由苯乙烯、CO_2直接制备苯乙烯环状碳酸酯的催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳作为最大的一碳资源,也是一种主要温室气体,其合理利用具有重要理论和现实意义。回收再利用的二氧化碳可用于生产基本化工原料及具有应用价值的化工产品,如碳酸酯、脲以及生物可降解高分子材料。因此,化学固定CO2的反应是近年来研究的热门课题之一。
     本文第二章我们采用水热合成方法制备了Co-MCM-41,耦合Bu_4NBr助催化剂,催化由苯乙烯、CO_2直接合成苯乙烯环状碳酸酯。从影响反应产物选择性和活性的因素来优化反应的合成工艺,在最优化的条件下,80°C,4MPa的CO_2压力下,反应7h,碳酸酯的收率达到46.1%。
     第三章我们采用离子交换的方法制备担载在强碱性阴离子交换树脂D201上的多相催化剂Au/D201,研究了其在苯乙烯环氧化反应;CO2加成环氧苯乙烷反应;由苯乙烯一锅生成苯乙烯环状碳酸酯的反应中的催化性能。由苯乙烯、CO2“一锅”生成苯乙烯环状碳酸酯的反应路径与传统的以环氧化物出发经CO2环加成制备碳酸酯的路线相比,合成过程大大简单,避免了事先合成和分离中间体环氧苯乙烷的步骤,同时原料烯烃和环氧化物相比,不仅来源丰富,而且价格低廉,毒性小。多相催化剂Au/D201对苯乙烯、CO_2“一锅两步法”直接合成苯乙烯环状碳酸酯具有较好的催化活性,第一步苯乙烯环氧化反应在80℃反应3小时后通入CO2使体系的压力达到4MPa,然后升温至150℃,再反应4小时后碳酸酯的产率达到50.6%。
Carbon dioxide is one of the most abundant wastes produced by human activities and industrial emission. In order to prevent risky reinforcement of the greenhouse effect, the accumulation of CO2 in the atmosphere should be controlled by removing it from industrial effluents. On the other hand, CO2 is recognized as a safe and cheap C1 building block. Under these circumstances, the conversion of carbon dioxide to industrially useful compounds has recently attracted much attention in view of the so-called“sustainable society”and“green chemistry”concepts. Up to date, one of the most effective methodologies is the synthesis of five-membered cyclic carbonate via the coupling of CO2 with epoxides and, in this process, one carbon atom and two oxygen atoms can be incorporated without forming any byproducts with high atom efficiency. Moreover, cyclic carbonates have found extensive use as excellent aprotic polar solvents, precursors for polycarbonates and other polymeric materials, electrolytic element of lithium secondary batteries and chemical ingredients for pharmaceutical/fine chemicals like dialkyl carbonates, glycols, carbomates, pyrimidines, purines, etc.
     After Inoue et al first reported the cyclic carbonate could be prepared by cycloaddition of CO2 to epoxides in 1969, numerous catalysts such as alkali metal halides, organic bases, metal oxides, zeolites, smectites, and metal complexes have been investigated. However, activity, stability, and recovery of the catalysts still remain to be improved. Besides the direct coupling of CO2 with epoxides to cyclic carbonate, alternative synthetic route from CO2 is oxidative carboxylation of olefin, which couples two sequential reactions of epoxidation of olefin and CO2 cycloaddition to epoxides formed. Synthesis of cyclic carbonate from olefin and CO2 gives a simple route that avoids the preliminary synthesis and isolation of epoxides. Furthermore, easily available and low-priced chemicals of olefins may be used to produce valuable chemicals as compared with epoxides as substrates. This direct synthesis route for cyclic carbonate from olefin is not only energy saving but also simple and economical. Despite the usefulness of this reaction, little efforts have been given to it so far, in contrast to extensive study on the coupling reaction of CO2 and epoxides.
     Herein, we synthesized highly effective Co-MCM-41 catalyst which was very active for the epoxidation of styrene, and then supported gold catalyst was coupled withBu4NBr which catalyzed CO2 cycloaddition reaction. It was shown the two components, Co-MCM-41and Bu4NBr efficiently catalyzed the direct oxidative carboxylation of styrene to styrene carbonate. The influence of factors such as catalyst pretreatments, Co loadings, kinds of oxidants and CO2 pressure are investigated in detail. An improved styrene carbonate yield (46%) was obtained under mild reaction conditions of 80 oC, 7 h, and 4 MPa CO2 pressure. To overcome the complexity of catalyst system, a heterogeneous catalyst Au supported basic resin D201 was synthesized, denoted as Au/ D201. Styrene carbonate was obtained at 50.6% by“one-pot two-steps”route. The catalyst is simple and easily recyclable, which is important for the industrial application.
引文
[1] Anastas P T., Warner J C., Green Chemistry: Theory and Practice, New York: Oxford University Press, Inc, 1998.
    [2]李群,代斌.绿色化学原理与绿色产品设计.北京:化学工业出版社,2008.
    [3]李业梅,夏明俊.绿色化学及其研究进展.
    [4]唐有祺.展望今后化学之发展.化学通报,1998(6).
    [5]闵恩泽,陈家镛等.绿色化学与技术一推进化工生产可持续发展的途径.中国科学院院士咨询报告,总[1998]COO3(化06号).
    [6] Rosenzweig C., Karoly D., Vicarelli M., et al., Attributing physical and biological impacrs to anthropogenic climate change, Nature, 2008, (453): 353-357.
    [7] Saunders M.A., Lea A.S., Large contribution of sea surface warming to recent in Atlantic hurricane activity, Nature, 2008, (451): 557-560.
    [8]倪伟,许群.中国第十届科协年会第18分场:超临界流体技术在绿色化学和新材料领域研究进展.郑州:郑州大学材料科学与工程学院,165-184.
    [9]陆国维.国内外二氧化碳市场和应用前景.酿酒科技.2004,122(2):84-86.
    [10]杜亚,王金泉,田杰生,等.超临界二氧化碳中气体参与的有机化学反应.精细化工中间体.2005,35(1):1-7.
    [11]刘恩莉.二氧化碳应用新进展.科技进展.2006,(11):14-17.
    [12]孔德林,蔡飞,何良年.以可再生资源二氧化碳为原料合成环状碳酸酯.精细化工中间体.2005,35(6):1-6.
    [13] Patil N S., Uphade B S., Jana P S K., Epoxidation of styrene by anhydrous t-butyl hydroperoxide over reusable gold supported on MgO and other alkaline earth oxides, J. Catal, 2004, 223(1): 236-239.
    [14] Laura Espinal., Steven L Suib., James F Rusling., Electrochemical Catalysis of Styrene Epoxidation with Films of MnO2 Nanoparticles and H2O2, J.Am.Chem.Soc, 2004, 126(24): 7676-7682.
    [15] Kirm Ilham., Medina Francesc., Rodríguez Xavier., et al., Epoxidation of styrene with hydrogen peroxide using hydrotalcites as heterogeneous catalysts, Appl.Catal.A: General, 2004, 272: 175-185.
    [16]胡健平,储伟,许中强等.SO42-/ZrO2- TiO 2- SiO2固体酸催化苯乙烯选择氧化反应的研究.合成化学.2000,8(4):326-330.
    [17]徐成华.Ti-ZSM-5分子筛的制备、表征及其催化烯键烃选择氧化和苯酚羟基化的研究.成都:中图科学院成都有机化学研究所,2001.
    [18]徐成华,吕绍杰,邱发礼.气固相合成Ti-ZSM-5催化苯乙烯环氧化对映选择性的研究化学学报.2000,58(11):1322-1326.
    [19] Yadav G D., Pujari A A., Epoxidation of Styrene to Styrene Oxide: Synergism of Heteropoly Acid and Phase-Transfer Catalyst under Ishii-Venturello Mechanism, Org.Process Res.Develop, 2000, 4: 88-93.
    [20] Meng X J., Sun Z H., Wang R W., et al., Catalytic epoxidation of styrene by molecular oxygen over a novel catalyst of copper hydroxyphosphate Cu2(OH)PO4, Catal. Lett, 2001, 76: 105-109.
    [21] Santra A K., Cowell J J., Lambert RM., Ultra-selective epoxidation of styrene on pure Cu{111}and the effects of Cs promotion, Catal. Lett, 2000, 67: 87-91.
    [22]《化工百科全书》编辑委员会.化工百科全书(7).北京:化学工业出版社,1994:546.
    [23] Nakamura Arata,JP76138635.
    [24] Guilmet E., Meunier B., A new catalytic route for the epoxidation of styrene with sodium hypochlorite activated by transition metal complexes, Tetrahedron Lett, 1980, 21(46): 4449-4450.
    [25] Hayrettin T., Warren T. F., Epoxidation of styrene with aqueous hypochlorite catalyzed by a manganese(III) porphyrin bound to colloidal anion-exchange particles, J. Org.Chem, 1991, 56: 1253-1260.
    [26] Yu X Q., Lan Z W., et al., Epoxidation of styrene catalyzed by polymer-supported metalloporphyrins, Chinese Chem. Lett, 1995, 6(2): 149.
    [27] Kochev D. O., Solomonov B. N., Lanthanide Porphyrins as Styrene Oxidation Catalysts, Mendeleev Commun, 1991, 4: 117.
    [28] Yoon H., Burrows C. J., Catalysis of alkene oxidation by nickel salen complexes using sodium hypochlorite under phase-transfer conditions, J. Am. Chem. Soc, 1988, 110: 4087-4089.
    [29] O'connor K. J., Wey S. J., Cynthia J. B., Alkene aziridination and epoxidation catalyzed by chiral metal salen complexes, Tetrahedron Lett, 1992, 33(8): 1001-1004.
    [30] Paluchev M., Pospisil P. J., Zhang W., Jacobsen E. N., Highly Enantioselective, Low-Temperature Epoxidation of Styrene, J. Am. Chem. Soc, 1994, 116(20): 9333.
    [31] Xu Y J., Xi Z W., Zhang M J., Liu W Z.,水溶性镍(Ⅱ)络合物催化苯乙烯环氧化催化学报,1995,16: 49.
    [32] Zeev Gross., Santiago Ini., et al., First utilization of a homochiral ruthenium porphyrin as enantioselective epxidation catalyst, Tatrahedron Lett, 1996, 40(37): 7325-7326.
    [33]舒火明,谷淑珍等.细胞色素P-450模拟体系的活性中间体-氧(V)四苯基卟啉配合物的分离、表征和氧化反应.化学学报.1994,52:468-473.
    [34] Terrence J., Collins., Shigeko Ozaki., et al., Catalyzed vapor phase hydrocyanation of diolefinic compounds, J. Chem. Soc. Commun, 1987, (11): 803-804.
    [35] Aoyama H., Oshima O., JP871387, 1987.
    [36] Choudhary V. R., Patil N. S., Bhargava S. K., Epoxidation of styrene by anhydrous H2O2 over TS-1 and Al2O3 catalysts: effect of reaction water, poisoning of acid sites and presence of base in the reaction mixture, Catal. Lett, 2003, 89(1/2): 55-62.
    [37] Patil N. S., Uphade B. S., Jana P., Sonawane R. S., Bhargava S. K., Choudhary V. R., Epoxidation of styrene by anhydrous t-butyl hydroperoxide over Au/TiO2 catalysts, Catal. Lett, 2004, 94(1/2): 89-93.
    [38] Patil N.S., Uphade B.S., Jana P., McCulloh D. G., Bhargava S. K., Choudhary V. R., Styrene epoxidation over gold supported on different transition metal oxides prepared by homogeneous deposition–precipitation, Catal Commun, 2004, 5(11): 681-681.
    [39] Choudhary V. R., Jha Rani., Chaudhari Nitin K., Jana Prabhas., Supported copper oxide as a highly active/selective catalyst for the epoxidation of styrene by TBHP to styrene oxide, Catal Commun, 2007, 8(10): 1556-1560.
    [40] Masami Inoue., Eiichi Nakayma., et al., Bull. Chem. Soc. Jpn, 1991,64(11): 3442-3444.
    [41] Inoue M., Sayama M., Tanioku K., Itoi Y., JP96295681, 1996.
    [42] Dirk De Vos., Thomas Bein., Highly selective epoxidation of alkenes and styrenes with H O and manganese complexes of the cyclic triamine 1,4,7-trimethyl-1,4,7-triazacyclononane,2 2Chem. Commun, 1996, 8: 917.
    [43] Ahmad M. Al-Ajlouni., James H. Espenson., Epoxidation of Styrenes by Hydrogen Peroxide As Catalyzed by Methylrhenium Trioxide, J. Am. Chem. Soc, 1995, 117: 9243-9250.
    [44]肖发友,游劲松,余孝其,虞小华,蓝仲薇.化学研究与应用.1996,8(2): 270.
    [45]钟顺和.催化科学与工程新进展——第十一届国际催化大会简介.化工进展.1997,3,49.
    [46] Notari B., Synthesis and Catalytic Properties of Titanium Containing Zeolites, Stud.Surf. Sci. Catal, 1988, 37: 413-425.
    [47] Reddy J. S., Kumar R., Ramasamy P., Titanium silicalite-2: Synthesis, characterization and catalytic properties, App1. Catal, 1990, 58, Ll-L4.
    [48] Huynrechts D. R. C., Bruycker L. D., Jacobs P. A., Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite, Nature, 1990, 345: 240-242.
    [49]汤清虎,赵培真,张庆红,王野.Co-MCM-41的表征及其催化苯乙烯环氧化性能.催化学报.2005,26(11):1031-1036.
    [50] Darensbourg D. J., Holtcamp M.W., Catalysts for the reactions of epoxides and carbon dioxide, Coord. Chem. Rev, 1996, 153: 155-174.
    [51] Shaikh A G., Sivaram S., Catalysts for the reactions of epoxides and carbon dioxide, Organic Carbonates. Chem Rev, 1996, 96 (3): 951-976.
    [52] Clements J H., Reactive Applications of Cyclic Alkylene Carbonates, Ind Eng Chem Res, 2003, 42 (4): 663-674.
    [53] Sun J M., Fujita Shinichiro., AraiMasahiko., Development in the Green Synthesis of Cyclic Carbonate from Carbon Dioxide Using Ionic Liquids, J Organomet Chem, 2005, 690 (15): 3490-3497.
    [54] Du Y., Wang J Q., Chen Jianyu., et al., A Poly(Ethylene Gly-col)-Supported Quaternary Ammonium Salt for Highly Efficient and Environmentally Friendly Chemical Fixation of CO2 with Epoxides Under Supercritical Conditions, Tetrahedron Lett, 2006, 47 (8): 1271-1275.
    [55] Paddock R L., Nguyen S T., Chemical CO2 Fixation: Cr(Ⅲ) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides, J Am Chem Soc, 2001, 123 (46): 11498-11499.
    [56] Lu X B., Zhang Y J., Liang B., et al., Chemical Fixation of Carbon Dioxide to Cyclic Carbonates Under Extremely Mild Conditions with Highly Active Bifunctional Catalysts, J Mol Catal A: Chem, 2004, 210(1-2): 31-34.
    [57] Kawanami H., Sasaki A., Matsui K., et al., A Rapid and Effective Synthesis of Propylene Carbonate Using a Supercritical CO2 Ionic Liquid System, Chem Commun, 2003, 7: 896.
    [58] Kim H S., Kim J J., Kim H., et al., Imidazolium Zinc Tetrahalide-Catalyzed Coupling Reaction of CO2 and Ethylene Oxide or Propylene Oxide, J Catal, 2003, 220(1): 44-46.
    [59] Bhanage B M., Fujita S., Ikushima Y., et al., Synthesis of Dimethyl Carbonate and Glycols from Carbon Dioxide, Epoxides, and Methanol Using Heterogeneous Basic Metal Oxide Catalysts with High Activity and Selectivity, Appl Catal: A, 2001, 219(1-2): 259-266.
    [60] Lu X B., Wang H., He R., Aluminum Phthalocyanine Complex Covalently Bonded to MCM-41 Silica as Heterogeneous Catalyst for the Synthesis of Cyclic Carbonates, J Mol Catal A: Chem, 2002, 186(1-2): 33-42.
    [61] Du Y., Cai F., Kong D L., et al., Organic Solvent Free Process for the Synthesis of Propylene Carbonate from Supercritical Carbon Dioxide and Propylene Oxide Catalyzed by Insoluble Ion Exchange Resins, Green Chem, 2005, 7(7): 518-523.
    [62] Yano T., Matsui H., Koike T., et al., Magnesium Oxide Catalysed Reaction of Carbon Dioxide with an Epoxide with Retention of Stereochemistry, Chem Commum, 1997: 1129-1130.
    [63] Bhanage B M., Fujita S., Ikushima Y., et al., Synthesis of Dimethyl Carbonate and Glycols from Carbon Dioxide, Epoxides, and Methanol Using Heterogeneous Basic Metal Oxide Catalysts with High A ctivity and Selectivity, Appl Catal A, 2001, 219(1-2): 259-266.
    [64] Doskocil E J., Bordawekar S V., Kaye B G., et al., UV-V is Spectros copy of Iodine Adsorbed on Alkali Metal Modified Zeolite Catalysts for Addition of Carbon Dioxide to Ethylene Oxide, J Phys Chem B, 1999, 103(30): 6277-6282.
    [65] Davis R J., Doskoci E J., Bordawekar S., Structure/Function Relationships for Basic Zeolite Catalysts Containing Occluded Alkali Species, Catal Today, 2000, 62(2-3): 241-247.
    [66] Tu M., Davis R J., Cycloaddition of CO2 to Epoxides over Solid Base Catalysts, J Catal, 2001, 199(1): 85-91.
    [67]季东锋,吕小兵,何仁等.碱性配体对氯铝酞菁催化CO2与环氧烷烃合成烷撑碳酸酯的促进作用.催化学报.1999,20(6):675-678.
    [68] Li F W., Xia C G., Xu L W., et al., A Novel and Effective Ni Complex Catalyst System for the Coupling Reactions of Carbon Dioxide and Epoxides, Chem Comum, 2003: 2042-2043.
    [69]张英菊,梁斌,潘玉珍等.四叔丁基金属酞菁催化活化CO2与环氧丙烷的环加成反应.催化学报,2003,24(10):765-768.
    [70] Barbarini A., Maggi R., Mazzacani A., et al., Cycloaddition of CO2 to Epoxides over Both Homogeneous and Silica Supported Guanidine Catalysts, Tetrahedron Lett, 2003, 44(14): 2931-2934.
    [71] Kihara N., Hara N., Endo T., Catalytic Activity of Various Salts in the Reaction of 2,3-Epoxypropyl Phenyl Ether and Carbon Dioxide Under Atmospheric Pressure, J Org Chem, 1993, 58(23): 6198-6202.
    [72] Kasuga K., Kabata N., The Fixation of Carbon Dioxide with 1,2-Epoxypropane Catalyzed by Alkali-Metal Halide in the Presence of a Crown Ether, Inorg Chem Acta, 1997, 257(2): 277-278.
    [73] Zhu H., Chen L B., Jiang Y Y., Synthesis of Propylene Carbonate and Some Dialkyl Carbonates in the Presence of Bifunctional Catalyst Compositions, Polym Adv Technol, 1996, 7(8): 701-703.
    [74] Huang J W., Shi M., Chemical Fixation of Carbon Dioxide by NaI/PPh3/PhOH, J Org Chem, 2003, 68(17): 6705-6709.
    [75]赵天生,韩怡卓,孙予罕等.金属氧化物负载的KI对合成碳酸丙烯酯的催化性能.石油化工.2000, 29(2):101-105.
    [76]朱宏,陈立班,江英彦.离子交换树脂催化合成碳酸亚丙酯.现代化工.1996, 16(4):26-28.
    [77]王长凤,夏勇德,孙文利等.高聚物固载化含氮和含膦配体络合催化剂的制备和催化活性.离子交换与吸附.1998, 14(2):104-109.
    [78] Yasuda Hiroyuki., He L N., Sakakura Toshiyasu., Cyclic Carbonate Synthesis from Supercritical Carbon Dioxide and Epoxide over Lanthanide Oxychloride, J Catal, 2002, 209(2): 547-550.
    [79] Yasuda Hiroyuki., He L N., Sakakura Toshiyasu., Efficient Synthesis of Cyclic Carbonate from Carbon Dioxide Catalyzed by Polyoxometalate: The Remarkable Effects of MetalSubstitution, J Catal, 2005, 233(1): 119-122.
    [80] Sankar M., Tarte N H., Manikandan P., Effective Catalytic System of Zinc Substituted Polyoxometalate for Cycloaddition of CO2 to Epoxides, Appl Catal, A, 2004, 276(1-2): 217-222.
    [81] MoriK., Mitani Y., Hara T., et al., A Single Site Hydroxyapatite Bound Zinc Catalyst for Highly Efficient Chemical Fixation of Carbon Dioxide with Epoxides, Chem Commum, 2005: 3331-3333.
    [82]代威力,尹双凤,李文生,周小平.CO2与环氧化物多相催化合成环状碳酸酯的研究进展.石油化工.2007,36(1):92-99.
    [83] Darensbourg D. J., Holtcamp M. W., Catalysts for the reactions of epoxides and carbon dioxide, Coord. Chem. Rev, 1996, 153: 155-174.
    [84] Weissermel K., Arpe H., Eds. Industrial Organic Chemistry, New York: Wiley-VCH, Weinheim, 1997.
    [85] Li F W., Xiao L F., Xia C G.,溴化锌-离子液体复合催化体系高效催化合成环状碳酸酯,Chem J Chinese Universities, 2005, 26(2): 343-345.
    [86] Wang C G., Jiang C J., Hu C W., Dawson结构杂多酸盐催化合成碳酸丙烯酯, Chem J Chinese Universities, 2004, 25(7): 1325-1327.
    [87] Aresta M., Dibenedetto A., Carbon dioxide as building block for the synthesis of organic carbonates: Behavior of homogeneous and heterogeneous catalysts in the oxidative carboxylation of olefins, J. Mol. Catal. A: Chem, 2002, 182/183: 399-409.
    [88] Aresta M., Dibenedetto A., Tommasi I., Direct synthesis of organic carbonates by oxidative carboxylation of olefins catalyzed by metal oxides: developing green chemistry based on carbon dioxide, Appl. Organomet. Chem, 2000, 14: 799-802.
    [89] Areata M., Quaranta E., Ciccarese A., Direct synthesis of 1,3-benzodioxol-2-one from styrene, dioxygen and carbon dioxide promoted by Rh(I), J. Mol. Catal, 1987, 41: 355-359.
    [90] Srivastava R., SrinivasD., Ratnasamy P., Synthesis of polycarbonate precursors over titanosilicate molecular sieves, Catal. Lett, 2003, 91(1/2): 133-139.
    [91] Sun J. M., Fujita S., Bhanage B. M., Arai M., One-pot synthesis of styrene carbonate from styrene in tetrabutylammonium bromide, Catal. Today, 2004, 383: 93.
    [92] Sun J. M., Fujita S., Bhanage B. M., Arai M., Direct oxidative carboxylation of styrene to styrene carbonate in the presence of ionic liquids, Catal. Commun, 2004, 5: 83.
    [93] Sun J. M., Fujita S., Zhao F Y., Hasegawa M., Arai M., A direct synthesis of styrene carbonate from styrene with the Au/SiO2–ZnBr2/Bu4NBr catalyst system, J. Catal, 2005, 230: 398-405.
    [94]孙建敏,王亚丽,屈学俭,蒋大振,肖丰收,藤田进一郎,荒井正彦.溴化四丁铵催化苯乙烯一步合成苯乙烯环状碳酸酯.高等学校化学学报.2006,27(8): 1522-1525.
    [1] Patil N S., Uphade B S., Jana P S K., Epoxidation of styrene by anhydrous t-butyl hydroperoxide over reusable gold supported on MgO and other alkaline earth oxides, J. Catal, 2004, 223(1): 236-239.
    [2] Laura Espinal., Steven L Suib., James F Rusling., Electrochemical Catalysis of Styrene Epoxidation with Films of MnO2 Nanoparticles and H2O2, J.Am.Chem.Soc, 2004, 126(24): 7676-7682.
    [3] Kirm Ilham., Medina Francesc., Rodríguez Xavier., et al., Epoxidation of styrene with hydrogen peroxide using hydrotalcites as heterogeneous catalysts, Appl.Catal.A: General, 2004, 272: 175-185.
    [4]胡健平,储伟,许中强等.SO42-/ZrO2-TiO2- SiO2固体酸催化苯乙烯选择氧化反应的研究.合成化学.2000,8(4):326-330.
    [5]徐成华.成都:中图科学院成都有机化学研究所,2001.
    [6]徐成华,吕绍杰,邱发礼.Ti-ZSM-5分子筛的制备、表征及其催化烯键烃选择氧化和苯酚羟基化的研究.化学学报,2000,58(11): 1322-1326.
    [7] Yadav G D., Pujari A A., Epoxidation of Styrene to Styrene Oxide: Synergism of Heteropoly Acid and Phase-Transfer Catalyst under Ishii-Venturello Mechanism, Org.Process Res.Develop, 2000, 4: 88-93.
    [8] Ilham Kirm., Francesc Medina., Xavier Rodr′?guez., Epoxidation of styrene with hydrogen peroxide using hydrotalcites as heterogeneous catalysts., Appl. Catal., 2004, 272: 175-185.
    [9] Meng X J., Sun Z H., Wang R W., et al., Catalytic epoxidation of styrene by molecular oxygen over a novel catalyst of copper hydroxyphosphate Cu2(OH)PO4, Catal. Lett, 2001, 76: 105-109.
    [10] Santra A K., Cowell J J., Lambert RM., Ultra-selective epoxidation of styrene on pure Cu{111}and the effects of Cs promotion, Catal. Lett, 2000, 67: 87-91.
    [11] Shaikh A-A G., Organic Carbonates?, Chem Rev, 1996, 96: 951-976.
    [12] Laha S C., Kumar R., Selective Epoxidation of Styrene to Styrene Oxide over
    [13] Corma A., Navarro M T., From micro to mesoporous molecular sieves: Adapting composition and structure for catalysis, Stud. Surf. Sci. Catal, 2002, 142: 487-501.
    [14] Zhang Q H., Wang Y., Itsuki S., et al., Fe-MCM-41 for Selective Epoxidation of Styrene with Hydrogen Peroxide, Chem. Lett, 2001, 5(9): 946-947.
    [15] Hulea V., Dumitriu E., Styrene oxidation with H2O2 over Ti-containing molecular sieves with MFI, BEA and MCM-41 topologies, Appl. Catal. A: General, 2004, 277(1): 99-106.
    [16]李守贵,房铭,庞文琴.钌卟啉/MCM-41催化剂的制备、表征及性质.催化学报.1999,20(2):161-165.
    [17]楼建芳.分子筛固载金属络合物催化双氧水氧化烯烃的研究.兰州:西北师范大学,2001.
    [18]汤清虎,赵培真,张庆红,王野.Co-MCM-41的表征及其催化苯乙烯环氧化性能.催化学报.2005,26(11):1031-1036.
    [19] Fu Q., Saltsburg H., Flytzani-Stephanopoulos M., Active non-metallic Au and Pt species on Ceria-based Water-gas shift Catalysts, Science, 2003, 301: 935-938.
    [1] Haruta M., Yamada N., Kobayashi T., Iijima S., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal, 1989, 115: 301.
    [2] Bond G C., Gold: a relatively new catalyst, Catal. Today, 2002, 72: 5-9.
    [3] Ponec V., Bond G. C., Catalysis by Metals and Alloys Studies in Surface Science and Catalysis, Elsevier, Amsterdam, 1995,85,M.
    [4] Yuan Y., Kozlova A. P., sakura K. A., Wan H., Tsai K., Iwasawa Y., Supported Au Catalysts Prepared from Au Phosphine Complexes and As-Precipitated Metal Hydroxides: Characterization and Low-Temperature CO Oxidation, J. Catal, 1997, 170: 191-199.
    [5] Baiker A., Maciejewski M., Tagliaferri S., Hug P., Carbon-Monoxide Oxidation over Catalysts Prepared by in-Situ Activation of Amorphous Gold-Silver-Zirconium and Gold-Iron-Zirconium Alloys, J. Catal, 1995, 151: 407-419.
    [6] Gelbard G., Organic synthesis by catalysis with ion–exchange resins, Ind. Eng. Chem. Res, 2005, 44(23): 8468-8498.
    [7]陆宇,黄文强,何炳林.强碱离子交换树脂催化剂在有机合成中的应用.离子交换与吸附,1993,9(4):359-367.
    [8]廖世军.离子交换树脂催化剂研究进展.湖北师范学院学报,自然科学版.210(2):84-90.
    [9]冯新亮,管传金,赵成学.阳离子交换树脂的有机催化进展.有机化学,2003,23(12):1348-1355.
    [10] Yadav G D., Nalawade S P., Selectivity engineering of 4–phenoxyacetophenone by acylation of diphenyl ether with ion exchange resins:modeling of catalyst deactivation and remedies, Chem. Eng. Sci, 2003, 58(12): 2573-2585.
    [11] Yadav G D., Mujebur-Rahuman M S M., Cation exchange resin catalysedacylations and esterifications in fine chemical and perfumery industries, Org. Process. Res. Dev, 2002,6(5): 706-713.
    [12]刘平乐,李国兵,焦飞鹏,等.离子交换树脂非均相催化乙酰化合成乙酰甲胺磷.农药,2003,42(3):19-20.
    [13]祝文书,罗国华,徐新,等.大孔磺酸树脂CT175催化噻吩与异丁烯烷基化硫转移反应的研究.石油化工.2004,33(5):424-427.
    [14]周景尧,贾瑜,奚伟军,郭柏麟.N-甲酰吗啉的制备方法:中国, 1356324[P].2002.
    [15] Lachter F R., GilR A S., Tabak G., et al., Alkylation of toluene with aliphatic alcohols and 1–octene catalyzed by cation–exchange resins, React. Funct. Polym, 2000, 44(1): 1-7.
    [16]范文革,王彦斌,马麒麟.间歇法合成2,4–二叔丁基苯酚的反应规律研究.西北师范大学学报(自然科学版).2001,37(4):57-61.
    [17]王海,徐柏庆,王建武,等.新型固体酸Nafion/SiO2的催化作用.石油化工.2001,30(10):741-743.
    [18] Olah G A., Mathew T., Prakash G K S., Nafion–H catalysed sulfonylation of aromatics with arene/alkenesulfonic acids for the preparation of sulfones, Chem. Commun, 2001(17): 1696-1697.
    [19] Wu H S., Lee C S., Catalytic activity of quaternary ammonium poly(methylstyrene–co–styrene) resin in an organic solvent/alkaline solution, J. Catal, 2001, 199(2): 217-223.
    [20] Toukoniitty B., Mikkola J P., Er?nen K., et al., Esterification of propionic acid under microwave irradiation over an ion–exchange resin, Catal. Today, 2005, 100(3-4): 431-435.
    [21]甘黎明.以阳离子交换树脂负载镧作催化剂合成乙酸异戊酯.内蒙古石油化工.2003,29(2):14-15.
    [22]陶贤平.固体酸AlCl3/D001催化合成苹果酯的研究.合成化学.2003,11(1):86-88.
    [23]陈平,邓威,张晓丽.耐温强酸性阳离子交换树脂合成柠檬酸三丁酯.抚顺石油学院学报.2003,23(4):24-37.
    [24] Ayturk E., Hamamci H., Karakas G., Production of lactic acid esters catalyzed by heteropoly acid supported over ion–exchange resins, Green Chemistry, 2003, 5(4): 460-466.
    [25] Takaki H., Ishida T., Uemura M., Production process for hydroxyalkyl (meth)acrylate:US, 30180[P]. 2004.
    [26]邓友全,石峰,郭术,等.环氧化合物与二氧化碳环加成制备环状碳酸酯的方法:中国,1789258[P].2006.
    [27] Yadav G D., Lande S V., Ion–exchange resin catalysis in benign synthesis of perfumery grade p–cresylphenyl acetate from p–cresol and phenylacetic acid, Org. Process. Res. Dev, 2005,9(3): 288-293.
    [28] Iimura S., Manabe K., Kobayashi S., Direct thioesterification from carboxylic acids and thiols catalyzed by a Bronsted acid, Chem.Commun, 2002(1):94-95.
    [29]龙立平,杨忠娥,钟桐生,俞善信.酸性阳离子交换树脂催化合成丁二酸二丁酯.合成化学.2004,12(2):194-197.
    [30]葛洪玉,马卫兴.强酸性离子交换树脂催化合成联苯乙酸乙酯.离子交换与吸附.2006,22(1):182-186.
    [31]王树清,高崇.癸二酸二乙酯的强酸性阳离子交换树脂催化合成研究.应用化工.2004,33(4):41-43.
    [32]王崇晖,宋喜军.一种长链二羧酸二烷基酯的制备方法:中国,1508117[P].2004.
    [33]刘芝兰,周瑜,卓仁禧.2-乙氧羰基-2-甲基-1,3-丙二醇及其制备方法:中国,1379016[P].2002.
    [34]羊衍秋,宋航,付超,等.用阳离子交换树脂——FeCl3络合催化合成丁酸异戊酯的动力学研究.四川大学学报(工程科学版).2000,32(2):36-39.
    [35] Dijs I J., van Ochten H L F., vander Heijden A J M., et al., The catalytic performance of sulphonated cross–linked polystyrene beads in the formation ofisobornyl acetate, Appl. Catal. A: Gen, 2003, 241(1-2): 185-203.
    [36]邢孔强,刘煜.大孔磺酸Lewis酸复合树脂催化酯化反应的研究.化学研究.2001,12(2):37-39.
    [37] Yadav G D., Thathagar L B., Esterification of maleic acid with ethanol over cation–exchange resin catalysts, React. Funct. Polym, 2002, 52(2): 99-110.
    [38] Tejero J., Fite C., Iborra M., Izquierdo J F., Bringue R., Cunill F., Dehydration of 1-pentanol to di-n-pentyl ether catalyzed by a microporous ion–exchange resin with simultaneous water removal, Appl. Catal. A: Gen, 2006, 308: 223-230.
    [39] Stanescu M A., Varma R S., Nafion–catalyzed preparation of benzhydryl ethers, Tetrahedron Lett, 2002, 43(41): 7307-7309.
    [40] Klepacova K., Mravec D., Bajus M., tert–Butylation of lycerol catalysed by ion–exchange resins, Appl. Catal. A: Gen, 294(2): 141-147.
    [41]张淑蓉,郝景龙,铁大华.炼厂混合C5馏分的醚化.石油炼制与化工.2001,32(6):60-63.
    [42] Paivi K., Paakkonen A., Outi I K., Comparative study of TAME synthesis on ion-exchange resin beads and a fibrous ion-exchange catalyst, React. Funct. Polym, 2003, 55 (2):139-150.
    [43] Boz N., Dogu T., Murtezaoglu K., Dogu G., Effect of hydrogen ion–exchange capacity on activity of resin catalysts in tert–amyl–ethyl–ether synthesis, Appl. Catal. A : Gen,2004, 268(1-2): 175-182.
    [44]黄星亮,殷慧龄,彭立新.一种临氢醚化催化剂及其制备方法:中国,1385496[P].2002.
    [45]于镝鸣,艾扶宾,霍稳周,等.丙酮和氢气一步法合成甲基异丁基酮的研究.沈阳工业大学学报.2005,27(4):474-477.
    [46] Tejero J., Creus E., Iborra M., Cunill F., Izquierdo J F., Comparative study of IPTBE synthesis on HZSM–5 and ion–exchange resin catalysts, Catal. Today, 2001, 65(2-4): 381-389.
    [47]徐汝华,赵相如.高纯度1,4-二氧六环的生产工艺:中国,1473823[P].2004.
    [48] Nicol W., du Toit E L., One–step methyl isobutyl ketone synthesis from acetone and hydrogen using Amberlyst CH28, Chem. Eng. Proces, 2004, 43(12): 1539-1545.
    [49] Sandip T., Sanjay M., Synthesis of methyl isobutyl ketone from acetone over metal–doped ion exchange resin catalyst, Appl. Catal. A: Gen, 2006, 302(1): 140-148.
    [50]唐斯萍,李谦和,尹笃林.阴离子交换树脂催化丙醛缩合制备2–甲基–2–戊烯醛.湖南师范大学自然科学学报.2001,24(1):42-44.
    [51]聂国朝.树脂固载磷钨酸催化合成苯甲醛正己硫醇缩醛.北京工商大学学报(自然科学版).2004,22(1):15-17.
    [52] Hyatt J A., A novel and convenient synthesis of 4–halobutyraldehyde acetals, Org. Prep., Proc. Inter, 2004, 36(5): 487-490.
    [53]石秀敏,徐静莉,王树江,等.碱性树脂催化剂上丙酮的醇醛缩合反应.吉林工业大学学报(自然科学版).2001,22 (3):35-37.
    [54]胡微,劳学军,张健,等.碱性阴离子交换树脂催化合成甲基乙烯基酮.江苏化工.2003,31(2):47-60.
    [55] Powell J B., Weider P R., Komplin G C., Solid acid catalyzed reactive stripping of impurities formed during the production of 1,3-propanediol:US, 87819. 2004.
    [56]平伟军,徐满才,谢祥林,等.聚合物酸的疏水性对催化缩酮化反应的影响.湘潭大学自然科学学报.2000,22(4):52-54.
    [57] Ballini R., Bosica G., Maggi R., et al., Amberlyst 15 as a mild, chemoselective and reusable heterogeneous catalyst for the conversion of carbonyl compounds to 1,3-oxathiolanes, Synthesis, 2001(12): 1826-1832.
    [58] Valencia O C., Sanchez A R., MartinezV C., Ion exchange resins as catalyst for the isomerization of a–pinene to camphene, Bio. Tech, 2004,93 (2): 119-123.
    [59] Strickler G R., Lee G S J., Rievert W J., et al., Process for the preparation ofalkylene glycols:US, 6448456[P]. 2002.
    [60] Chen S R., Sun Y H., Process for hydrolyzing water-insoluble epoxides:US, 192976[P]. 2004.
    [61] Van Kruchten E M G A., Carboxylates in catalytic hydrolysis of alkylene oxides: WO, 35842[P]. 2000.
    [62] Campanella A., Baltanas M A., Eur. J., Degradation of the oxirane ring of epoxidized vegetable oils with solvated acetic acid using cation-exchange resins, Lipid. Sci. Tech, 2004,106(8): 524-530.
    [63] Fu Q., Saltsburg H., Flytzani-Stephanopoulos M., Active non-metallic Au and Pt species on Ceria-based Water-gas shift Catalysts, Science, 2003, 301: 935-938.
    [64]孙建敏,王路,王亚丽等,溴化锌-卤化正四丁基铵高效催化合成苯乙烯环状碳酸酯.高校学校化学学报,2007,28(3):502-505.
    [65] Bhanage B. M., Fujuta S., Ikushima Y., et al., Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides and methanol using heterogeneous Mg containing smectite catalysts: effect of reaction variables on activity and selectivity performance, Green Chem, 2003, 5: 71-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700