吡啶盐类有机非线性光学材料合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决“非线性-透光性矛盾”,运用“分子工程”和“晶体工程”理论,设计合成了几种吡啶盐类非线性光学材料。用红外、核磁共振氢谱、核磁共振碳谱、元素分析、质谱、紫外-可见光谱和荧光光谱等对其结构和性能进行了表征。依据双能级模型,选用合适的溶致变色方程,测定了分子的二阶极化率,并对测定过程进行了详细阐述。结果表明这些材料分子具有较大的二阶极化率,并有较好的透光性。“非线性-透光性矛盾”的协调解决取决于共轭链的长度、电子给体和电子受体的选择以及二维电荷转移结构的设计等分子综合优化设计思路。
     论文的主要工作包括:设计、合成一系列吡啶盐类有机非线性光学材料;利用元素分析、红外光谱和核磁共振等测试手段进行结构表征;研究吡啶盐类有机非线性光学分子的紫外-可见光谱和荧光光谱,采用溶致变色法测定分子二阶非线性极化率;对有机非线性光学分子二阶非线性极化率与分子结构的关系进行研究讨论。
     具体展开了以下几个方面的研究工作:
     1.设计合成具有一维电荷转移结构的D-π-A型含咪唑环的吡啶盐类NLO材料:ISPI、ISPT、ISSPI和ISSPT,这些材料分子均为新化合物。
     2.用对甲苯磺酸根离子替换碘离子,得到两个阴离子系列的吡啶盐类NLO材料。
     3.设计合成具有二维电荷转移结构的A-π-D-π-A型含咔唑环的吡啶盐类NLO材料:3,6-CVPI和1,8-CVPI,其中1,8-CVPI是新化合物。
     4.对上述吡啶盐类有机NLO材料的合成路线进行了合理的设计,对部分合成方法做了适当的改进。改进后的合成方法反应速度更快,产率更高,产品更加纯净。另外对改进方法的反应条件进行了优化。
     5.利用元素分析、红外光谱、核磁共振氢谱和核磁共振碳谱等现代分析测试手段对所合成的吡啶盐类有机非线性光学材料进行了结构表征。
     6.采用溶剂自然挥发晶体生长法培养出吡啶盐单晶,用X-射线单晶衍射仪测定其晶体结构。
     7.研究吡啶盐类NLO分子在不同极性溶剂中的荧光发射光谱和紫外-可见吸收光谱,用溶致变色法测算出几种吡啶盐的分子二阶非线性极化率(β)。这些吡啶盐类有机NLO材料同时拥有较大的分子二阶非线性极化率和较好的透明性,实现了“非线性-透明性”的均衡统一。
Several nonlinear optical pyridiniums were designed and synthesized tobalance the nonlinearity-transparency trade-off by molecular engineering theoryand crystal engineering theory. The pyridiniums were characterized by IR,1HNMR,13C NMR, MS, UV-Vis and fluorescence spectra. The second-orderpolarizability of the chromophores was determined by a solvatochromic methodbased on two-level model. The chromophores have large second-orderpolarizability and exthibit good transparency. The nonlinearity-transparencytrade-off is due to the two-dimensional structure, the choice of electron acceptors,electron donors and the conjugation length.
     The main task of this dissertation includes the following research works:designing and synthesizing a series of pyridiniums nonlinear optical organicmaterial, determining the structures of the pyridiniums by test means such aselementary analysis, infrared spectrum and nuclear magnetic resonance,measuring molecular second-order nonlinear polarizabilities by solvatochromismmethod, and discussing the relationship between molecular structures andsecond-order nonlinear polarizabilities (β) of the pyridiniums. Main researchworks are as follows:
     1. New pyridiniums NLO materials with one-dimensional D-π-A structure aredesigned and synthesized. They are ISPI, ISPT, ISSPI and ISSPT.
     2. The tosylate ions are replaced with the iodine ions to obtain two series ofpyridiniums NLO materials with different anions.
     3. Two two-dimentional A-π-D-π-A pyridiniums NLO materials with carbazolyare designed and synthesized. They are3,6-CVPI and1,8-CVPI.
     4. Synthetic routes to the target pyridiniums NLO materials are designedreasonably. Some synthetic methods are improved appropriately. The improvedreactions have faster speed, higher yield and purer products. In addition, reaction conditions of the improved reactions are optimized.
     5. The structures of the pyridiniums NLO materials are characterized withmodern test means such as elementary analysis, infrared spectrum,1H-nuclearmagnetic resonance and13C-nuclear magnetic resonance.
     6. Single crystals of pyridiniums are produced by crystal grown method ofslow solvent evaporation. The crystal structures are determined by X-Ray singlecrystal diffraction.
     7. The UV-vis absorption spectra and the fluorescence emission spectra of thepyridiniums NLO materials are studied. The second-order polarizabilities of thepyridiniums are determined by solvatochromic method. These pyridiniums NLOmaterials have higher second-order polarizabilities and better transparency, andexhibit excellent nonlinearity-transparency trade-off.
引文
[1]MARDER S R, KIPPELEN B, JEN A K Y, et al. Design and Synthesis of Chromophores and Polymers for Electro-optic and Photorefractive Applications[J]. Nature,1997,388:845-851.
    [2]KANIS D R, RATNER M A, MARKS T J. Design and Construction of Molecular Assemblies with Large Second-order Optical Nonlinearities. Quantum Chemical aspects[J]. Chem Rev,1994,94:195-242.
    [3]KIM M, JU J, PARK S K, et al. Evaluation of Nonlinear Optical Polymers for Second-harmonic Generation:Toward the Balance of Absorption and Nonlinearity Against Intrinsic Trade-off[J]. Chem Phys Lett,2006,417(1-3):277-281.
    [4]SO B, LEE K, LEE S, et al. Synthesis and Linear/Nonlinear Optical Properties of New Polyamides with DANS Chromophore and Silphenylene Groups[J]. Opt Mater,2003,21(1-3):87-92.
    [5]张新伟,李存,宋宣玉.卟啉类二阶非线性光学材料的研究进展[J].信阳师范学院学报(自然科学),2011,24(1):137-140.
    [6]张新伟,李存,张东玲.一类手性双卟啉的分子设计和二阶非线性光学性质[J].材料导报(研究篇),2010,24(2):45-48.
    [7]易明芳.非线性光学研究新进展[J].安庆师范学院学报(自然科学版),2010,16(1):50-56.
    [8]董建华.有机电光材料研究进展[J].自然科学进展,2000,10(7):607-612.
    [9]姜玮,温全武,田华.非线性光学材料进展[J].甘肃科技,2006,22(8):127-130.
    [10]KAAFARANI B R. Discotic Liquid Crystals for Opto-Electronic Applications [J]. Chem. Mater.,2011,23(3):378-396.
    [11]XIE H, LIU Z, HUANG X D, et al. Synthesis and Non-linear Optical Properties of Four Polyurethanes Containing Different Chromophore Groups[J]. Eur Polym J,2001,37(3):497-505.
    [12]HOLLY G, KUMAR B, KAREN M P, et al. Novel Nanoporous Coordination Polymer Sustained by Self-assembly of T-shaped Moieties[J]. J Chem Soc,1999,121(11):2599-2600.
    [13]LEVINE B F, BETHEA C G. Second and Third Order Hyperpolarizabilities of Organic Molecules[J]. J. Chem. Phys.,1975,63(6):2666-2682.
    [14]CLAYS K, PERSOONS A. Hyper-Rayleigh Scattering in Solution[J]. Phys Rev Lett, 1991,66(23):2980-2983.
    [15]PALEY M S, HARRIS J M, LOOSER H, et al. A Solvatochromic Method for Determining Second-order Polarizabilities of Organic Molecules [J]. J Org Chem,1989,54(16):3774-3778.
    [16]QIAN Y, LIN B P, XIAO G M, et al. Chromophores Exhibiting Nonlinearity-transparency-thermal Stability Trade-off:Synthesis and Nonlinear Optical Properties of Two-dimensional Chromophores Containing Nitro Acceptors[J]. Optical Materials,2004,27:125-130.
    [17]唐翔,唐先忠,王洋等.新型有机非线性光学材料的制备及性能研究[J].光电子·激光,2010,21(8):1196-1198.
    [18]游英才,唐先忠,唐翔等.新型二阶非线性光学生色团的合成及辅助给体对分子性能的影响研究[J].有机化学,2013,33(12):530-534.
    [19]卢伟,钱鹰.Y型三苯胺生色分子的二阶极化率[J].高等学校化学学报,2011,32(12):2787-2794.
    [20]张干冰.改进的溶致变色法测定分子的一阶超极化率[J].湖北大学学报(自然科学版),2000,22(3):265-269.
    [21]韩莉坤,蒋亚东,蔡渊等.新型非线性光学分子的合成及二阶极化率测定[J].光电子·激光,2007,18(4):447-449.
    [22]BOSSHARD C, KNOPFLE G, PRETRE P, et al. Second-order Polarizabilities of Nitropyridine Derivatives Determined with Electric-field-induced Second-harmonic Generation and a Solvatochromic Method:A Comparative Study[J]. J Appl Phys,1992,71(4):1594-1605.
    [23]孙振范,游效曾,李大光.溶致变色法测定Schiff碱类化合物非线性二阶极化率张量分量βxxx和估算二阶极化率向量分量βx[J].化学学报,1994,52:755-762.
    [24]LIU Y, JIANG A, XIANG L, et al. Nonlinear Optical Chromophores with Good Transparency and High Thermal Stability[J]. Dyes and Pigments,2000,45:189-193.
    [25]OUDAR J L, ZYSS J. Structural Dependence of Nonlinear-optical Properties of Methyl-(2,4-dinitrophenyl)-aminopropanoate Crystals [J]. Phys Rev A,1982,26:2016-2027.
    [26]WILLIAMS D J. Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities[J]. Angew Chem Int Ed Engl,1984,23:690-703.
    [27]PADILHA L A, WEBSTER S, PRZHONSKA O V, et al. Efficient Two-photon Absorbing Acceptor-π-acceptor Polymethine Dyes[J]. J Phys Chem A,2010,114(23):6493-6501.
    [28]赵岷,张元,王璐.含咔唑生色团的有机芳香杂环分子的二阶非线性光学性质[J].物理化学学报,2011,27(3):584-588.
    [29]李倩倩,秦金贵,李振.有机二阶非线性光学发色团的研究进展[J].有机化学,2011,31(9):1337-1349.
    [30]赵岷,张元,王璐.三聚咔唑为中心的准八极矩分子二阶NLO性质[J].化学研究与应用,2012,24(8):1277-1281.
    [31]杨照地,封继康,任爱民.两个系列星型准八极矩分子单光子和双光子吸收性质的理论研究[J].高等学校化学学报,2009,30(7):1417-1422.
    [32]黎俊波,王世敏,赵雷.二维电荷转移有机二阶非线性光学活性生色团设计合成进展[J].湖北大学学报(自然科学版),2003,25(3):248-253.
    [33]王晓宏,王筱梅,杨兴淮等.苯并噻二唑-三苯胺衍生物合成与双光子荧光、电致发光性能研究[J].2010,41(7):1211-1218.
    [34]钱鹰,林国强,周志强.吡啶星型分子的双光子上转换荧光特性[J].高等学校化学学报,2011,32(4):868-873.
    [35]钱鹰,胡凯明,林国强等.星型二苯乙烯衍生物的三光子吸收及多光子荧光发射[J].化学学报,2010,68(18):1837-1844.
    [36]钱鹰,朱晓勤,吴利清等.一种共轭有机杂环分子的双光子吸收与电化学性质.功能材料,2008,39(3):364-370.
    [37]RAY P C, DAS P K. First-order Hyperpolarizabilities of Octupolar Aromatic Molecules: Symmetrically Substituted Triazines[J]. Chem Phys Lett,1995,244:154-155.
    [38]张新伟,李存.二阶非线性光学材料的偶极体系和八极体系[J].科技信息,2009,22:66.
    [39]CHENG Y, LUO J, HUANG S, et al. Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability[J]. Chem. Mater.,2008,20,5047-5054.
    [40]SEOKHO K, Y M JEON, KIMOON K. The Diazonium Group:an Electron Acceptor for Large Molecular Hyperpolarizabilities [J]. J Chem Soc, Chem Commun,1995,12:635-636.
    [41]MARDERE S R, PERRY J W, YAKYMYSHYN C P. Organic Salts with Large Second-Order Optical Nonlinearities[J]. Chem. Mater.1994,6(8):1137-1147.
    [42]MARDER S R, BERATAN D N, CHENG L T. Approaches for Optimizing the First Electronic Hyperpolarizability of Conjugated Organic Molecules[J]. Science1991,252(5):103-105.
    [43]钱鹰,孙岳明,丁建平等.有机共轭分子的结构和二阶非线性光学活性[J].东南大学 学报,2000,30(6):150-154.
    [44]NAKANISHI H, MATSUDA H, OKADA S, et al. Organic and Polymeric Complexes for Nonlinear Optics[J]. Proc. MRS Int. Mtg. Adv. Mater.,1989,1:97-104.
    [45]MARDER S R, PERRY J W, SCHAEFER W P, et al. Synthesis of Organic Salts with Large Second-Order Optical Nonlinearities[J]. Science,1989,245(4918):626-628.
    [46]BRAHADEESWARAN S, et al. Growth of High-quality DAST Crystals for THz Applications [J]. J. Cryst. Growth,2006,292:441-444.
    [47]WAHHER M, JENSB Y K, KEIDING S R, et al. Far-infrared Properties of DAST [J]. Opt. Lett.,2000,25(12):911-913.
    [48]李昆,李春,胡章贵等.利用国内生长的有机晶体DAST作为THz源的研究[J].光谱学与光谱分析,2006,26(10):1777-1780.
    [49]WANG M, D WANG, G Y ZHOU, et al. Symmetric and Asymmetric Charge Transfer Process of Two-photon Absorbing Chromophores:Bis-donor Substituted Stilbene, and Substituted Styrylquinolinium and Styrylpyridinium Derivative J. Mater Chem.,2001,11:1600-1605.
    [50]WANG M, ZHOU Y F, YU W T. Two-photon Pumped Lasing Stilbene-type Chromophores Containing Various Terminal Donor Groups:Relationship Between Lasing Efficiency and Intramolecular Charge Transfer[J]. Mater Chem,2000,10:1698-2703.
    [51]WANG H Z, LEI H, WEI Z C, et al. Spectral Properties and Effective Upconverted Lasing of New Organic Molecules[J]. Chem Phys Lett,2000,324:349-353.
    [52]ZHOU Y, WANG X M, WANG D. Two-photon Absorption and Nonlinear Optical Properties of a New Organic Dye PSPI[J]. Opt Commun,2001,190:345-349.
    [53]DUAN X M, OKADA S, OIKAWA H, et al. Second-order Hyperpolarizabilitiea of Organic Ionic Species[J]. Mol. Cryst. and Liq. Cryst. Sci. and Tech. A. Mol. Cryst. and Liq. Cryst.,1995,267(1):89-94.
    [54]曹凤霞,曹笃霞,王玉洪.两个D-π-A型查耳酮类染料的光物理性质[J].安徽大学学报(自然科学版),2006,20(3):209-212.
    [55]ZHOU Y F, MENG F Q, ZHAO X, et al. Theoretical study TPA properties of a series of two-dimensional charge-transfer derivatives[J]. Chem Phy,2001,269:441-445.
    [56]FRANKEN P A, HILL A E, PETERS C W, et al. Generation of Optical Harmonics[J]. Phys. Rev.Lett.,1961,7(4):118-119.
    [57]ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions Between Light Waves in a Nonlinear Dielectric [J]. Phys. Rev.,1962,127(6):1918-1939.
    [58]DALTON L, DAVIES J, ELANGOVAN A, et al. Rational Enhancement of Second-Order Nonlinearity, Bis-(4-methoxyphenyl)hetero-aryl-amino Donor-Based Chromophores, Design, Synthesis, and Electrooptic Activity[J]. J. Am. Chem. Soc.,2008,130:10565-10575.
    [59]THIERRY V, STEPHAN H, MARTTI K. Second-order Nonlinear Optical Materials: Recent Advances in Chromophore Design[J]. J Mater Chem,1997,7(11):2175-2189.
    [60]王世敏,常俊丽.有机二阶非线性光学材料的材料设计研究进展[J].材料导报,1999,13(3):48-50.
    [61]BARZOUKAS M, DESCE M B, JOSSE D, et al. Very Large Quadratic Nonlinearities in Solution of Two Push-pull Polyene Series:Effect of the Conjugation Length and of the End Groups[J]. Chem Phys,1989(11),133:323-329.
    [62]CHENG L T, TAM W, MARDER S R, et al. Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities.2. A study of Conjugation Dependences[J]. J Phys Chem(26),1991,95:10645-10646.
    [63]VERBIEST T, HOUBRECHTS S, KAURANEN M, et al. Second-order Nonlinear Optical Materials:Recent Advances in Chromophore Design[J]. J Mater Chem,1997,7(11):2175-2189.
    [64]MARDERE S R, PERRY J W, TIEMANN B G, et al. Second-order Optical Nonlinearities and Photostabilities of2-N-methylstilbazolium Salts[J]. Chem. Mater.1990,2(2):685-690.
    [65]QIN C Z, ZHANG W Z, WANG Z M, et al. Optical Properties of Stilbene-type Dyes Containing Various Terminal Donor and Acceptor Groups[J]. Optical Materials,2008,30:1607-1615.
    [66]王洋,唐先忠,唐翔等.两种含偶氮苯共轭桥新型生色团分子的合成及性能[J].高等学校化学学报.2011,(10):2327-2330.
    [67]唐翔,唐先忠,游英才等.含呋喃共轭桥有机非线性光学生色团的合成及性能研究[J].化学学报,2012,(14):1565-1568.
    [68]唐翔,唐先忠,赵波等.新型含三氰基呋喃受体的非线性光学材料合成及性能研究[J].功能材料,2010,41(8):1340-1346.
    [69]彭晓伟,刘波,赵芬等.含噻唑环偶氮类非线性光学分子的合成表征与互变异构的研究[J].化学研究与应用,2011,23(1):57-62.
    [70]刘海波,仇永清,孙世玲等.双咪唑苯和双咪唑苯及其衍生物非线性光学性质的密度泛函研究[J].物理化学学报,2010,26(1):120-124.
    [71]BAI H T, LIN H C, LUH T Y Phenanthrene-Tethered Furan-Containing Cyclophenes, Synthesis and Photophysical Properties [J]. J. Org. Chem.,2010,75:4591-4595.
    [72]UMEYAMA T, TAKAMATSU T, TEZUKA N, et al. Synthesis and Photophysical and Photovoltaic Properties of Porphyrin-Furan and Thiophene Alternating Copolymers[J]. J. Phys. Chem. C,2009,113,10798-10806.
    [73]LI Q Q, LU C G, ZHU J, et al. Nonlinear Optical Chromophores with Pyrrole Moieties as the Conjugated Bridge, Enhanced NLO Effects and Interesting Optical Behavior [J]. J. Phys. Chem. B,2008,112:4545-4551.
    [74]SONG N H, MA X H, LIANG R, et al. Synthesis and Properties of Novel Second-order NLO Chromophores Containing Pyrrole as an Auxiliary Electron Donor [J]. J. Mater. Chem,2008,18,1756-1764.
    [75]赵岷,李作盛,张元等.含不同二硫醇盐的Pt(Ⅱ)吡啶-三嗪配合物的二阶NLO性质[J].吉林大学学报,2011,49(2):331-335.
    [76]赵岷,王璐,张元.含Schiff碱基噻唑衍生物二阶NLO性质的理论研究[J].分子科学学报,2012,28(4):314-318.
    [77]ALIAS S, ANDREU R, BLESA M J, et al. Synthesis, Structure, and Optical Properties of1,4-Dithiafulvene-Based Nonlinear Optic-phores[J]. J. Org. Chem.2007,72(17):6440-6446.
    [78]LEMAITRE N, ATTIAS A J, LEDOUX I, et al. New Second-Order NLO Chromophores Based on3,3'-Bipyridine:Tuning of Liquid Crystal and NLO Properties [J]. Chem. Mater.2001,13(4):1420-1427.
    [79]INNOCENZI P, MIORIN E, BRUSATIN G, et al. Incorporation of Zwitterionic Push-Pull Chromophores into Hybrid Organic-Inorganic Matrixes[J]. Chem. Mater.2002,14(9):3758-3766.
    [80]COE B J, HARRIS J A, HALL J J, et al. Syntheses and Quadratic Nonlinear Optical Properties of Salts Containing Benzothiazolium Electron-Acceptor Groups [J]. Chem. Mater.2006,18(25):5907-5918.
    [81]CHENG Y J, LUO J D, HAU S, et al. Large Electro-optic Activity and Enhanced Thermal Stability from Diarylaminophenyl-Containing High-β Nonlinear Optical Chromophores [J]. Chem. Mater.2007,19(5),1154-1163.
    [82]RAIMUNDO J M, BLANCHARD P, FRERE P, et al. Push-pull Chromophores Based on2,2'-Bi(3,4-ethylenedioxythiophene)(BEDOT)π-conjugating Spacer[J]. Tetrahedron Lett.2001,42(8),1507-1510.
    [83]TOLMACHEV A I, KACHKOOVSKII A D, KUDINOVA M A, et al. Synthesis, Electronic Structure, and Absorption Spectra of the Merocyanines Derived from Pyranes and Benzopyranes[J]. Dyes Pigm.2007,74,348-356.
    [84]SANTOS J, MINTZ E A, ZEHNDER O, et al. New Class of Imidazoles Incorporated with Thiophenevinyl Conjugation Pathway for Robust Nonlinear Optical Chromophores[J]. Tetrahedron Lett.2001,42,805-808.
    [85]ALBERT I D L, MARKS T J, RATNER M A. Large Molecular Hyperpolarizabilities. Quantitative Analysis of Aromaticity and Auxiliary Dono-Acceptor Effects[J]. J. Am. Chem. Soc.,1997,119(28):6575-6582.
    [86]VARANASI P R, JEN A K Y, CHANDRASEKHAR J, et al. The Important Role of Heteroaromatics in the Design of Efficient Second-Order Nonlinear Optical Molecules:□Theoretical Investigation on Push-Pull Heteroaromatic Stilbenes[J]. J Am Chem Soc,1996,118(49):12443-12448.
    [87]MOYLAN C R, MCNELIS B J, NATHAN L C, et al. Challenging the Auxiliary Donor Effect on Molecular Hyperpolarizability in Thiophene-Containing Nonlinear Chromophores:X-ray Crystallographic and Optical Measurements on Two New Isomeric Chromophores[J]. J Org Chem,2004,69(24):8239-8243.
    [88]ZYSS J, Ledoux I. Nonlinear Optics in Multipolar Media:Theory and Experiments [J]. Chem. Rev.,1994,94(1):77-105.
    [89]BREDAS J L, MEYERS F, PIERCE B M, et al. On the Second-order Polarizability of Conjugated π-electron Molecules with Octupolar Symmetry:the Case of Triaminotrinitrobenzene[J]. J. Am. Chem. Soc.,1992,114(12):4928-4929.
    [90]ANDREU R, CERDAN M A, FRANCO S, et al. Decreased Optical Nonlinearities upon CF3Substitution on Tricyanofuran Acceptors. Org Lett2008,10(21),4963-4966.
    [91]花建丽,李俊,罗敬东.兼具大的二阶光学非线性与良好透明性的有机生色团的分子设计进展[Jl.有机化学,2003,23(1):44-53.
    [92]ZYSS J, LEDOUX I, VOLKOV S, et al. Through-Space Charge Transfer and Nonlinear Optical Properties of Substituted Paracyclophane[J]. J. Am. Chem. Soc.2000,122(48):11956-11962.
    [93]LI B, TONG R, ZHU R, et al. The Ultrafast Dynamics and Nonlinear Optical Properties of Tribranched Styryl Derivatives Based on1,3,5-Triazine[J]. J. Phys. Chem. B,2005,109(21):10705-10710.
    [94]LUO J D, HUA J L, QIN J G, et al. The Design of Second-order Nonlinear Optical Chromophores Exhibiting Blue-shifted Absorption and Large Nonlinearities:the Role of the Combined Conjugation Bridge[J]. Chem. Commun.,2001(2),171-172.
    [95]XIA Z Y, SU J H, FAN H H, et al. Multifunctional Diarylamine-Substituted Benzo[k] fluoranthene Derivatives as Green Electroluminescent Emitters and Nonlinear OpticalMaterials[J]. J. Phys. Chem. C,2010,114(26):11602-11606.
    [96] GARIN J, ORDUNA J, RUPEREZ J I, et al. Second-order Nonlinear Optical Properties ofTetrathiafulvalene-π-(thio)barbituric Acid Chromophores[J]. Tetrahedron Letters,1998,39(21):3577-3580.
    [97] GONZALEZ M, MARTIN N, SEOANE C, et al. Second-order Nonlinear OpticalProperties of Tetrathiafulvalene-π-3-(dicyanomethylidene)indan-1-one Chromophores[J].Tetrahedron Lett.1999,40(49),8599-8602.
    [98] HUA J L, ZHANG W, LI Z, et al. Arylaldehydes-pentafluorophenyl Hydrazones asSecond-order Nonlinear Optical Chromophores: A Novel Approach for RemarkablyDefeating the Nonlinearity-transparency Trade-off[J]. Chem. Lett.,2002,31(2),232-233.
    [99] MOYLAN C R, TWIEG R J, LEE V Y, et al. Miller. Nonlinear Optical Chromophoreswith Large Hyperpolarizabilities and Enhanced Thermal Stabilities[J]. J. Am. Chem. Soc.,1993,115(26):12599-12600.
    [100] KIM T D, KANG J W, LUO J D, et al. Ultralarge and Thermally Stable Electro-OpticActivities from Supramolecular Self-Assembled Molecular Glasses[J]. J Am Chem Soc,2007,129(3):488-489.
    [101] JANG S H, JEN A K Y, et al. Electro-Optic (E-O) Molecular Glasses[J]. Chem Asian J,2009,4(1):20-31.
    [102] LIAO Y, BHATTACHARJEE S, FIRESTONE A, et al. Antiparallel-AlignedNeutral-Ground-State and Zwitterionic Chromophores as a Nonlinear Optical Material[J]JAm Chem Soc,2006,128(21):6847-6853.
    [103] GAO J K, CUI Y J, YU J C, et al. Molecular Design and Synthesis ofHetero-trichromophore for Enhanced Nonlinear Optical Activity[J]. Macromolecules,2009,42(6):2198-2203.
    [104] CAMPO J, PAINELLI A, TERENZIANI F, et al. First Hyperpolarizability Dispersion ofthe Octupolar Molecule Crystal Violet, Multiple Resonances and Vibrational and SolvationEffects, J. Am. Chem. Soc.,2010,132(46):16467-16478.
    [105] SHAO J, GUAN Z, YAN Y, et al. Synthesis and Characterizations of Star-ShapedOctupolar Triazatruxenes-Based Two-Photon Absorption Chromophores[J]. J. Org. Chem.,2011,76(3):780-790.
    [106] KRISHNA P, RAVI M, ADHIKARI, et al. Aromatic Fumaronitrile Core-BasedDonor-Linker-Acceptor-Linker-Donor (D-π-A-π-D) Compounds, Synthesis andPhotophysical Properties, J. Phys. Chem. A,2010,114:4542-4549.
    [107] QI T, QIU W, LIU Y, et al. Synthesis, Structures, and Properties of Disubstituted Heteroacenes on One Side Containing Both Pyrrole and Thiophene Rings[J]. J. Org. Chem.,2008,73(12):4638-4643.
    [108]ZRIG S, KOECKELBERGHS G, VERBIEST T, et al. A-Type Regioregular Oligothiophenes:Synthesis and Second-Order NLO Properties[J]. J. Org. Chem.2007,72(15):5855-5858.
    [109]KANG H, ZHU P W, YANG, Y, et al. Self-Assembled Electrooptic Thin Films with Remarkably Blue-Shifted Optical Absorption Based on an X-Shaped Chromophore[J]. J Am Chem Soc,2004,126(49):15974-15975.
    [110]GONG W, LI Q Q, LI S Y, et al.[J]. New "Y" Type Nonlinear Optical Chromophores with Good Transparency and Enhanced Nonlinear Optical Effects Mater. Lett.2007,61(4-5):1151-1153.
    [111]李倩倩,李振,秦金贵.新型含吲哚基团的光电功能材料[J].化学进展,2009,21(12):2578-2588.
    [112]李倩倩,秦金贵,李振.电光高分子研究进展[J].高分子通报,2010,(9):1-28.
    [113]LI Q Q, YU G, HUANG J, et al.[J]. Polyurethanes Containing Indole-Based Non-Linear Optical Chromophores:from Linear Chromophore to H-Type Macromol. Rapid Commun.2008,29(10),798-803.
    [114]ZHANG C Z, LU C G, ZHU J, et al. Enhanced Nonlinear Optical Activity of Molecules Containing Two D-π-A Chromophores Locked Parallel to Each Other[J]. Chem Mater,2008,20(14),4628-4641.
    [115]CHO B R, LEE S J, LEE S H, et al. Octupolar Crystals for Nonlinear Optics:□1,3,5-Trinitro-2,4,6-tris(styryl)benzene Derivatives[J]. Chem Mater,2001,13(5):1438-1440.
    [116]OUDAR J L, CHEMLA D S. Theory of Second-order Optical Susceptibilities of Benzene Substitutes [J]. Opt. Commun.1975,13(2):164-168.
    [117]OUDAR J L, PERSON H L. Second-order Polarizabilities of Some Aromatic Molecules[J]. Opt. Commun.1975,15(2):258-262.
    [118]CHEMLA D S, OUDAR J L, JERPHAGNON J. Origin of the Second-order Optical Susceptibilities of Crystalline Substituted Benzene[J]. Phys. Rev. B,1975,12(2):4534.4546.
    [119]OUDAR J L. Optical Nonlinearities of Conjugated Moleeules. Stilbene derivatives and Highly Polar Aromatic Compounds[J]. J. Chem. Phy,1977,67(2):446-457.
    [120]OUDAR J L, CHEMLA D S. Hyperpolarizabilities of the Nitroanilines and Their Relations to the Excited State Dipole Moment[J]. J Chem Phys,1977,66:2664-2668.
    [121]BILOT V L, KAWSKI A Z. Theory of the Effect of Solvents on the Electron Spectra of Molecules. Naturforsch A,1962,17:621-627.
    [122]GORMAN C B, MARDER S R. An Investigation of the Interrelationships Between Linear and Nonlinear Polarizabilities and Bond-length Alternation in Conjugated Organic Molecules[J]. Proc. Natl. Acad. Sci. USA,1993,90:11297-11301.
    [123]MARDER S R, PERRY J W, BOURHILL G, et al. Relation Between Bond-Length Alternation and Second Electronic Hyperpolarizability of Conjugated Organic Molecules[J]. Sceince,1993,261:186-189.
    [124]RAVI M, RADHAKRISHNAN T P. Analysis of the Large Hyperpolarizabilities of Push-Pull Quinonoid Molecules[J].J phys.Chem.1995,99(49):17624-17627.
    [125]JEGGO C R, BOND G D. Nonlinear Optical Polarizability of the Niobium-Oxygen Bond[J]. J Appi. Phys.,1970,41(6):2741-2743.
    [126]TANG C L, FLYTZANI S C. Charge-Transfer Model of the Nonlinear Suspectibilities of Polar Semiconductors[J]. Phys. Rev. B,1971,4(8):2520-2524.
    [127]OUDAR J L, ZYSS J. Relations Bewteen Microscopic And Mcroscopic Lowest Odrer Optical Nonlinearities of Molecular CrystalsWith One or Two Dimensional Unist[J]. Phys Rev.1982.26(4):2028-2048.
    [128]秦金贵,刘道玉.有机和金属有机非线性光学晶体材料[Jl.化学通报,1990,(10):23-30.
    [129]OSTROVERKHOV V, PETSCHEK R G, SINGER K D, et.al. A-Like Chromophores for Chiral Non-linear Optical Materials[J], Chem. Phys. Letter,2001,340:109-115.
    [130]ZHAO B, ZHOU Z H, LU W Q, et al. The Important Role of the Bromo Group in Improving the Properties of Organic Nonlinear Optical Materials[J]. J.Mater. Chem.,2000,10:1513-1517.
    [131]MARDER S R, GORMAN C B, TIEMANN B G,.et al. Stronger Acceptors Can Diminish Nonlinear Optical Response in Simple Donor-acceptor Polyene[J]. J Am Chem Soc,1993,115(7):3006-3007.
    [132]金凤,朱美安,孙林等.一种π共轭结构的咔唑衍生物的合成和光学性质[J].阜阳师范学院学报(自然科学版),2010,27(3):37-39.
    [133]JIN S H, SUN Y K, SOHN B H, et al. Synthesis and Electro-optical Properties if Electroluminescent Polymers Containing Carbazole Unit[J]. European Polymer Journal,2000,36:957-963.
    [134]MENG F, REN Q, XU D, et al. Synthesis and Characterization of a New Lambda-type Polymer for Nonlinear Optics Based on Carbazole Derivative Salt[J]. Reactive& Functional Polymers,2000,46:59-65.
    [135]GU J, WANG Y L, CHEN W Q. Carbazole-based1D and2D Hemicyanines:Synthesis, Two-photon Absorption Properties and Application for Two-photon Photopolymerization3D Lithography [J]. New J Chem,2007,31:63-68.
    [136]KEN A, KIMIHISA Y. Dendritic Structure Having a Potential Gradient. New Synthesis and Properties of Carbazole Dendrimers[J]. J.Am. Chem. Soc.,2009,131(6):2244-2251.
    [137]AUSRA T, JUOZAS V G, KAROLIS K, et al. Impact of Linking Topology on the Properties of Carbazole Trimers and Dimers[J]. J. Phys. Chem. C,2011,115(11):4887-4897.
    [138]TSUYOSHI M, HARUKA O, KIYOTAKA S, et al. Synthesis and Properties of Conjugated Poly (1,8-carbazole)s[J]. Macromolecules,2009,42(21):8172-8180.
    [139]刘鑫,刘恒,贾鹏飞.一种用于细胞核成像的新型双光子荧光探针[J].高等学校化学学报,2009,30(3):465-467.
    [140]相海鹰.对-N咪唑基苯甲醛的合成、表征及量化计算研究[J].化工矿物与加工,2008,(8):14-16.
    [141]PRUGER B, BACH T. Synthesis of Model Chromophores Related to the Gold Fluorescent Protein (GdFP)[J]. Synthesis,2007(7):1103-1106.
    [142]OSTROWSKI S. A Synthesis of Fused Pyrimidine Mono-N-oxides[J]. Heterocycles,1996,43(2):389-396.
    [143]SCAMMELLS P J, BAKERB S P, BEAUGLEHOLE A R. XH-14Analogues as Adenosine Antagonists [J]. Bioorg. Med. Chem.,1998,6(9):1517-1524.
    [144]BENNASAR M L, ZULAICA E, SOLE D, et al. Facile Synthesis of Azocino [4,3-b] Indoles by Ring-closing Metathesis [J]. Tetrahedron,2007,63(4):861-866.
    [145]AGAFONOV N E, SEDISHEV I P, KUTIN A A. Halobenzenes in the Duff Reaction[J]. Russian Chemical Bullletin,1993,42(1):209.
    [146]MASURIER N, MOREAU E, LARTIGUE C. New Opportunities with the Duff Reaction[J]. J. Org. Chem.,2008,73:5989-5992
    [147]金逢锡,李龙哲.比重瓶测固体密度影响实验结果的因素[J].大学物理实验,2000,13(2):59-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700