SiO_2负载含氮配体金属铜配合物的制备、表征及催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
均相催化剂虽然活性高但往往难以分离且有腐蚀性,而多相催化剂则易于分离、再生和回收使用。为使甲醇液相氧化羰基化催化剂兼具均相与多相催化剂的优点,首次采用微波固相法,进行了SiO_2负载含氮配体金属铜配合物催化剂的制备、表征及催化性能的研究,并优化了反应条件。
     采用微波固相法制备了纳米SiO_2负载咪唑、2-甲基咪唑、1,10-邻菲啰啉、2-氨基吡啶和3-氰基吡啶多种金属配合物催化剂。采用FT-IR、UV-vis、XPS等分析方法对产物进行了表征,结果表明,配体中氮原子与金属间形成了配位键,负载型配合物已成功制备出。考察了制备条件以及催化反应条件对甲醇液相氧化羰基化反应中催化剂性能的影响,在反应条件为120℃, Po_2=0.8 MPa, Pco=1.6 MPa, 2 h, c(Cu)=0.10 mol/L, n(2-氨基吡啶):n(CuCl_2)=1:1,MI time=10 min时,DMC收率可达7.10 %,远高于纯氯化铜催化剂的2.89 %。并且随着反应压力和时间的增加,DMC收率呈递增的趋势。
     采用偶联剂γ-氯丙基三乙氧基硅烷对纳米SiO_2进行表面改性制备载体“Si-Cl”,优化了改性条件。采用微波固相法制备了载体“Si-Cl”接枝咪唑、2-甲基咪唑、N-甲基咪唑、2-氨基吡啶和哌嗪多种金属配合物催化剂。采用XPS、FT-IR、UV-vis、BET等分析方法对产物进行了结构确定,结果表明,修饰的纳米SiO_2其端基氯基与配体N-H中的氢原子发生了交换,配合物中氮原子与金属间形成了配位键。将制备的催化剂应用于甲醇液相氧化羰基化反应中,在反应条件为120℃, P_(CO):P_(O2)=2:1, 2.4 MPa, 2 h, n(IM):n(CuCl_2)=2:1, c(Cu~(2+))=0.016 mol/L条件下,以咪唑为配体的催化剂Si-IM-CuCl_2的DMC收率可达3.69 %,远高于纯CuCl_2的0.79 %,取得了较好的催化效果。
     纳米SiO_2负载咪唑-CuCl_2配合物催化剂与“Si-Cl”接枝该配合物催化剂在120℃, P_(CO):P_(O2)=2:1, 2.4 MPa, 2 h, n(IM):n(CuCl_2)=2:1, c(Cu~(2+))=0.016 mol/L反应条件下DMC收率分别为3.65 %和3.69 %,催化性能基本相同,然而接枝型咪唑-CuCl_2配合物催化剂在该反应条件下选择性为97.62 %,远高于SiO_2负载咪唑-CuCl_2配合物催化剂的84.67 %,且接枝型配合物催化剂在反应过程中损失量较小,回收利用性较强。
Homogeneous catalyst is environmentally unfriendly for it can’t separate from reaction system easily and has corrosive effect on the reactor material. However, heterogeneous catalyst has some attractive advantages for removing from reaction mixtures easily and can recycle use. This thesis deals with the preparation, characterization and catalytic reactivity in the liquid phase oxidative carbonylation of nano-silica-supported N-CuCl_2 complex catalysts.
     Silica-supported IM, 2-MIM, Phen, 2-AP, 3-CP-CuCl_2 complexes, were synthesized by solid-state microwave irradiation for the first time and then characterized by XPS, FT-IR, UV-vis and so on. The results show that the ligands have been connected with metal ion by covalent bond, and the supported-complexes have been prepared successfully by microwave irradiation. The supported-complexes were used as heterogeneous catalyst in oxidative carbonylation of methanol, the effects of preparation factors and reaction conditions on catalytic activity were studied. Under the reaction condition of 120℃, Po2=0.8 MPa, Pco=1.6 MPa, 2 h, c(CuCl_2)=0.10 mol/L, n(2-AP):n(CuCl_2)=1:1,MI time=10 min, the yield of DMC can reach about 7.10 % which is higher than 2.89 % for pure CuCl_2 under the same reaction conditions, and the yield of DMC increases along with the increasion of reaction pressure and time.
     Nano-Silica was modified byγ-chloropropyltriethoxysilane to synthesis“Si-Cl”, and the reaction conditions were studied. The“Si-Cl”which grafted IM, 2-MIM, N-MIM, 2-AP, PI-CuCl_2 complexes, were prepared by solid-state microwave irradiation for the first time. The resultant materials were characterized by various techniques such as XPS, FT-IR, UV-vis, BET and so on. The results show that the N atom has been connected with Cu2+ by covalent bond, and the grafted-complexes catalysts have been prepared successfully under microwave irradiation. The grafted-complexes were used as heterogeneous catalyst in oxidative carbonylation of methanol, and its catalytic activity was studied. Under the reaction condition of 120℃, P_(CO):P_(O2)=2:1, 2.4 MPa, 2 h, n(IM):n(CuCl_2)=2:1, c(Cu~(2+))=0.016 mol/L, the yield of DMC can reach about 3.69 % which is higher than 0.79 % for pure CuCl_2 under the same reaction conditions.
     With IM-CuCl_2/SiO_2 and Si-IM-CuCl_2 as catalyst for oxidative carbonylation of methanol, under the same reaction condition of 120℃, P_(CO):P_(O2)=2:1, 2.4 MPa, 2 h, n(IM):n(CuCl_2)=2:1, c(Cu~(2+))=0.016 mol/L, the yield of DMC is 3.65 % and 3.69 %, the numerical is similar the same. But the selectivity is 97.62 % with Si-IM-CuCl_2 as catalyst which is higher than 84.67 % with IM-CuCl_2/SiO_2 as catalyst, and“Si-Cl”is connected by chemical bond with complex catalyst, which has less loss and more easily removal from reaction mixtures.
引文
[1]向兴源,冉迎玖,向华,等.碳酸二甲酯生产与应用中的清洁性.天然气化工, 1999 (24): 35
    [2]王公应,王越.新型甲醇氧化羰化合成碳酸二甲酯(DMC)催化剂的研究.精细与专用化学品, 2000(20): 15
    [3]曹发海,应卫勇,房鼎业.活性炭载体对甲醇氧化羰化合成碳酸二甲酯催化活性的影响.化学世界, 2000(4): 195
    [4] Michacl A P, Christopher L M. Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as A Fuel Additive. Energy & Fuels, 1997, 11(1): 2
    [5]李光兴.碳酸二甲酯合成工艺进展.现代化工, 1993, 13(11): 11
    [6] Anastas P T, Warmer J C. Green Chemistry: Theory and Practice, Oxford University
    [7] Mingos D M P, Baghurst D R. Application of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry. Chem Soc Rev, 1991, (21) :1247
    [8]马春宏,王仁章,郭东刚,等.梯形(phen)Zn-O-MoO2晶体的水热合成与表征.东北师大学报, 2006, 38(1): 59
    [9]陈春雪.金属有机配位聚合物的合成、结构与性能研究:[硕士学位论文].北京:北京化工大学, 2003
    [10]王巧玲,李丕高,冯勇,等.新型分子双链配位聚合物的合成、晶体结构与表征,延安大学学报(自然科学版), 2006, 25(3): 46
    [11] S. J. Miller, A. J. Epstein. Organic and Organometallic Molecular Magnetic Materials -Designer Magnets. Angew.Chem.Int.Ed.Engl., 1994, 33(4): 385
    [12]徐筱杰.超分子建筑-从分子到材料.北京:科学技术文献出版社, 2000. 23
    [13]沈昊宇,廖代正.生物体系和模型化合物顺磁离子间的磁相互作用.化学通报,1998, 10: 14
    [14]李伟,方瑞云.邻菲罗啉、间苯二甲酸和Ce3+配合物的合成及晶体培养.广东化工, 2006, 33(162): 17
    [15]谭迪,杨克儿,佟珊玲,等.无溶剂微波法合成meso2苯基四苯并卟啉锌.化学与生物工程, 2006, 23(7): 51
    [16]钱延龙,廖世健.均相催化进展,化学工业出版社, 1990, 6
    [17]齐兴义,王国甲,叶兴凯,等.钴(II)邻菲咯啉、8-羟基喹啉配合物/Y型分子筛的制备、表征及催化苯酚羟化的研究.高等学校化学学报, 1996, 17(6): 39
    [18]齐兴义,王国甲,张伟德,等.铁、钴、铜肽菁/Y型分子筛的制备、表征及催化苯酚羟化的研究. 1995, 16(5): 791
    [19]黄文强,杨新林,李晨曦等.聚苯乙烯磺酸树脂与三氯化铝复合树脂的合成及其对酯化反应的催化性能.离子交换与吸附, 1997, 13(2): 160
    [20] Card R J, Liesner C E, Neckers D C. Poly(styryl)bipyridinepalladium Complexes as Heterogeneous Catalyst for Hydrogenation of Alkenes and Alkynes, J Org Chem, 1979, 44(7): 1095
    [21] Moreau J J E, Michel W C M. The Design of Selective Catalysts from Hybrid Silica-Based Materials. Coord Chem Rev, 1998, 178~180: 1073
    [22] Ballard R L, Tuman S J, Fouquette D J, et al. Effects of an Acid Catalyst on the Inorganic Domain of Inorganic-Organic Hybrid Materials. Chem Mater, 1999, 11: 726
    [23] Jia M J, Seifert A, Thiel W R. Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for the Epoxidation of Cyclooctene. Chem Mater, 2003, 15: 2174
    [24] Lagasi M, Moggi P. Anchoring of Pd on Silica Functionalized with Nitrogen Containing Chelating Groups and Application in Catalysis. J Mol Catal A: Chemical, 2002, 182~183: 61
    [25]杨恒权.有机官能化介孔分子筛固载金属配合物:设计、合成及催化作用:[博士论文].武汉:武汉大学, 2004
    [26]慈云祥.分析化学中的配位化合物.北京:北京大学出版时, 1986
    [27]王延吉,姜瑞霞,赵新强,王淑芳.甲醇气相氧化羰基化合成碳酸二甲酯的催化结构表征.河北工业大学学报, 2000, 29(1): 97
    [28]陈中,杨建设.碳酸二甲酯生产技术综述.精细石油化工. 1998,(6): 45
    [29]黄涛,姚洁.碳酸二甲酯合成及应用.石油与天然气化工, 1998, 27(3): 152
    [30]肖翠玲,王艳花. 21世纪的绿色基础化学原料-碳酸二甲酯.化学进展, 2000(2):40
    [31]方云进,肖文德.绿色工艺的原料-碳酸二甲酯.化学通报, 2000, (9): 19
    [32]方云进,肖文德,陆婉珍.碳酸二甲酯作汽油添加剂的应用研究.现代化工, 1998, 18(4): 20
    [33] Buysch H J, Krimm H, Boehm S. Process for the Preparation of Dimethyl Carbonate. US: 4 335 051 ,1982
    [34] Onda Y, Tsuneki H, Urano Y et al. A Process for Preparing Dialkyl Carbonates. EP : 0893 428 ,1999
    [35] Romano U, Tesel R, Maurl M M, et al. Synthesis of Dimethyl Carbonate from Methonal, Carbon Monoxide and Oxygen Catalyzed by Copper Compounds. Ind Eng Chem Prod Res Dev, 1980,19(3) : 396
    [36]赵天生,韩怡卓,孙予罕.近临界条件下合成碳酸二甲酯.石油化工, 1998, 27(6): 457
    [37]苏跃华,吴晓华,姜玄珍.甲醇气相氧化羰化合成碳酸二甲酯.高等化学工程学报, 1999, 13(6):564
    [38] Man Seok Han, Byung Gwon Lee, Insuk Suh, et al. Synthesis of Dimethyl Carbonate by Vapor Phase Oxidative Carbonylation of Methanol over Cu-based Catalysts. J. Mol. Catal. A: Chemical, 1997, 170: 225
    [39]孙予罕,韩怡卓,赵天生.一种从甲醇和二氧化碳直接合成碳酸二甲酯的方法. CN :1 242 356, 2000
    [40] Fangd Y, Cao F H. Intrinsic Kinetics of Direct Oxidative Carbonylation of Vapour Phase Methanol to Dimethyl Carbonate over Cu-based Catalysts. Chemical Engineering Journal, 2000, 78: 237
    [41] King S T. Reaction Mechanism of Oxidative Carbonylation of Methanol to Dimethyl Carbonate in Cu–Yzeolite. J Catal, 1996, 161: 2530
    [42]曹发海,应卫勇,房鼎业等.气相直接法甲醇氧化羰化合成碳酸二甲酯催化剂的研究.化学反应工程与工艺, 1997, 13(4): 437
    [43] Li Z, Xie K C, Slade R C T. High Selective Catalyst for Oxidative Carbonylation of Methanol to Dimethyl Carbonate. Appl Catal A: General, 2001, 205: 85
    [44] Chin C S, Shin D, Won G, et al. The Effects of Catalyst Composition on the Catalytic Production of Dimethyl Carbonate. J Mol Catal A: 2000, 160: 315
    [45] Sato Y, Kagotani M, Yamamoto T, et al. Novel Effective poly (2, 2’-Bipyridine-5,5’-diyl)2CuCl2 Catalyst for Synthesis of Dimethyl Carbonate (DMC) by Oxidative Carbonylation of Methanol. Appl Catal A: General, 1999, 185: 219
    [46] Sato Y, Kagotani M, Souma Y. A New Type of Support“Bipyridine Containing Aromatic Polyamide”to CuCl2 for Synthesis of Dimethyl Carbonate (DMC) by Oxidative Carbonylation of Methanol. J Mol Catal A: Chemical, 2000, 151: 79
    [47] Yang P, Cao Y, Hu J C, et al. Mesoporous Bimetallic PdCl2-CuCl2 Catalysts for Dimethyl Carbonate Synthesis by Vapor Phase Oxidative Carbonylation of Methanol. Appl Catal A: General, 2003, 241: 363
    [48] Raab V, Merz M, Sundermeyer J. Ligand Effects in the Copper Catalyzed Aerobic Oxidative Carbonylation of Methanol to Dimethyl Carbonate(DMC). J Mol Catal A:Chemical, 2001, 175 : 51
    [49]莫婉玲,熊辉,黄荣生等. Schiff碱助剂对CuCl催化性能的影响.华中科技大学学报, 2002, 30(7): 101
    [50]莫婉玲,李光兴,朱永强.咪唑类化合物-CuCl络合催化剂在甲醇氧化羰基化反应中的催化性能.燃料化学学报, 2003, 31(2): 124
    [51]李亚玲,赵继全,郑严等.溶胶-凝胶包埋吡啶羧酸钴及其对甲醇氧化羰化反应的催化性能.催化学报, 2002, 23(5): 395
    [52] Han M S, Lee B G, Suh I, et al. Synthesis of Dimethyl Carbonate by Vapor Phase Oxidative Carbonylation of Methanol over Cu-based Catalysts. J Mol Catal A:Chem, 2001, 170: 225
    [53] Mingos D M P, Baghurst D R. Application of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry. Chem Soc Rev, 1991, (21) : 1247
    [54] Bond G, Moyes R B, Whan D A. Catal. Today , 1993 ,(17) :427
    [55] Zagrouba F, Roques M A, Hung T S. J .Ind. Chem., 1993, (21) :149
    [56]樊兴君,尤进茂,谭干祖等.微波促进有机化学反应研究进展.化学进展, 1998, 10 (3) : 285
    [57] Lingaiah N, Sai Prasad P S , Kanta Rao P, et al . Studies on Magnesia Supported Mono and bimetallic Pd-Fe Catalysts Prepared by Microwave Irradiation Method. Applied Catalysis, 2001, 213 : 189
    [58] Lingaiah N, Sai Prasad P S, Kanta Rao P, et al . Structure and Activity of Microwave Irradiated Silica Supported Pd-Fe Bimetallic Catalysts in the Hydrodechlorination of Chloroben-zene. Catalysis, 2002, (3) : 391
    [59]赵杉林,张扬建,孙桂大等.钛硅沸石分子筛TiMCM-41的微波合成与表征.催化学报, 1999, 20 (1) :932
    [60] Mc Mahon K L ,Suib S L. Johnson B G. et al. Dispersed Cobalt Containing Zeolite Fischer Tropsch catclysts. J . Catal, 1987, 106: 4725
    [61]银董红,尹笃林.微波辐射促进ZnCl2与Y分子筛固相反应的研究.物理化学学报, 1998, 14 (5) : 488
    [62]单薇.纳米SiO2粒子的表面改性及聚丁二烯/SiO2纳米复合材料的制备: [硕士学位论文].大连:大连理工工大学, 2006
    [63]张垄.不同载体负载Mn(Salen)催化剂的微波固相法制备及其在苯乙烯环氧化反应中催化性能的比较: [硕士学位论文].湖南:湖南师范大学, 2004
    [64]叶孝勇,陆进,李林.微波加热在有机反应中的应用.贵阳学院学报(自然科学版), 2006 1(1): 42
    [65]徐玉宏.微波技术在分析化学中的应用.理性检验-化学分册, 2006, 42: 960
    [66] Occelli M L, Robson H. Synthesis of Microporous Materials. NewYork: vanNostrandReinhold, 1992: 507
    [67]杨伯伦,贺拥军.微波加热在化学反应中的应用进展.现代化工, 2001, 21(4):8
    [68]李巧玲,李琳,蔡妙颜等.微波辐射在固液浸取中的应用.现代化工, 2000, 20(8):60
    [69] Tu W X, Liu H F. Rapid Synthesis of Nanoscale Colloidal Metal Clusters by Microwave Irradiation. Journal of Materials Chemistry, 2000,10(9):2207
    [70]杨霞,王胜平,马新宾.微波技术在催化剂制备中的应用.化学通报, 2004 (9): 641
    [71]邵红,霍超.微波技术在催化剂制备领域的应用研究.化工技术与开发, 2005, 35(11): 1
    [72]李永红,沈玲,李跃明.微波辐射在无溶剂有机合成中的应用.化工技术与开发, 2006, 35(6): 13
    [73] Balalair S, Nemati N. Ammonium Acetate-basic Alumina Catalyzed Knoevenagel Condensation under Microwave Irradiation Solvent-free Condition. Synth. Conmmon, 2000, 30 (5) : 869
    [74]银董红,尹笃林,伏再辉,李谦和.微波固相法制备ZnCl2/NaY催化剂.催化学报, 1999 20(4): 419
    [75] Raab V, Merz M, Sundermeyer J. Ligand Effects in the Copper Catalyzed Aerobic Oxidative Carbonylation of Methanol to Dimethyl Carbonate(DMC). J Mol Catal A Chemical, 2001, 175 : 51
    [76]赵天生,韩怡卓,孙予罕.碳酸二甲酯合成方法的研究进展.石油化工, 1998, 27(6): 457
    [77] J.A.迪安兰氏化学手册.北京:科学出版社, 2002
    [78]霍涌前.介孔材料MCM-41的过渡金属锰、铁配合物化学修饰与功能化研究: [硕士学位论文].陕西:西北大学, 2003
    [79]刘海涛.聚苯乙烯负载邻菲咯啉/CuCl2配合物的合成及其对羰化反应催化性能研究: [硕士学位论文].武汉:华中科技大学, 2005
    [80]李忠,周丽,谢克昌.甲醇气相氧化羰化合成碳酸二甲酯热力学探讨.天然气化工, 2003, 28(1): 45
    [81]杨洋,刘晓勤,刘定华,姚虎卿.新型铜络合催化剂用于羰基合成碳酸二甲酯的工艺过程.南京工业大学学报, 2006, 28(1)
    [82]罗颖,容敏智,章明秋.纳米粒子表面改性的研究进展.宇航材料工艺, 2005, (5) : 5
    [83]李玉平,王亚强,贺卫卫等.纳米SiO2表面接枝及其在原位乳液聚合体系中的分散稳定性.湖南大学学报(自然科学版), 2006, 33(3): 81
    [84]潘春跃,巢猛,王小花,戴潇燕.偶联剂原位改性SiO2提高PEO/LiClO/SiO2电导率应用化学, 2006,23(6): 663
    [85]欧阳兆辉,伍林,李孔标等.气相法改性纳米二氧化硅表面的研究.化工进展, 2005, 24(11): 1266
    [86]王秀华,翁履谦,王玲.硅烷偶联剂在有机-无机杂化纳米复合材料中的应用.有机硅材料, 2004, 18 (3): 30
    [87]王美英,佘庆彦,刘国栋,瞿雄伟.硅烷偶联剂表面接枝包覆纳米SiO2的研究.高分子材料科学与工程, 2005, 21(6): 228
    [88]蔡明中,胡文英.二氧化硅负载胂钯(0)配合物催化酰氯和芳基碘与四苯硼化钠的苯基化反应.有机化学, 2005, 25(6): 665
    [89]潘懋.滴定法测定气相法白炭黑比表面积的讨论.化学世界, 1993, 4: 380
    [90] Tse M F. BIMS/Filler Interactions L Effects of Filler Structure. J Appl Polym Sci, 2006, 100, 4943
    [91]李凤艳,赵天波,汪燮卿等.红外光谱法研究硅胶表面固载硅氧烷的键合反应.石油化工高等学校学报, 2003(2): 21
    [92] Michael W D, Jan S, Lorraine F F et al. Reacions of a Trifunctional Silane Coupling Agent in the Presence of Colloidal Silica Sols in Polar Media. Journal of Colloid and Interface Science, 1999, 219 : 351
    [93]欧阳兆辉.纳米二氧化硅的改性及其在丁基橡胶中应用研究: [硕士学位论文].武汉:武汉科技大学, 2005
    [94]杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉工业大学出版社, 2000, 280
    [95]钱晓静,刘孝恒,陆路德,陈文杰,汪信.微波辐射下纳米二氧化硅接枝正辛醇的表面改性.合成化学, 2005, 13(1): 80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700