TAT-SOD在脑缺血再灌注损伤中对神经细胞凋亡的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     脑血管病是当前严重危害人类生命和健康的常见病之一,其发病之快、恢复之慢、死亡之多、致残之重,给人们带来巨大的身心痛苦和经济损失。脑血管病一般分为出血性脑血管病和缺血性脑血管病两大类,缺血性脑血管病约占所有脑血管病的75%。缺血-再灌注损伤,是指组织缺血一段时间,当血流重新恢复后,组织的损伤程度较缺血时进一步加重、器官功能进一步恶化的综合征,如何减轻再灌注损伤成为提高缺血性脑卒中疗效的关键之一。
     大量研究结果表明脑缺血再灌注后脑组织自由基生成过多是造成再灌注损伤的主要原因之一,自由基生成过多是级联反应导致细胞损伤的重要病理环节,能导致继发性神经元损伤。虽然说自由基理论已得到广泛的认可,但是对以“超氧化物歧化酶(SOD)”为首的许多抗氧化剂进行的的研究结果卻并不那么令人振奋,SOD作为中等大小的蛋白质,必须进入细胞内甚至是线粒体内才能起到抗氧化损伤的作用,当如此大的蛋白质做为药物使用时,如何使这样大的分子穿过细胞膜和线粒体膜起作用,是首先要解决的难题。
     本课题通过构建TAT-SOD融合蛋白,并对其在脑缺血再灌注损伤中对抗神经细胞凋亡的能力进行研究,探讨TAT介导肽类或蛋白质类生物大分子药物通过生物屏障的能力以及TAT-SOD的脑保护作用,为临床治疗ROS引发的中枢神经系统疾病提供广阔的前景。
     【目的】
     1、构建、表达及纯化TAT-SOD融合蛋白;2、研究目的蛋白TAT-SOD在体外培养的细胞中的跨膜功能;3、观察TAT-SOD在脑缺血再灌注大鼠模型中对凋亡神经细胞的影响,探讨其病理生理机制及临床应用前景。
     【方法】
     1、采用PCR及基因重组技术建立TAT-SOD融合蛋白,而后用SDS-PAGE和Western blot对目的蛋白进行检测;2、采用细胞培养技术及体外实验,通过Western blot分析TAT-SOD的跨膜作用;3、应用线栓法建立大鼠局灶性脑缺血再灌注模型,测定对照组及干预组的MDA含量及SOD活性;4、采用免疫组织化学及流式细胞术探讨TAT-SOD融合蛋白对脑缺血再灌注后凋亡神经细胞的影响。
     【结果】
     1、成功构建了含有TAT-SOD融合基因的质粒,12% SDS-PAGE及Western blot分析均提示在相对分子质量25000处出现目标表达条带,蛋白以天然的、可溶性的形式存在;2、转导入体外培养的星状胶质细胞内蛋白的量随着TAT-SOD与细胞的孵育时间或蛋白浓度的增加而增加,表现出时间依赖性和剂量依赖性的特点;3、采用颈内动脉线栓法成功制备局灶性脑缺血再灌注大鼠模型,并选择缺血120min恢复再灌注作为时间点,经行为学评分,获得较稳定的神经功能缺失症状;4、对脑缺血-再灌注后脑组织MDA含量及SOD活性进行测定,结果表明MDA含量于再灌注6h开始升高,24h达高峰,之后逐渐下降,SOD活性变化与之相反,TAT-SOD处理组MDA、SOD的动态变化趋势与对照组一致,但各时点值均较低;5、caspase3染色分析提示脑缺血再灌注48小时在假手术组可见少数caspase3阳性细胞,生理盐水对照组及SOD处理组表达明显增加,经TAT-SOD干预后,caspase3表达降低;6、流式细胞术提示脑缺血再灌注后缺血组细胞凋亡率明显升高,SOD处理组与之无显著性差异,TAT-SOD处理组的细胞凋亡率低于缺血组。
     【结论】
     1、用TA克隆法构建了含有TAT-SOD融合基因的质粒,通过在大肠杆菌中进行表达,获得了具有SOD酶活力的融合蛋白;2、TAT能以天然活性形式高效介导SOD进入体外培养的星状胶质细胞,并表现出剂量依赖性、时间依赖性的特点;3、颈内动脉线栓法制备局灶性脑缺血再灌注大鼠模型是成熟的动物模型,我们成功建立动物模型,经行为学评分,获得较稳定的神经功能缺失症状,与文献报道(White.BC等)一致;4、脑缺血-再灌注后脑组织MDA含量呈逐渐上升趋势,SOD的活性变化与之相反,经TAT-SOD干预后MDA、SOD的动态变化趋势与对照组一致,但各时点值均较低,提示TAT-SOD有降低自由基水平的作用;5、在假手术组可见少数caspase3阳性细胞,可能是正常生理性死亡或手术剌激所致;缺血120min caspase3表达增加,经TAT-SOD干预,表达降低,SOD处理组无明显变化,提示TAT-SOD保持了蛋白的生物学活性,减少神经细胞的凋亡;6、采用FCM法对凋亡神经细胞进行了定量分析,生理盐水对照组细胞凋亡率明显升高,SOD处理组与之无显著性差异,TAT-SOD处理组的细胞凋亡率低于二者,表明TAT-SOD有效地清除自由基,抑制细胞凋亡,减轻脑组织损伤。
【Background】
     The reactive-oxygen species are inevitably formed as byproducts of various, normal cellular processes involving interactions with oxygen. These reactive- oxygen species damage macromolecules in the cells, and therefore, sometimes make significant contributions to the several pathological processes of ischemia and reperfusion injury.
     Indeed, numerous studies have demonstrated that antioxidant enzymes can provide substantial protection against oxidative stresses. Also, recombinant enzymes such as SOD have been used to protect against oxidative stresses. These enzymes were modified to obtain long circulating half-lives and to target specificity by conjugation with polyethylene glycol, albumin, antibody, or encapsidation with liposome. Although a variety of modified recombinant enzymes are available to protect against oxidative stresses, one of the major limitations in using these enzymes is the lack of their efficient transduction ability into cells, thus resulting in an inability to detoxify intracellular ROS.
     In the present study, we describe the transduction of fulllength TAT-SOD fusion protein into astrocytes and whether this transduced TAT-SOD has a protective effect against oxidative stress in the cells.
     【Objectives】
     1. Expression and purification of TAT-SOD; 2. Transduction of TAT-SOD into astrocytes; 3. Induction of transient forebrain ischemia, discover the effect of transduced TAT-SOD on neuronal viability after ischemic insult.
     【Methods】
     1. Product the TAT-SOD fusion proteins, which were confirmed by SDS-PAGE and western blot analysis.2. Analyz the effect of transduced Tat-SOD on the viability of astrocytes.3.Found models of cerebral ischemia and reperfusion, and calculate the MDA and SOD of the models.4. Analyz the effect of transduced Tat-SOD on neuronal viability afterischemic insult.
     【Results】
     1.TAT-SOD and SOD proteins were highly expressed and soluble in E. coli. The identities of the overexpressed proteins were confirmed by SDS-PAGE and Western blot analysis with monoclonal antibody.2. To evaluate the transducing ability of TAT-SOD, we analyzed the kinetics of its incorporation, by adding it to the astrocyte culture medium and measuring the level of the transduced protein by Western blotting.The activity of transduced SOD increased in a time-and dose-dependent manner.3. We found models of cerebral ischemia and reperfusion, which were evaluated successfully in behavior.4. Calculate the MDA and SOD after cerebral ischemia and reperfusion, MDA increased and SOD decreased respectively.5. We tested the effect of transduced Tat-SOD on neuronal cell viability after administering transient forebrain ischemia by Caspase3 and FCM. The observations show that Tat-SOD passes efficiently across the blood-brain barrier and protect cells against cell death.
     【Conclusions】
     1. The SOD gene was fused with a gene fragment encoding the TAT protein transduction domain of HIV-1 in a bacterial expression vector to produce genetic inframe TAT-SOD fusion proteins.2. We found that TAT-SOD fusion protein is efficiently transduced into astrocytes and that when done so it retains its enzymatic and biologic activities in vitro. The activity of transduced SOD increased in a time-and dose-dependent manner.3. The models of cerebral ischemia and reperfusion were evaluated successfully in behavior. 4.TAT-SOD fusion protein is efficiently taken up into neuronal cells,which resulted in MDA increasing and SOD decreasing slowly respectively by eliminate ROS.5. TAT-SOD prevented neuronal cell death in the hippocampus in response to transient forebrain ischemia. These results suggest that Tat-SOD provides a strategy for therapeutic delivery in various human diseases.
引文
1. 侯熙德.神经病学.北京:人民卫生出版社,1996.197
    2. Chan, P. H., Kawase, M., Murakami, K., Chen, S. F., Li, Y., et al. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J. Neurosci. 1998;18: 8292-8299
    3. Imai, H., Graham, D. I., Masayasu, H., and Macrae, I. M. Antioxidant ebselen reduces oxidative damage in focal cere-bral ischemia. Free Radic. Biol. Med. 2003;34: 56-63
    4. 潘家祜,江明华主编.生化药理学.上海:复旦大学出版社,2004.76-113
    5. 陈瑗,周玫主编.自由基与衰老.北京:人民卫生出版社,2004.2-50
    6. Ginsberg MD.Cerebrovascular Diseases.New York:Raven Press,1989:365
    7. Turrens JF, McCord JM. Clinic ISchemic Syndromes, Mechanisms and Consequences of Tissue Injury ST. Louis, Mo:C. V. Mosby, 1990;203
    8. 丁长海,陈敏珠,魏伟,等.抗氧自由基药物研究进展 .中国药理学通报,1992,8(5)∶ 321
    9. 罗晓波.钙、氧自由基、前列环素等与心肌缺血再灌注损伤 [J].中国药理学通报, 1992, 8(3): 144-146
    10. Kogure K, et al. Progress in Brain Research.Vol 63 Amsterdan: Elsvier Science Publishers BV,1985:237
    11. Jarskog LF, Gilmore JH. Developmental expression of Bcl - 2 protein in human cortex. Brain Res Dev Brain Res. 2000, 119 (2):225-230
    12. Hakim AM. Ischemic penumbra: The therapeutic window[J]. Neurology, 1998, 51(3Suppl 3):S44-S46
    13. Mates, J. M.; Perez-Gomez, C.; Nunez de Castro, I. Antioxidant enzymesand human diseases. Clin. Biochem, 1999, 32:595-603
    14. Kerr JF. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Path Bact 1965; 90: 419-435
    15. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-257
    16. 张丽侠,张建宁,于士柱,等.大鼠局灶性脑缺血再灌注后 Ref-1、NF-KB 及IKB 的表达[J].中华神经医学杂志,2006,5(12):1213-1215
    17. 陈康宁,董为伟.大鼠脑缺血/再灌流中钙与神经元凋亡关系的研究[J].中国老年学杂志,2000,2O(5): 293-295
    18. Mitani A ,Andou Y,Kataoka K,et al. Selective Vulnerability of Hippocampal CAI Neurons Cannot be Explained in Terms of Increase in Glutamate Concentration During Ischemia in the Gerbil : Brain Microdialysis Study. Neuroscience, 1992 ;48(2) :307
    19. 郑关毅,陈晓春,刘昌云,等.一氧化氮激活应激活化蛋白激酶/C-Jun 氨基末端激酶及 p38MAP 激酶诱导脑缺血再灌注后神经元凋亡[J].解剖学报, 2006,37(6):633-639
    20. 于哩哩,李桂兰,徐丽瑾,等.大鼠全脑缺血再灌注损伤后调控基因 Bcl-2、Bax 的表达及与细胞凋亡的关系[J].脑与神经疾病杂,2006,l4(6):446-447
    21. 王守春,张昱,常明,等.慢性脑缺血痴呆大鼠神经细胞凋亡的研究[J].中国临床康复,2003,7(25):3412
    22. 袁存国,杨期东,朱武生,等.亚低温对大鼠局灶性脑缺血神经元细胞凋亡及调控基因Bc1-2和Bax表达的影响[J].中国临床康复,2003,7(22):3066
    23. 刘慧青,张岫美,魏欣冰.血管紧张素Ⅱ诱导培养的牛脑微血管内皮细胞凋亡及其机制[J].中国药理学与毒理学杂志,2003,17(2):121-124
    24. Shao-PingWang,Wei-WeiGong,Guo-LanSun,et al.Effect of gene expressions of cyclinD1 and cyclin dependent kinase4 in cortex and striatum onapoptosis of nerve cells after cerebral ischemia reperfusionin rats.Chinese Journal of Clinical Rehabilitation,2004,8(28):6228-6229
    25. Jarver P, Langel U. The use of cell-penetrating peptides as a tool for gene regulation .Drug Discovery Today, 2004, 9(9) :395-402
    26. Schwarze SR, Dowdy SF. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA.Trends Pharmacol Sci,2000,21(2):45-48
    27. Brake DA,Debouck C,et al.J Cell Biol,1990,111:1275-1281
    28. Sharp PA,Marciniak RA,et al.Cell,1990,59:229-230
    29. Green M,et al.Cell,1988,55:1179-1188
    30. Franke AD,et al.Cell,1988,55:1189-1193
    31. Maurice G,Pau M,et al.Cell,1988,55:1175-1178
    32. Stephen F,Joe S,et al.Proc Natl Acad Sci USA,1994,91:664-668
    33. Eric Vives,Priscille Brodin,et al. J Biol Chem,1997,272:16010-16017
    34. Hikaru N et al. Nature Med, 1998, 4:1449-1552
    35. Steven RS, Alan Ho, et al. Science,1999,285:1569-1572
    36. Lewin M, Nadia Carlesso, et al. Nat Biotechnol, 2000, 18:410-414
    37. Akiko Eguchi,Teruo Akuta,et al. J Biol Chem, 2001, 276:26204-26210
    38. 严世荣,丁爱玲,等.药物生物技术,2002,9(4):187-190
    39. 李敬风.湖北临床医学杂志,2001,23(3):23-26
    40. Futaki S,Goto S,Suzuki T,et al.Structural variety of membrane permeable peptides[J].Curr Protein Pept Sci,2003,4(2):87-96
    41. Wright L R,Rothbard J B,Wender P A.Guanidinium rich peptide transporters and drug delivery[J].Curr Protein Pept Sci,2003,4(2):105-124
    42. Vives E,Richard J P,Rispal C,et al.TAT peptide internalization:seeking the mechanism of entry[J].Curr Protein Pept Sci,2003,4(2):125-132
    43. Wadia J S,Dowdy S F.Modulation of cellular function by TAT mediated transduction of full length proteins[J].Curr Protein Pept Sci,2003,4(2):97-104
    44. Elliott G, O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997;88:223-233
    45. Derossi D, Calvet S , et al. J Biol Chem, 1996, 271:18188~18193
    46. Vives E, Brodin P, Lebleu B. A truncated HIV 1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in thenucleus [J]. J Biol Chem, 1997, 272(25): 16010-16017
    47. Ziegler A,Blatter X L,Seelig A,et al.Protein transduction domains of HIV-1 and HIV TAT interact with charged lipid vesicles.Binding mechanism and thermodynamic analysis[J]. Biochemistry, 2003, 42(30): 9185-9194
    48. Ziegler A, Seelig J. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters[J]. Biophys J, 2004, 86(1 Pt 1): 254-263
    49. Green I, Christison R, Voyce CJ, Bundell KR, and Lindsay MA (2003) Protein transduction domains: are they delivering Trends Pharmacol Sci 24: 213-215
    50. Simeoni F, Morris MC, Heitz F, et al. Insight into the mechanism of the peptide-based gene delivery system MPG: implication for delivery of siRNA into mammalian cells. Nucleic Acids Res, 2003; 31:2717-2724
    51. Fernandez T, et al. Nature Biotechnol,1998,16:418
    52. Begley DJ. The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system[J]. J Pharm Pharmacol. 1996, 48(2): 136-146
    53. Schwarze SR, Dowdy SF. In vivo protein transduction:intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci 2000;21:45-48
    54. Brake DA, Debouck C. J Cell Biol, 1990,111:1275-1281
    55. Sharp PA, Marciniak RA. Cell, 1990,59:229-230
    56. Fuente C,Santiago F,Deng L,et al.Gene expression profile of HIV-1 Tat expressing cells:a close interplay between proliferative and differentiation signals[J].BMC Biochem,2002,3(1):14
    57. Rudolph C,Plank C,Leusier J,et al.Oligomers of the argininerich motif of the HIV-1 TAT protein are capable of transferring plasmide DNA into cells[J].J Boil Chem,2003,278 (13):11411-11418
    58. Jarver P,Langel U.the use of cell-penetrating peptides as a tool for gene regulation[J].Durg Disov Today,2004,9(9):395-402
    59. Tung C H, Stein S.Preparation and applications of peptide-oligonucleotide conjugates[J]. Bioconjug Chem, 2000, 11(5): 605-618
    60. Fischer P M,krausz E,Lane D P.Celluar delivery of impermeable effector molecules in the form of conjugates with peptides capable of mediating membrane translocation[J].Bioconjug Chem, 2001, 12(6):825-841
    61. Montigiani S,Muller R,Kontermann R E.Inhibition of cell proliferation and induction of apoptosis by novel tetravalent peptides inhibiting DNA binding of E2F[J].Oncogene, 2003, 22(32): 4943-4952
    62. Vives E,Brodin P,Lebleu B.A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus[J].J Biol Chem, 1997, 272(25): 16010-16017
    63. Nagahara H, Vocero AM, Snyder EL, et al. Transduction of fulllength TAT fusion proteins into mammalian cells:TAT-p27Kipl induces cell migration. Nature Med, 1998,4:1449-1452
    64. 陈忠宁, 毛宗万, 唐雯霞. 铜锌超氧化物歧化酶和结构、机理及其模拟研究进展[J ]. 化学通报, 1993, 6: 1-8
    65. Garner A, W eser U, In Top ic in Current Chem istry[M ]. N ewYo rk: Sp ringer2V erlag P ress, 1986, 132: 40
    66. Stoddard B. L. Bruhnke J. , Po rter N. et al. Structure and activity of two pho to reversible cinnamates bound to chymo tryp sin [ J ].Biochem, 1990, 29: 4871-4879
    67. 谢英, 金虬, 李大珍, 等. 停流法研究Cu (Ser) 2 及Cu (Gly2Gly) 2 催化O 2- 歧化反应动力学[J ]. 高等学校化学学报, 1998, 19 (8) : 1288-1291
    68. 沈孟长, 罗勤慧, 朱守荣, 等. 脉冲辐解法研究大环二氧四胺铜(ê ) 配合物歧化超氧离子的动力学[J ]. 高等学校化学学报, 1990, 11(12) : 1322-1326
    69. R iley Dennis P. , L ennon Patrick J. , N eumannW illiam L. , et al. Toward the RationalDesign of SuperoxideD ismutaseM im ics: M echanistic Studies fo r the Elucidation of Substituent Effects on the Catalytic A ctivity ofM acrocyclicM anganese ( II) Comp lexes[J ]. J. Am Chem. Soc, 1997, 119 (28) : 6522-6528
    70. 罗勤慧, 沈孟长, 高伟, 等. 光照法研究超氧化物歧化酶及其模型物化合物与超氧离子的反应动力学[J ]. 高等学校化学学报, 1990, 11(9) : 928-932
    71. 蒋亦芹, 刘宛乔, 廖开清, 等. 采样极谱法测定SOD 模型化合物催化超氧离子歧化反应速率常数[J ]. 高等学校化学学报, 1992, 13 (11) : 1444-1447
    72. 廖展如, 黄艳, 石巨恩, 等. 含铜(ê )、铁(ê )、锰(ê ) 双核模型化合物的超氧化物歧化酶活性[J ]. 高等学校化学学报, 1992, 13 (5) : 697-700
    73. 许申鸿, 杭瑚, 李运平. 超氧化物歧化酶邻苯三酚测活法的研究及改进[J ]. 化学通报, 2001 (8) : 516-519
    74. 罗勤慧, 铜锌超氧化物歧化酶的模拟化学研究[J]. 高等学校化学学报, 1997, 18 (7) : 1012-1018
    75. 王仲礼.从动物血提取SOD[J].肉类研究,2003,1:42-43
    76. 许平,袁原.大蒜超氧化物歧化酶活性测定及某些性质研究[J].渝州大学学报(自然科学报),1997,14(1):43-47
    77. 袁艺,李纯,张小青.桑叶超氧化物歧化酶的提纯和性质研究[J].安徽农业大学学报,1997,24(3):296-301
    78. 赵文芝,辛玉华,魏建民,等.沙棘超氧化物歧化酶提纯的研究[J].内蒙古石油化工,1998,24(2):31-32
    79. 余旭亚,赵声兰,李涛,等.生物工程超氧化物歧化酶的纯化及其部分性质研究[J].精细化工,2002,19(4):234-237
    80. 王岁楼,张平之,张欣,等.酵母SOD形成的生理学研究[J].工业微生物,1997,27(3):21-23
    81. 吴思芳,方尚玲,童振球,等.啤酒废酵母提取SOD研究[J].食品科学,2000,21(3):22-25
    82. 郭建军.Fe-SOD基因的克隆及其表达研究[D].浙江大学硕士学位论文,2004
    83. 施惠娟,范立强,魏东芝,等.人铜锌超氧化物歧化酶cDNA的克隆、测序及表达[J].生物化学与生物物理学报,1999,31(1):16
    84. 施惠娟,贺华君,魏东芝,等.人Mn-SODcDNA的克隆及高效表达[J].生物工程学报,2000,16(l):6
    85. Koizumi J, Yoshida Y, Nakazawa T, et al. Experimental studies of ischemic brain edema. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area [J]. Jpn J Stroke, 1986, 8:1-8
    86. Zea Longa E, Weinsten PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats [J]. Stroke, 1989,20:84-91
    87. 袁琼兰,李瑞祥,羊惠君,张光鹏; 改良的短暂局灶性大鼠脑缺血模型[J]; 四川解剖学杂志; 1998,2; 65-68
    88. 刘亢丁,苏志强,饶明利.实验性局灶脑缺血再灌注动物模型的改进及评价[J].中风与神经疾病杂志,1997,14(2):87-89
    89. 何秋,刘美洁,朴英善,等.栓线法制备大鼠局灶性脑局灶性脑缺血再灌注模型的研究[J].中国医科大学学报,1998,27(4):343
    90. 王宇卉,邵福源,夏春林,卞杰勇; 大鼠局灶性脑缺血/再灌注后单、双链DNA断裂的实验研究 [J];中国临床神经科学; 2002,4:56-58
    91. 李胜; 大鼠大脑中动脉区局灶性脑缺血模型 [J];国外医学.脑血管疾病分册; 1998,1:25-26
    92. Kawamura J, Meyer JS, Terayama Y, Weathers S. Leukoaraiosis correlates with cerebral hypoperfusion in vascular dementia. Stroke. 1991; 22: 609–614
    93. 陈春富,李劲松.线栓法大鼠局灶性脑缺血模型的研究[J].中风与神经疾病杂志,1996,13(1):15
    94. 辛世萌,刘远洪,聂志余.线栓长度、直径及大鼠体重与线栓法大鼠局灶性脑缺血模型关系的研究[J].大连医科大学学报,2000,22(2):105-107
    95. Jacobson M D,Weil M,Raff M C. Programmed cell death in animal development. Cell,1997,88(3):347-354
    96. Thornberry N A,Lazebnik Y. Caspase:enemies within. Science,1998,281(5381):1312-1316
    97. Cohen G M. Caspases:the excutionners of apoptosis. Biochem J,1997,326(1):1-16
    98. Wang S Y,Miura M,Jung Y,et al. Murine caspase-11,an ICE-interacting protease,is essential for the activation of ICE. Cell,1998,92(4):501-509
    99. 童 新,孙志贤. Caspase蛋白酶与细胞凋亡. 生物化学与生物物理进展,1998,25(5):418-421
    100.Adams J M,Cory S. The Bcl-2 protein family:arbiters of cell survival. Science,1998,281(5381):1322-1326
    101.Koseki T,Inohara N,Chen S,et al. ARC,an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA,1998,95(9):5156-5160
    102.Green D R,Reed J C. Mitochondria and apoptosis. Science,1998,281(5381):1309-1312
    103.Mancini M,Nicholson D W,Roy S,et al. The caspasse-3 precursor has a cytosolic and mitochondrial distribution:implications for apoptotic signaling. J Cell Biol,1998,140(6):1485-1495
    104.Jurgensmeier J M,Xie Z H,Deveraux Q,et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA,1998,95(9):4997-5002
    105.Kuwana T,Smith J J,Muzio M,et al. Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J Biol Chem, 1998,273(26):16589-16594
    106.Kothakota S,Azuma T,Reinhard C,et al. Caspase-3 generated fragment of gelsolin:effector of morphological change in apoptosis. Science,1997,278(5336):294-298
    107.Enari M,Sakahira H,Yokoyama H,et al. A caspase-activated Dnase that degrades DNA during apoptosis,and its inhibitor ICAD. Nature,1998,391(6662):43-50
    108.Yang J,Liu X S,Bhalla K,et al. Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked. Science,1997,275(5303):1129-1132
    109.Hengartner M O. Death cycle and Swiss army knives. Nature,1998,391(6666):441-442
    110.Raff M. Cell suicide for beginners. Nature,1998,396(6707):119-122
    111.Deveraux Q L,Takahashi R,Salvesen G S,et al. X-linked IAP is a direct inhibitor of cell-death proteases. Nature,1997,388(6639):300-304
    112.Davidson FF, Steller H. Blocking apoptosis prevents blindness in Drososphila retinal degeneration mutants. Nature,1998,391(6667):587-591
    113.Grogan WM. Guide to flow cytometry methods. New York: Marcel DekkerInc, 1990,1-20
    114.丛玉隆,孙芾,陈宝梁,主编.当代血液分析技术与临床.北京:人民卫生出版社,1997,166-171
    115.袁勤生.超氧化物歧化酶的研究现壮及应用前景[J].中国药学杂志, 1991, 26 (8):456
    116.Schwarze S R Ho A,Vocero2Akbani A,Dowdy S F. In vivo protein transduction: delivery of a biologically active protein into the mouse[J]. Science, 1999,285 :1569
    117.Fawell S. Tat2mediated delivery of heterologous proteins into cells[J]. Proc Natl Acad Sci U.S.A,1994,91:664
    118.Pooga M, Hallbrink M. Cell penetration by transportan[J].FAS EB J, 1998, 12:67
    119.Jin LH, Bahn JH, Eum WS, et al.Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich pep tides intomammalian cells. Free Radic BiolMed, 2001,31(11): 1509-1519
    120.Han K, Jeon MJ, Kim SH, et al. Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopep tides[J].Mol Cells, 2001,12(2): 267-271
    121.Iwai K, Kondo T, Watanabe M, et al. Ceramide increases oxidative damage due to inhibition of catalase by caspase-3-dependent proteolysis in HL-60 cell apoptosis [J].J Biol Chem,2003, 278(11): 981329822
    122.Faherty CJ,Xanthoudakis S,Smeyne RJ.Caspase3 dependent neuronal death in the hippocampus following kainic acid treatment[J]. Molecular Brain Research,1999,70:159
    123.Yao H , Takasawa R , Fukudu K, et al.DNA fragmentation in ischemic core and penumbra in focal cerebral ischemia in rats.Mol Brain Res, 2001, 91:112-118
    124.Martin LJ,Brambrink AM,Lehmann C,et a1.Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatura.Ann Neurol,1997,42 (3):335-348
    125.Aoyama K,Bums DM,Suh SW,et al.Acidosis causes endoplasmie retieulum stress and easpase-12-mediated astrocyte death. J Cereb B1cod Flow Metab,2005,25 (3):358-370

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700