,2012.
    [72]于江,王萍.格构式钢板组合剪力墙加固砌体结构试验[J].沈阳建筑大学学报:自然科学版,2012,28(5):820-825.
    [73]袁一凡,田启文.工工程地震学[M].北京:地震出版社,2012.
    [74]苑振芳.对汶川地震灾后重建的思考及对砌体结构的建议[J].建筑结构,2008,38(7):28-29.
    [75]苑振芳,刘斌.我国砌体结构的发展状况与展望[J].建筑结构,1999,(10):9-13.
    [76]张敏政.地震模拟实验中相似律应用的若干问题[J].地震工程与工程振动,1997,17(2):52-58.
    [77]张敏政.从汶川地震看抗震设防和抗震设计[J].土木工程学报.2009,42(5):21-25.
    [78]张敏政.汶川地震中都江堰市的房屋震害[J].地震工程与工程振动,2008,28(3):1-6.
    [79]张敏政.汶川地震中都江堰市的房屋震害[C].第八届全国地震工程学术会议论文集,2010,116-122.
    [80]张敏政,孟庆利,刘晓明.建筑结构的地震模拟试验研究[J].工程抗震,2003,(4):31-35.
    [81]张伟,余国英,程才渊.十字形截面配筋砌体墙片的非线性有限元抗剪分析[J].结构工程师,2009,25(1):21-25.
    [82]张亚英,魏平,王里.隔震技术在砖砌体结构加固工程中的应用[J].工程抗震与加固改造,2012,34(5):102-105.
    [83]赵成文,杨超.砌体墙、柱高厚比限值的研究[J].新型建筑材料,2010(12):22-25.
    [84]赵士永,李旭光.砌体结构并联复合隔震建筑有限元分析[J].华北地震科学,2011,29(2):23-26.
    [85]郑怡,张耀庭.汶川地震主要建筑物震害调查及思考[J].华中科技大学学报(城市科学版),2009,26(2):95-102.
    [86]郑山锁,杨勇,赵鸿铁.底部框剪砌体房屋抗震性能的试验研究[J].土木工程学报,2004,37(5):23-31.
    [87]郑鑫,陶夏新.5·12汶川地震高烈度区结构震害调查分析[J].低温建筑技术,2009,132(6):44-46
    [88]周云,邹征敏,张超等.汶川地震砌体结构的震害与改进砌体结构抗震性能的途径和方法[J].防灾减灾工程学报,2009,29(1):109-113.
    [89]周炳章.砌体结构抗震的新发展[J].建筑结构,2002,32(5):69-72.
    [90]周炳章.砌体结构抗震的出路在于发展配筋砌体[J].建筑结构,2009,39(12):159-162.
    [91]周炳章,郑伟,关启勋等.小型混凝土空心砌块六层模型房屋抗震性能试验研究[J].建筑结构学报,2000,21(4):2-12.
    [92]周强,孙柏涛.汶川地震中极震区砌体结构教学楼典型震害分析[J].震灾防御技术,2010,5(4):467-576
    [93]周铁钢,赵冬.“5·12地震绵竹城区砌体结构房屋震害调查与分析”[J].西安建筑科技大学学报(自然科学版),2008,40(5):613-618
    [94]朱伯龙,混凝土结构设计原理[M].上海:同济大学出版社,1992.
    [95]左淑红,熊立红,田志敏.混凝土小砌块约束砌体结构的抗震性能——基于层间位移的分析[J].世界地震工程,2012,28(2):64-71.
    [96]Abdelkrim BOURZAM, Tetsuro GOTO, Masakatsu MIYAJIMA. Shear capacity prediction of confined masonry walls subjected to cyclic lateral loading [J]. Doboku Gakkai Ronbunshuu A,2008,64(4):682-704.
    [97]Abrams, D. P. Response of unreinforced buildings [J]. Journal of Earthquake Engineering,1997,1(1):257-273.
    [98]Akira MATSMURA. Shear strength of reinforced masonry walls [J]. Proceedings of Ninth World Conference on Earthquake Engineering August2-9,1988, Tokyo-Kyoto, JAPAN(Vol. VI):121-126.
    [99]Angelo MARINILL,Enrique CASTILLA. Experimental evaluation of confined masonry walls with several confining-columns[C].13th World Conference on Earthquake Engineering,2004
    [100]Architectural Institute of Japan. Preliminary Reconnaissance Report of the1995Hyogoken-Nanbu Earthquake [R]. English Edition, April,1995.
    [101]Arturo Tena-Clunga, Artemio Juarez-Angeles, Victor H. Salinas-Vallejo. Cyclic behavior of combined and confined masonry walls [J]. Engineering Structures,2009(31):240-259.
    [102] C. Gentile, A. Saisi. Ambient vibration testing of historic masonry towers for structuralidentification and damage assessment [J]. Construction and Building Materials,2007,(21):1311-1321.
    [103] Clough, R. H., Mayes R. L., Gulkan. Shaking table study of single-story masonryhouses, Vol.3: Summary, Conclusions and Recommendations [R]//Report No.UCB/EEERC79/25, University of California, Berkley,1979.
    [104] Earthquake Engineering Research Institute. The Hyogoken-Nanbu Earthquake, January17,1995, Preliminary Reconnaissance Report, February1995.
    [105] F. Colangelo. Pseudo-dynamic seismic response of reinforced concrete frames infilledwith non-structural brick masonry [J]. Earthquake engineering and structural dynamics,2005(34):1219-1241.
    [106] Francesca da Porto, Giovanni Guidi, Enrico Garbin, et al. In-Plane Behavior of ClayMasonry Walls: Experimental Testing and Finite-Element Modeling [J]. Journal ofstructural engineering,2010,136(11):1379-1392.
    [107] G.AGUILAR,R.MELI,R.DIAZ, etc.Influence of horizontal reinforcement on thebehavior of confined masonry walls[C].11thWorld conference on EarthquakeEngineering,1996
    [108] G.W.Housner and P.C.Jennings. Earthquake Design Criteria[S].
    [109] HALUK SUCUOGLU, ALTUG ERBERIK. Performance evaluation of a three-storyunreinforced masonry building during the1992ERAINCAN earthquake [J].Earthquake engineering and structural dynamics,1997(26):319-336.
    [110] Ian R. Stubbs, Vernon R. McLamore. The ambient vibration survey[C]//Proceedingsof fifth world conference on earthquake engineering. Rome, Itlay,1973:286-289.
    [111] K. C. Voon, J. M. Ingham. Experimental In-Plane Shear Strength Investigation ofReinforced Concrete Masonry Walls [J]. Journal of structural engineering,2006,132(3):400-408.
    [112] MIHA TOMAZEVIC, IZTOK KLEMENC. Seismic behaviour of confined masonrywalls [J]. Earthquake engineering and structure dynamics,1997(26):1059-1071.
    [113] Miha TOMAZEVIC, Polona Weiss. Seismic behavior of plain-and reinforced-masonrybuildings [J]. Journal of Structural Engineering,1994,120:323-338.
    [114] M. Kawa, S.Pietruszczak, B.Shieh-Beygi. Limit states for brick masonry based onhomogenization approach [J]. International Journal of Solids and Structures,2008(45):998-1016.
    [115] P. B. Shing, M. Schuller, V. S. Hoskere. In-plane resistance of reinforced masonryshear walls[J]. Journal of Structural Engineering,1990,116(3):619-640.
    [116] R.L. Mayes, Y. Omote, R. W. Clough. Cyclic shear tests on masonry piers, Part1-Tests results[R]//EERC Report No.76-8, Earthquake Engineering Research Center,Uiversity of California, Berkley,1976.
    [117] R.L. Mayes, Y. Omote, R. W. Clough. Cyclic shear tests on masonry piers, Part2-Analysis of tests results[R]//EERC Report No.76-16, Earthquake EngineeringResearch Center, Uiversity of California, Berkley,1976.
    [118] Shi, G. Block System Modeling by Discontinuous Deformation Analysis [M].Southampton UK and Boston USA: Wit Press,1993.
    [119] S.S. Ivanovic, M.D. Trifunac, E.I. Novikova. Ambient vibration tests of a seven-storyreinforced concrete building in Van Nuys, California, damaged by the1994Northridgeearthquake [J]. Soil Dynamics and Earthquake Engineering,2000,(19):391-411.
    [120] U. Andreaus. Drysdale. Failure Criteria for Masonry Panels under In-Plane Loading [J].Journal of Structural Engineering, ASCE,1996,122(1):37-46.
    [121] Wael W. EI-Dakhakhni, S.M.ASCE; Mohamed Elgaaly, F.ASCE; Ahmad A. Hamid.Three-Strut Model for Concrete Masonry-Infilled Steel Frames [J]. Journal ofStructural Engineering,2003(3):177-181.
    [122] Zahra riahi, Kenneth J. Elwood, Sergio M. Alcocer. Backbone Model for ConfinedMasonry Walls for Performance-Based Seismic Design, ASCE,[J].Journal ofStructural Engineering,2009(6):644-654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700