基于噻吨酮和芴的荧光化学传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光化学传感器因其具有操作简单,成本低廉,可实时监测,高灵敏度和高选择性等一系列优点,已然成为各种客体如金属离子、阴离子、硫醇、活性氧、氨基酸、爆炸物等检测主导战略之一。多年来,化学传感器的荧光体系、分子构造和传感机制等都趋于多样性发展,而一些重要性能指标如选择性、灵敏度、响应时间、水溶性、合成难易程度及其近红外光区的应用等一直以来都是人们研究的重点和难点。
     典型的荧光化学传感器由“信号基团-连接基团-识别基团”构型组成,本论文以噻吨酮、芴和荧光素作为信号输出基团,通过对称和不对称侧链修饰的方法,引入不同的修饰官能团和识别基团,对化合物进行了紫外吸收和荧光发射光谱的调控,并对合成的一系列小分子化合物传感性能进行了详细的研究。
     第一章简述了超分子化学和分子识别的概念,重点叙述了荧光化学传感器的构造和基本机理,并对汞离子荧光化学传感器的最新研究进展进行了简要的综述,由此提出本论文的研究课题。
     第二章设计合成了两个以二苯胺或三苯胺为电子给体,噻吨酮为电子受体,“D-A-D”构型的化合物BDPA-TXO和BTPA-TXO。它们在不同极性的有机溶剂中表现出显著的溶剂化荧光变色现象。而且伴随着有机溶剂中水含量的不断增加,两个化合物都呈现出荧光淬灭过程,利用该性质可以将BDPA-TXO和BTPA-TXO应用于定量检测几种有机溶剂中的水含量,且BDPA-TXO二氧六环中微量水检测限达到19ppm。此外,利用两个化合物BDPA-TXO和BTPA-TXO制备的染色试纸还可以用于定性检测有机溶剂中的水含量。
     第三章基于汞促脱硫反应机理,设计合成了两个噻吨硫酮类反应型汞离子探针DP-TXT和BDPA-TXT。两者均可作为汞离子裸眼比色型探针:加入Hg2+前后两个化合物溶液颜色分别从橙色变为无色、紫色变为黄色。DP-TXT在乙腈-水(5:5,v/v)溶液中,BDPA-TXT在二甲基亚砜-水(9:1,v/v)溶液中对Hg2+呈现荧光增强响应,且灵敏度分别达到了21nM和75nM。同时,干扰离子测试结果表明,除了Ag+对BDPA-TXT溶液有一定的荧光增强干扰之外,两个化合物对其它金属离子都表现出了很好的抗干扰性。
     第四章将常见的氨基硫脲识别基团引入到噻吨酮体系中,设计合成了两个能同时对汞离子和氟离子表现出良好比色和荧光识别响应的化合物X1和Y1。汞离子或氟离子的加入会引起X1和Y1的四氢呋喃溶液吸收光谱的明显改变,尤其是氟离子导致X1和Y1最大吸收波长大范围的红移,溶液的颜色也从无色变为黄色。另外,由于X1和Y1与汞离子形成1:1配位比的络合物,促使两个化合物四氢呋喃溶液发生荧光淬灭现象。而氟离子则会促使硫脲基团脱质子化过程,同样也会促使X1和Y1发生荧光淬灭现象。
     第五章采用芴作为主体荧光团,侧链修饰乙酰基或硝基,并在芴荧光团另一侧连接硫脲作为识别基团,组建成“D-π-A”构型的荧光探针分子la-4a。正如预期,硝基的引入将该体系分子吸收光谱和荧光光谱都拓展至更长波长处。传感性能测试结果表明,la-4a不仅可以检测Hg2+,还可以检测CH3Hg+,并且.均具有很高的选择性和灵敏度。核磁氢谱滴定和高分辨质谱滴定实验,都很好地证明了该传感体系的识别机理是Hg2+或CH3Hg+促进脱硫,分子内环化生成咪唑啉类衍生物,从而导致化合物光谱性质发生巨大变化。
     第六章以荧光素为母体结构,设计合成了一个水溶性络合型铜离子探针F1。F1浓度为2.0×10-5M的二甲基亚砜-HEPES (1:99, v/v,100mM, pH7.4)溶液对Cu2+显示出良好的吸收及荧光响应,尤其是铜离子的引入对F1表现出显著的荧光淬灭效应。识别机理为F1与Cu2+形成1:1配比的络合物。F1与铜离子的络合常数确定为3.8×105M-1,铜离子理论检测限达到了2.8×10-8M。
     第七章结论。
Owing to the operational simplicity, low cost, real time monitoring and high sensitivity, fluorescence chemosensors have become the dominant strategy for molecular recognition such as metal ions, anions, mercaptans, reactive oxygen species, amino acids and explosives. Over the years, fluorescent chemosensor systems and molecular structures, along with sensing mechanisms display the diversity of development. Some important performance parameters have been the research focus and difficulties, for instance, sensitivity, selectivity, response time, water solubility, complexity of synthesis and application in the near infrared region.
     Fluorescence chemosensor typically has a configuration of "signalling unit-spacer-binding site". In this thesis, we describe the rational design and synthesis of series of small molecular compounds which contain thioxanthone, fluorescein and fluorene groups serving as signalling unit. Through the method of symmetric and asymmetric side chain modifications, and also introduction of various receptor units, we regulated and controled the compounds' optical properties such as absorption and fluorescence emission spectra, and we also detailedly studied their sensing abilities.
     In Chapter1, the concepts of supramolecular chemistry and molecular recognition are briefly introduced. Structures and the basic mechanisms of fluorescent chemosensor are mainly described, and the latest research progresses of fluorescent chemosensors for Hg2+are briefly reviewed. Then the research subject of this dissertation is proposed.
     In Chapter2, two thioxanthone-based fluorescent probes whose fluorescence properties exhibited intriguing dependence on solvent polarity were developed. In the "D-A-D" structural framing of BDPA-TXO and BTPA-TXO, the diphenylamine and triphenyl-amine groups were the donor part while the carbonyl group belonging to thioxanthone served as the acceptor part. Furthermore, the probes showed fluorescence quenching by addition of water in organic solvents. Consequently, they were found useful as fluorescence indicators for the qualitative and quantitative detection of low-level water in various solvent media. The detection limit of BDPA-TXO in dioxane reached to19ppm.
     In Chapter3, two thioxanthen-9-thione derivatives (DP-TXT and BDPA-TXT) were designed and synthesized based on Hg2+-induced desulfurization mechanism. Both of them can serve as naked-eye colorimetric probes for Hg2+:in the absence and presence of Hg2+, the solution color changed from orange to colorless, purple to yellow, respectively. DP-TXT in CH3CN-H2O (5:5, v/v) and BDPA-TXT in DMSO-H2O (9:1, v/v) showed significant fluorescent enhancement upon addition of Hg2+, and the detection limits for Hg2+of chemodosimeters DP-TXT and BDPA-TXT were determined to be21nM and75nM, respectively. Both of DP-TXT and BDPA-TXT exhibited specific selectivity for Hg2+over other examined metal ions except the little interference of Ag+for BDPA-TXT.
     In Chapter4, hydrazinecarbothioamide recognition group was introduced into thioxan-thone system, and two novel fluorogenic and chromogenic chemosensors X1and Y1for the dual-channel detection of Hg2+and F-were developed. Addition of Hg2+and F-resulted in significant changes in absorption spectra of X1and Y1in tetrahydrofuran solutions. F-leaded to a red shift of maximum absorption wavelength, and the solution color changed obviously from colorless to yellow. Furthermore, owing to the formation of a1:1complex between X1or Y1and Hg2+, as well as the deprotonation process of the thioamide protons induced by F-considerable fluorescent quenching was observed for X1and Y1after addition of Hg2+or F-
     In Chapter5, four novel Hg2+-selective fluorescent chemodosimeters featuring the thiourea moiety as the recognition unit were successfully designed by modifying the substituent groups of fluorene fluorophore, and the substitution of acetyl group with nitro group led to large bathochromic shifts both in absorption spectra and fluorescence spectra. They all exhibited specific sensitivity and selectivity not only for Hg2+but also CH3Hg+over other examined metal ions. The changes in their spectral properties are attributed to the transformation of thiourea unit to guanidine via Hg2+-induced and CH3Hg+-induced desulfurization reaction.
     In Chapter6, a fluorescein-based water-soluble chemosensor (F1) for Cu2+was designed and synthesized. It showed excellent absorbance and fluorescence response towards Cu2+, especially the addition of Cu2+induced significant fluorescence quenching. The recognition mechanism is the formation of a1:1complex between F1and Cu2+. The association constant and detection limit were determined to be3.8×105M-1and2.8×10-8M, respectively.
     Chapter7, conclusions.
引文
[1]LEhn J. M., Cryptates:inclusion complexes of macropolycyclic receptor molecules. Pure and Applied Chemistry,1978,50(9-10):871-892.
    [2]Lehn J. M., Supramolecular chemistry:concepts and perspectives. Wiley-VCH. Weinheim,1995.
    [3]Lakowicz J. R., Principles of fluorescence spectroscopy (third edition). Springer Science Business Media. New York.2006.
    [4]Bissell R. A., de Silva A. P., Gunaratne H. Q. N., Lynch P. L. M., Maguire G. E. M., Sandanayake K. R. A. S., Molecular fluorescent signalling with'fluor-spacer-receptor' systems:approaches to sensing and switching devices via supramolecular photophysics. Chemical Society Reviews,1992.21(3):187-195.
    [5]de Silva A. P., Moody T. S., Wright G. D., Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst,2009,134(12):2385-2393.
    [6]Callan J. F., de Silva A. P.. Magri D. C., Luminescent sensors and switches in the early 21st century. Tetrahedron.2005.61(36):8551-8588.
    [7]Suksai C. Tuntulani T., Chromogenic anion sensors. Chemical Society Reviews.2003. 32(4):192-202.
    [8]Gunnlaugsson T., Clive Lee T.. Parkesh R., Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron,2004,60(49):11239-11249.
    [9]Gunnlaugsson T., Nieuwenhuyzen M., Richard L., Thoss V., A novel optically based chemosensor for the detection of blood Na+. Tetrahedron Letters,2001,42(28): 4725-4728.
    [10]Anslyn E. V., Supramolecular analytical chemistry. The Journal of Organic Chemistry. 2007,72(3):687-699.
    [11| de Silva A. P. de Silva S. A., Fluorescent signalling crown ethers;'switching on' of fluorescence by alkali metal ion recognition and binding in situ. Journal of the Chemical Society, Chemical Communications,1986,22(23):1709-1710.
    [12]de Silva A. P. Rupasinghe R. A. D. D., A new class of fluorescent pH indicators based on photo-induced electron transfer. Journal of the Chemical Society, Chemical Communications,1985,21(23):1669-1670.
    [13]Czarnik A. W., Chemical communication in water using fluorescent chemosensors. Accounts of Chemical Research,1994,27(10):302-308.
    [14]Huston M. E., Haider K. W., Czarnik A. W., Chelation enhanced fluorescence in 9.10-bis||(2-(dimelhylamino)ethyl)methylamino]melhyl|anthracene. Journal of the American Chemical Society,1988,110(13):4460-4462.
    [15]Bryan A. J., de Silva A. P., De Silva S. A., Rupasinghe R. A. D. D., Sandanayake K. R. A. S.. Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations. Biosensors,1989,4(3):169-179.
    [16]Ward M. D., Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies. Chemical Society Reviews,1997,26(5):365-375.
    [17]樊美公,姚建年,佟振合等,分子光化学与光功能材料科学.科学出版社,北京,2010.
    [18]Tharmaraj V., Devi S., Pitchumani K., An intramolecular charge transfer (ICT) based chemosensor for silver ion using 4-methoxy-N-((thiophen-2-yl)methyl)benzenamine. Analyst,2012,137(22):5320-5324.
    [19]Santos E. d. S., Descalzo R. R., Goncalves P. F. B., Benvenutti E. V.. Rodembusch F. S., Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes. Physical Chemistry Chemical Physics,2012,14(31):10994-11001.
    [20]Hamasaki K., Ikeda H., Nakamura A., Ueno A., Toda F., Suzuki I., Osa T., Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. Journal of the American Chemical Society,1993,115(12):5035-5040.
    [21]Pfattner R., Pavlica E., Jaggi M., Liu S.-X., Decurtins S., Bratina G., Veciana J., Mas-Torrent M., Rovira C., Photo-induced intramolecular charge transfer in an ambipolar field-effect transistor based on a π-conjugated donor-acceptor dyad. Journal of Materials Chemistry C,2013,1(25):3985-3988.
    [22]Lu X., Dong X., Zhang K., Han X., Fang X., Zhang Y., A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. Analyst,2013,138(2):642-650.
    [231 Aoki K., Kamioka Y., Matsuda M., Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo:basis of biosensor construction, live imaging, and image processing. Development, Growth & Differentiation,2013,55(4):515-522.
    [24]Cho Y. Lee S. K., Lee J. W., Ahn S., Chang S.-K., Reaction-based Hg2+ signaling by excimer-monomer switching of a bis-pyrene dithioacetal. Tetrahedron Letters,2013, 54(39):5341-5344.
    [25]Hu J.-Y, Pu Y.-J., Yamashita Y., Satoh F., Kawata S., Katagiri H., Sasabe H., Kido J., Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs. Journal of Materials Chemistry C.2013,1(24):3871-3878.
    [26]Zhao J., Ji S., Chen Y. Guo H., Yang P., Excited state intramolecular proton transfer (ESIPT):from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Physical Chemistry Chemical Physics,2012,14(25):8803-8817.
    [27]Zhang X.-B., Guo C.-C., Li Z.-Z., Shen G.-L., Yu R.-Q., An optical fiber chemical sensor for mercury ions based on a porphyrin dimer. Analytical Chemistry,2002,74(4): 821-825.
    [28]Yang H., Zhou Z., Huang K., Yu M., Li F., Yi T., Huang C., Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit. Organic Letters,2007,9(23):4729-4732.
    [29]Vaswani K. G Keranen M. D., Detection of aqueous mercuric ion with a structurally simple 8-hydroxyquinoline derived on-off fluorosensor. Inorganic Chemistry,2009, 48(13):5797-5800.
    [30]Li M., Wang Q., Shi X., Hornak L. A., Wu N., Detection of mercury(Ⅱ) by Quantum Dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Analytical Chemistry,2011,83(18):7061-7065.
    [31]Wagner S., Brodner K., Coombs B. A., Bunz U. H. F., Pyridine-substituted BODIPY as fluorescent probe for Hg2+. European Journal of Organic Chemistry,2012,2012(11): 2237-2242.
    [32]Wang C., Xu L., Wang Y, Zhang D., Shi X., Dong F., Yu K., Lin Q., Yang B., Fluorescent silver nanoclusters as effective probes for highly selective detection of mercury(Ⅱ) at parts-per-billion levels. Chemistry-An Asian Journal,2012,7(7): 1652-1656.
    [33]Bhardwaj V. K., Sharma H., Kaur N., Singh N., Fluorescent organic nanoparticles (FONs) of rhodamine-appended dipodal derivative:highly sensitive fluorescent sensor for the detection of Hg2+ in aqueous media. New Journal of Chemistry,2013,37(12): 4192-4198.
    [34]Lin Z.-H., Zhu G., Zhou Y. S., Yang Y, Bai P., Chen J., Wang Z. L., A self-powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie,2013, 125(19):5169-5173.
    [35]Paramanik B., Bhattacharyya S., Patra A., Detection of Hg2+ and F- ions by using fluorescence switching of Quantum Dots in an Au-Cluster-CdTe QD nanocomposite. Chemistry-A European Journal,2013,19(19):5980-5987.
    [36]Tong B., Ma P., Zhang M., Liu Y, Mei Q., Zhang Q.-F., Phosphorescent iridium(III) carbodithioate complex for the detection of Hg2+ and acetonitrile. Inorganic Chemistry Communications,2013,37(0):121-126.
    [37]Chen L., Yang L., Li H., Gao Y., Deng D., Wu Y., Ma L.-j., Tridentate lysine-based fluorescent sensor for Hg(Ⅱ) in aqueous solution. Inorganic Chemistry,2011,50(20): 10028-10032.
    138] Madhu S., Sharma D. K., Basu S. K., Jadhav S., Chowdhury A., Ravikanth M., Sensing Hg(Ⅱ) in vitro and in vivo using a benzimidazole substituted BODIPY. Inorganic Chemistry,2013,52(19):11136-11145.
    [39]Gong J., Zhou T., Song D., Zhang L., Hu X., Stripping voltammetric detection of mercury(Ⅱ) based on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode. Analytical Chemistry,2009,82(2):567-573.
    [40]Wang G., Zhao Q., Kang X., Guan X., Probing mercury(II)-DNA interactions by nanopore stochastic sensing. The Journal of Physical Chemistry B.2013,117(17): 4763-4769.
    [41]Zhu B., Wang W., Liu L., Jiang H., Du B., Wei Q., A highly selective colorimetric and long-wavelength fluorescent probe for Hg2+.Sensors and Actuators B:Chemical,2014, 191(0):605-611.
    [42]Orriach-Fernandez F. J., Medina-Castillo A., Fernandez-Sanchez J. F., Munoz de la Pena A., Fernandez-Gutierrez A., Hg2+-selective sensing film based on the incorporation of a rhodamine 6G derivative into a novel hydrophilic water-insoluble copolymer. Analytical Methods,2013,5(23):6642-6648.
    [43]Alfonso M. A., Tarraga A., Molina P., Ferrocene-based heteroditopic receptors displaying high selectivity toward lead and mercury metal cations through different channels. The Journal of Organic Chemistry,2011,76(3):939-947.
    [44]Alfonso M., Tarraga A., Molina P., Ferrocene-based multichannel molecular chemosensors with high selectivity and sensitivity for Pb(Ⅱ) and Hg(Ⅱ) metal cations. Dalton Transactions,2010,39(37):8637-8645.
    [45]Ahamed B. N., Arunachalam M., Ghosh P., Thiomethoxychalcone-functionalized ferrocene ligands as selective chemodosimeters for mercury(Ⅱ):single-crystal X-ray structural signature of the [Hg8(μ8-S)(SCH3)12]2+ cluster. Inorganic Chemistry,2010, 49(10):4447-4457.
    [46]Cao Q.-Y., Lee M. H., Zhang J. F., Ren W. X., Kim J. S., Ferrocene-based novel electrochemical chemodosimeter for mercury ion recognition. Tetrahedron Letters, 2011,52(21):2786-2789.
    [47]Chen X., Nam S.-W., Jou M. J., Kim Y., Kim S.-J., Park S., Yoon J., Hg2+ selective fluorescent and colorimetric sensor:its crystal structure and application to bioimaging. Organic Letters,2008,10(22):5235-5238.
    [48]Chen X., Back K.-H., Kim Y., Kim S.-J., Shin I., Yoon J., A selenolactone-based fluorescent chemodosimeter to monitor mecury/methylmercury species in vitro and in vivo. Tetrahedron,2010,66(23):4016-4021.
    [49]Huang W., Zhu X., Wua D., He C., Hu X., Duan C., Structural modification of rhodamine-based sensors toward highly selective mercury detection in mixed organic/aqueous media. Dalton Transactions,2009(47):10457-10465.
    [50]Kwon S.-K., Kim H.-N., Rho, J.-H., Swamy K. M. K., Shanthakumar S. M., Yoon J.-Y., Rhodamine derivative bearing histidine binding site as a fluorescent chemosensor for Hg2+. Bulletin of the Korean Chemical Society,2009,30(3): 719-721.
    [51]Lee M. H., Kang G., Kim J. W., Ham S., Kim J. S., Tren-spaced rhodamine and pyrene fluorophores:excimer modulation with metal ion complexation. Supramolecular Chemistry,2009,21(1-2):135-141.
    [52]Huang J., Xu Y., Qian X., A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution:a NS2-containing receptor. The Journal of Organic Chemistry,2009,74(5):2167-2170.
    [53]Ma Q.-J., Zhang X.-B., Zhao X.-H., Jin Z., Mao G.-J., Shen G.-L., Yu R.-Q., A highly selective fluorescent probe for Hg2+ based on a rhodamine-coumarin conjugate. Analytica Chimica Acta,2010,663(1):85-90.
    [54]Kim S. K., Swamy K. M. K., Chung S.-Y., Kim H. N., Kim M. J., Jeong Y., Yoon J., New fluorescent and colorimetric chemosensors based on the rhodamine and boronic acid groups for the detection of Hg2+. Tetrahedron Letters,2010,51(25):3286-3289.
    [55]Lin W., Cao X., Ding Y, Yuan L., Long L., A highly selective and sensitive fluorescent probe for Hg2+ imaging in live cells based on a rhodamine-thioamide- alkyne scaffold. Chemical Communications,2010,46(20):3529-3531.
    [56]Lin W., Cao X., Ding Y., Yuan L., Yu Q., A reversible fluorescent Hg2+ chemosensor based on a receptor composed of a thiol atom and an alkene moiety for living cell fluorescence imaging. Organic & Biomolecular Chemistry,2010,8(16):3618-3620.
    [57]Kim H. N., Nam S.-W., Swamy K. M. K., Jin Y., Chen X., Kim Y, Kim S.-J., Park S., Yoon J., Rhodamine hydrazone derivatives as Hg2+ selective fluorescent and colorimetric chemosensors and their applications to bioimaging and microfluidic system. Analyst,2011,136(7):1339-1343.
    [58]Tang L., Li F., Liu M., Nandhakumar R., Single sensor for two metal ions: colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011,78(3):1168-1172.
    [59]Park S., Kim W., Swamy K. M. K., Lee H. Y., Jung J. Y, Kim G., Kim Y, Kim S.-J., Yoon J., Rhodamine hydrazone derivatives bearing thiophene group as fluorescent chemosensors for Hg2+. Dyes and Pigments.2013,99(2):323-328.
    [60]Li C.-Y., Zhang X.-B., Qiao L., Zhao Y., He C.-M., Huan S.-Y., Lu L.-M., Jian L.-X., Shen G.-L., Yu R.-Q., Naphthalimide-porphyrin hybrid based ratiometric bioimaging probe for Hg2+:well-resolved emission spectra and unique specificity. Analytical Chemistry,2009,81(24):9993-10001.
    [61]Chen T., Zhu W., Xu Y., Zhang S., Zhang X., Qian X., A thioether-rich crown-based highly selective fluorescent sensor for Hg2+ and Ag+ in aqueous solution. Dalton Transactions,2010,39(5):1316-1320.
    [62]Dong M., Wang Y.-W., Peng Y., Highly selective ratiometric fluorescent sensing for Hg2+ and Au3+, respectively, in aqueous media. Organic Letters,2010,12(22): 5310-5313.
    [63]Fang C.-L., Zhou J., Liu X.-J., Cao Z.-H., Shangguan D.-H., Mercury(Ⅱ)-mediated formation of imide-Hg-imide complexes. Dalton Transactions,2011,40(4):899-903.
    [64]Kumar M., Kumar N., Bhalla V.. Singh H., Sharma P. R., Kaur T., Naphthalimide appended rhodamine derivative:through bond energy transfer for sensing of Hg2+ ions. Organic Letters,2011,13(6):1422-1425.
    [65]Dai H., Yan Y., Guo Y., Fan L., Che Z., Xu H., A selective and sensitive "turn-on" fluorescent chemosensor for recognition of Hg2+ ions in water. Chemistry-A European Journal,2012,18(36):11188-11191.
    [66]Zhang Z., Chen Y., Xu D., Yang L., Liu A., A new 1,8-naphthalimide-based colorimetric and "turn-on" fluorescent Hg2+ sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2013,105(0):8-13.
    [67]Wu X.-F., Ma Q.-J., Wei X.-J., Hou Y.-M., Zhu X., A selective fluorescent sensor for Hg2+ based on covalently immobilized naphthalimide derivative. Sensors and Actuators B:Chemical,2013,183(0):565-573.
    [68]Qi X., Kim S. K., Han S. J., Xu L., Jee A. Y., Kim H. N., Lee C., Kim Y., Lee M., Kim S.-J., Yoon J., New BODIPY-triazine based tripod fluorescent systems. Tetrahedron Letters,2008,49(2):261-264.
    [69]Atilgan S., Kutuk I., Ozdemir T., A near IR di-styryl BODIPY-based ratiometric fluorescent chemosensor for Hg(Ⅱ). Tetrahedron Letters,2010,51(6):892-894.
    [70]Atilgan S., Ozdemir T., Akkaya E. U., Selective Hg(Ⅱ) sensing with improved stokes shift by coupling the internal charge transfer process to excitation energy transfer. Organic Letters,2010,12(21):4792-4795.
    [71]Kim D., Yamamoto K., Ahn K. H., A BODIPY-based reactive probe for ratiometric fluorescence sensing of mercury ions. Tetrahedron,2012,68(26):5279-5282.
    [721 Huang J., Ma X., Liu B., Cai L., Li Q., Zhang Y. Jiang K., Yin S., A colorimetric and ratiometric turn-on BODIPY-based fluorescent probe for double-channel detection of Cu2+ and Hg2+. Journal of Luminescence,2013,141(0):130-136.
    [73]Xie R., Yi Y., He Y, Liu X., Liu Z.-X., A simple BODIPY-imidazole-based probe for the colorimetric and fluorescent sensing of Cu(Ⅱ) and Hg(Ⅱ). Tetrahedron,2013, 69(40):8541-8546.
    [74]Lee H. N., Kim H. N., Swamy K. M. K., Park M. S., Kim J., Lee H., Lee K.-H., Park S., Yoon J., New acridine derivatives bearing immobilized azacrown or azathiacrown ligand as fluorescent chemosensors for Hg2+ and Cd2+. Tetrahedron Letters,2008, 49(7):1261-1265.
    [75]Hsieh Y.-C., Chir J.-L., Wu H.-H., Chang P.-S., Wu A.-T., A sugar-aza-crown ether-based fluorescent sensor for Hg2+ and Cu2+. Carbohydrate Research,2009, 344(16):2236-2239.
    [76]Mitra A., Mittal A. K., Rao C. P., Carbohydrate assisted fluorescence turn-on gluco-imino-anthracenyl conjugate as a Hg(Ⅱ) sensor in milk and blood serum milieu. Chemical Communications,2011,47(9):2565-2567.
    [77]Praveen L., Babu J., Reddy M. L. P., Luxmi Varma R., Unfolding with mercury: anthracene-oxyquinoline dyad as a fluorescent indicator for Hg(Ⅱ). Tetrahedron Letters,2012,53(31):3951-3954.
    [78]Wang J., Zhang L., Qi Q., Li S., Jiang Y., Specific ratiometric fluorescent sensing of Hg2+ via the formation of mercury(Ⅱ) barbiturate coordination polymers. Analytical Methods,2013,5(3):608-611.
    [79]Yang Y, Jiang J., Shen G, Yu R., An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin. Analytica Chimica Acta,2009,636(1):83-88.
    [80]Han Z.-X., Luo H.-Y., Zhang X.-B., Kong R.-M., Shen G-L., Yu R.-Q., A ratiometric chemosensor for fluorescent determination of Hg2+ based on a new porphyrin-quinoline dyad. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,72(5):1084-1088.
    [81]Choi J. K., Sargsyan G., Olive A. M., Balaz M., Highly sensitive and selective spectroscopic detection of mercury(II) in water by using pyridylporphyrin-DNA conjugates. Chemistry-A European Journal,2013,19(7):2515-2522.
    [82]Nolan E. M., Lippard S. J., A "turn-on" fluorescent sensor for the selective detection of mercuric ion in aqueous media. Journal of the American Chemical Society,2003, 125(47):14270-14271.
    [83]Nolan E. M., Lippard S. J., Turn-on and ratiometric mercury sensing in water with a red-emitting probe. Journal of the American Chemical Society,2007,129(18): 5910-5918.
    [84]Yoon S., Albers A. E., Wong A. P.. Chang C. J., Screening mercury levels in fish with a selective fluorescent chemosensor. Journal of the American Chemical Society,2005, 127(46):16030-16031.
    [85]Santra M., Ryu D., Chatterjee A., Ko S.-K., Shin I., Ahn K. H., A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species. Chemical Communications,2009,45(16):2115-2117.
    [86]Ando S., Koide K., Development and applications of fluorogenic probes for mercury(Ⅱ) based on vinyl ether oxymercuration. Journal of the American Chemical Society,2011,133(8):2556-2566.
    [87]Oliveira E., Lorenzo J., Cid A., Capelo J. L., Lodeiro C., Non-toxic fluorescent alanine-fluorescein probe with green emission for dual colorimetric/fluorimetric sensing. Journal of Photochemistry and Photobiology A:Chemistry,2013,269(0): 17-26.
    [88]Tang B., Cui L. J., Xu K. H.,Tong L. L., Yang G. W., An L. G., A sensitive and selective near-infrared fluorescent probe for mercuric ions and its biological imaging applications. ChemBioChem,2008,9(7):1159-1164.
    [89]Zheng H., Zhang X.-J., Cai X., Bian Q.-N., Yan M., Wu G.-H., Lai X.-W., Jiang Y.-B., Ratiometric fluorescent chemosensor for Hg2+ based on heptamethine cyanine containing a thymine moiety. Organic Letters,2012,14(8):1986-1989.
    [90]Liu Y., Chen M., Cao T., Sun Y., Li C., Liu Q., Yang T., Yao L., Feng W., Li F., A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. Journal of the American Chemical Society,2013,135(26):9869-9876.
    [91]Wu Y, Jing H., Dong Z., Zhao Q., Wu H., Li F., Ratiometric phosphorescence imaging of Hg(Ⅱ) in living cells based on a neutral iridium(Ⅲ) complex. Inorganic Chemistry, 2011,50(16):7412-7420.
    [92]Zhao N., Lam J. W. Y., Sung H.H. Y. Su H. M., Williams I. D., Wong K. S., Tang B. Z., Effect of the counterion on light emission:a displacement strategy to change the emission behaviour from aggregation-caused quenching to aggregation-induced emission and to construct sensitive fluorescent sensors for Hg2+ detection. Chemistry-A European Journal,2014,20(1):133-138.
    [93]Neupane L. N., Park J.-Y., Park J. H., Lee K.-H., Turn-on fluorescent chemosensor based on an amino acid for Pb(Ⅱ) and Hg(Ⅱ) ions in aqueous solutions and role of tryptophan for sensing. Organic Letters.2013,15(2):254-257.
    [94]Batista R. M. F., Costa S. P. G.. Silva R. M. P., Lima N. E. M., Raposo M. M. M., Synthesis and evaluation of arylfuryl-bis(indolyl)methanes as selective chromogenic and fluorogenic ratiometric receptors for mercury ion in aqueous solution. Dyes and Pigments,2014,102(0):293-300.
    [95]Reichardt C., Solvatochromic dyes as solvent polarity indicators. Chemical Reviews, 1994,94(8):2319-2358.
    [96]Reichardt C., Solvents and solvent effects:an introduction. Organic Process Research & Development,2006,11(1):105-113.
    [97]Bayliss N. S., The effect of the electrostatic polarization of the solvent on electronic absorption spectra in solution. The Journal of Chemical Physics,1950,18(3):292-296.
    [98]Hermant R. M., Bakker N. A. C., Scherer T., Krijnen B., Verhoeven J. W., Systematic study of a series of highly fluorescent rod-shaped donor-acceptor systems. Journal of the American Chemical Society,1990,112(3):1214-1221.
    [99]Bayliss N. S., McRae E. G., Solvent effects in organic spectra:dipole forces and the Franck-Condon principle. The Journal of Physical Chemistry,1954,58(11): 1002-1006.
    [100]Huang G.-J., Ho J.-H., Prabhakar C., Liu Y.-H., Peng S.-M., Yang J.-S., Site-selective hydrogen-bonding-induced fluorescence quenching of highly solvatofluorochromic GFP-like chromophores. Organic Letters,2012,14(19):5034-5037.
    [101]Abraham M. H., Scales of solute hydrogen-bonding:their construction and application to physicochemical and biochemical processes. Chemical Society Reviews,1993, 22(2):73-83.
    [102]Pihko P. M., Activation of carbonyl compounds by double hydrogen bonding:an emerging tool in asymmetric catalysis. Angewandte Chemie International Edition, 2004,43(16):2062-2064.
    [103]Chipem F. A. S., Mishra A., Krishnamoorthy G, The role of hydrogen bonding in excited state intramolecular charge transfer. Physical Chemistry Chemical Physics, 2012,14(25):8775-8790.
    [104]Guo Z., Zhu W., Tian H., Dicyanomethylene-4H-pyran chromophores for OLED emitters, logic gates and optical chemosensors. Chemical Communications,2012, 48(49):6073-6084.
    [105]Chen Y., Zhu C., Yang Z., Li J., Jiao Y, He W., Chen J., Guo Z., A new "turn-on" chemodosimeter for Hg2+:ICT fluorophore formation via Hg2+-induced carbaldehyde recovery from 1,3-dithiane. Chemical Communications,2012,48(42):5094-5096.
    [106]Perepichka D. F., Perepichka I. F., Bryce M. R., Sokolov N. I., Moore A. J., π-Extended nitrofluorene-1,3-dithiole chromophore:enhancing the photoresponse of holographic materials through the balance of intramolecular charge transfer and electron affinity. Journal of Materials Chemistry,2001,11(7):1772-1774.
    [107]Shu T., Wu J., Lu M., Chen L., Yi T., Li F., Huang C., Tunable red-green-blue fluorescent organogels on the basis of intermolecular energy transfer. Journal of Materials Chemistry,2008,18(8):886-893.
    [108]Yang Y., Zhao Q., Feng W., Li F., Luminescent chemodosimeters for bioimaging. Chemical Reviews,2012,113(1):192-270.
    [109]Wu Y.-Y., Chen Y., Gou G.-Z., Mu W.-H., Lv X.-J., Du M.-L., Fu W.-F., Large stokes shift induced by intramolcular charge transfer in N,O-chelated naphthyridine-BF2 complexes. Organic Letters,2012,14(20):5226-5229.
    [110]Hanson K., Patel N., Whited M. T., Djurovich P.I., Thompson M. E., Substituted 1,3-bis(imino)isoindole diols:a new class of proton transfer dyes. Organic Letters, 2011,13(7):1598-1601.
    [111]Choi M. M. F., Tse, O. L., Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film. Analytica Chimica Acta,1999,378(1-3): 127-134.
    [112]Brundrett G. W., Criteria for moisture control. Butterworths, London,1990.
    [113]Fong A., Hieftje G. M., Near-infrared measurement of relative and absolute humidity through detection of water adsorbed on a silica gel layer. Analytical Chemistry,1995, 67(6):1139-1146.
    [114]Baptista M. S., Tran C. D., Gao G.-H., Near-infrared detection of flow injection analysis by acoustooptic tunable filter-based spectrophotometry. Analytical Chemistry, 1996,68(6):971-976.
    [115]Blyth J., Millington R. B., Mayes A. G., Frears E. R., Lowe C. R., Holographic sensor for water in solvents. Analytical Chemistry,1996,68(7):1089-1094.
    [116]Ohira S.-I., Goto K., Toda K., Dasgupta P. K., A capacitance sensor for water:trace moisture measurement in gases and organic solvents. Analytical Chemistry,2012, 84(20):8891-8897.
    [117]Chang Q., Murtaza Z., Lakowicz J. R., Rao G., A fluorescence lifetime-based solid sensor for water. Analytica Chimica Acta,1997,350(1-2):97-104.
    [118]Glenn S. J., Cullum B. M., Nair R. B., Nivens D. A., Murphy C. J., Angel S. M., Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated NafionTM membrane. Analytica Chimica Acta,2001,448(1-2):1-8.
    [119]Niu C.-G., Guan A.-L., Zeng G.-M., Liu Y.-G., Li Z.-W., Fluorescence water sensor based on covalent immobilization of chalcone derivative. Analytica Chimica Acta, 2006,577(2):264-270.
    [120]Mishra H., Misra V., Mehata M. S., Pant T. C., Tripathi H. B., Fluorescence studies of salicylic acid doped poly(vinyl alcohol) film as a water/humidity sensor. The Journal of Physical Chemistry A,2004,108(12):2346-2352.
    [121]Yang X., Niu C.-G., Shang Z.-J., Shen G.-L., Yu R.-Q., Optical-fiber sensor for determining water content in organic solvents. Sensors and Actuators B:Chemical, 2001,75(1-2):43-47.
    [122]Rushworth C. M., Yogarajah Y, Zhao Y, Morgan H., Vallance C., Sensitive analysis of trace water analytes using colourimetric cavity ringdown spectroscopy. Analytical Methods,2013,5(1):239-247.
    [123]Ooyama Y, Matsugasako A., Hagiwara Y, Ohshita J., Harima Y, Highly sensitive fluorescence PET (Photo-induced Electron Transfer) sensor for water based on anthracene-bisboronic acid ester. RSC Advances,2012,2(20):7666-7668.
    [124]Ishihara S., Labuta J., Sikorsky T., Burda J. V., Okamoto N., Abe H., Ariga K., Hill J. P., Colorimetric detection of trace water in tetrahydrofuran using N,N'-substituted oxoporphyrinogens. Chemical Communications,2012,48(33):3933-3935.
    [125]Citterio D., Minamihashi K., Kuniyoshi Y., Hisamoto H., Sasaki S.-i., Suzuki K., Optical determination of low-level water concentrations in organic solvents using fluorescent acridinyl dyes and dye-immobilized polymer membranes. Analytical Chemistry,2001,73(21):5339-5345.
    [126]Niu C., Li L., Qin P., Zeng G., Zhang Y., Determination of water content in organic solvents by naphthalimide derivative fluorescent probe. Analytical Sciences,2010, 26(6):671-674.
    [127]Quang D. T., Kim J. S., Fluoro-and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chemical Reviews,2010,110(10): 6280-6301.
    [128]Aragay G., Pons J., Merkoci A., Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chemical Reviews, 2011,111(5):3433-3458.
    [129]Bhalla V., Tejpal R., Kumar M., Rhodamine appended terphenyl:a reversible "off-on" fluorescent chemosensor for mercury ions. Sensors and Actuators B:Chemical,2010, 151(1):180-185.
    [130]Zhang X., Xiao Y, Qian X., A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angewandte Chemie International Edition,2008, 47(42):8025-8029.
    [131]Martinez R., Espinosa A., Tarraga A., Molina P., A new bis(pyrenyl)azadiene-based probe for the colorimetric and fluorescent sensing of Cu(Ⅱ) and Hg(Ⅱ). Tetrahedron, 2010,66(21):3662-3667.
    [132]Ghosh K., Sarkar T., Majumdar A., Rhodamine-labeled sensor bead as a colorimetric and fluorometric dual assay for Hg2+ ions in water. Asian Journal of Organic Chemistry,2013.2(2):157-163.
    [133]Huang C.-C., Chang H.-T., Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(Ⅱ) in aqueous solution. Analytical Chemistry,2006, 78(24):8332-8338.
    [134]Yang M.-H., Thirupathi P., Lee K.-H., Selective and sensitive ratiometric detection of Hg(II) ions using a simple amino acid based sensor. Organic Letters,2011,13(19): 5028-5031.
    [135]Mahajan R. K., Kaur R., Bhalla V., Kumar M., Hattori T., Miyano S., Mercury(II) sensors based on calix[4]arene derivatives as receptor molecules. Sensors and Actuators B:Chemical,2008,130(1):290-294.
    [136]Chen C., Wang R., Guo L., Fu N., Dong H., Yuan Y., A squaraine-based colorimetric and "turn on" fluorescent sensor for selective detection of Hg2+ in an aqueous medium. Organic Letters,2011,13(5):1162-1165.
    [137]Yang H., Qian J., Li L., Zhou Z., Li D., Wu H., Yang S., A selective phosphorescent chemodosimeter for mercury ion. Inorganica Chimica Acta,2010,363(8):1755-1759.
    [138]Lee D.-N., Kim G.-J., Kim H.-J., A fluorescent coumarinylalkyne probe for the selective detection of mercury(Ⅱ) ion in water. Tetrahedron Letters,2009,50(33): 4766-4768.
    [139]Liu J., Lu Y., Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angewandte Chemie, 2007,119(40):7731-7734.
    [140]Guo X., Qian X., Jia L., A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. Journal of the American Chemical Society, 2004,126(8):2272-2273.
    [141]Zeng X., Dong L., Wu C., Mu L., Xue S.-F., Tao Z., Highly sensitive chemosensor for Cu(Ⅱ) and Hg(Ⅱ) based on the tripodal rhodamine receptor. Sensors and Actuators B: Chemical,2009,141(2):506-510.
    [142]Kadarkaraisamy M., Thammavongkeo S., Basa P. N., Caple G., Sykes A. G., Substitution of thiophene oligomers with macrocyclic end caps and the colorimetric detection of Hg(Ⅱ). Organic Letters,2011,13(9):2364-2367.
    [143]Guo L., Hu H., Sun R., Chen G., Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and π-stacked T-Hg(Ⅱ)-T base pairs. Talanta,2009,79(3):775-779.
    [144]Wu J., Liu W., Ge J., Zhang H., Wang P., New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews,2011, 40(7):3483-3495.
    [145]Liu Q., Peng J., Sun L., Li F., High-efficiency upconversion luminescent sensing and bioimaging of Hg(Ⅱ) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano,2011,5(10):8040-8048.
    [146]Jiang W., Wang W., A selective and sensitive "turn-on" fluorescent chemodosimeter for Hg2+ in aqueous media via Hg2+ promoted facile desulfurization-lactonization reaction. Chemical Communications,2009,45(26):3913-3915.
    [147]Huang W., Wu D.-Y, Duan C.-Y, Conformation-switched chemosensor for selective detection of Hg2+ in aqueous media. Inorganic Chemistry Communications,2010, 13(2):294-297.
    [148]Wang H., Li Y., Xu S., Li Y, Zhou C., Fei X., Sun L., Zhang C., Li Y, Yang Q., Xu X., Rhodamine-based highly sensitive colorimetric off-on fluorescent chemosensor for Hg2+ in aqueous solution and for live cell imaging. Organic & Biomolecular Chemistry,2011,9(8):2850-2855.
    [149]Aksuner N., Basaran B., Henden E., Yilmaz I., Cukurovali A., A sensitive and selective fluorescent sensor for the determination of mercury(II) based on a novel triazine-thione derivative. Dyes and Pigments,2011,88(2):143-148.
    [150]Yang Y.-K., Yook K.-J., Tae J., A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. Journal of the American Chemical Society,2005,127(48):16760-16761.
    [151]Wu Z., Zhang Y, Ma J. S., Yang G., Ratiometric Zn2+ sensor and strategy for Hg2+ selective recognition by central metal ion replacement. Inorganic Chemistry,2006, 45(8):3140-3142.
    [152]Wang J., Qian X., Cui J., Detecting Hg2+ ions with an ICT fluorescent sensor molecule:remarkable emission spectra shift and unique selectivity. The Journal of Organic Chemistry,2006,71(11):4308-4311.
    [153]Kim H. N., Lee M. H., Kim H. J., Kim J. S., Yoon J., A new trend in rhodamine-based chemosensors:application of spirolactam ring-opening to sensing ions. Chemical Society Reviews,2008,37(8):1465-1472.
    [154]Song K. C., Kim J. S., Park S. M., Chung K.-C., Ahn S., Chang S.-K., Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline. Organic Letters, 2006,8(16):3413-3416.
    [155]Liu W., Xu L., Zhang H., You J., Zhang X., Sheng R., Li H., Wu S., Wang P., Dithiolane linked thiorhodamine dimer for Hg2+ recognition in living cells. Organic & Biomolecular Chemistry,2009,7(4):660-664.
    [156]Liu B., Tian H., A selective fluorescent ratiometric chemodosimeter for mercury ion. Chemical Communications,2005,41(25):3156-3158.
    [157]Wu J.-S., Hwang I.-C., Kim K. S., Kim J. S., Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution:fluorescent off-on. Organic Letters.2007.9(5): 907-910.
    [158]Lee M. H., Cho B.-K., Yoon J., Kim J. S., Selectively chemodosimetric detection of Hg(Ⅱ) in aqueous media. Organic Letters,2007,9(22):4515-4518.
    [159]Choi M. G., Kim Y. H., Namgoong J. E., Chang S.-K., Hg2+-selective chromogenic and fluorogenic chemodosimeter based on thiocoumarins. Chemical Communications, 2009,45(24):3560-3562.
    [160]Zhang G., Zhang D., Yin S., Yang X., Shuai Z., Zhu D., 1,3-Dithiole-2-thione derivatives featuring an anthracene unit:new selective chemodosimeters for Hg(Ⅱ) ion. Chemical Communications,2005,41(16):2161-2163.
    [161]Chae M. Y., Czarnik A. W., Fluorometric chemodosimetry. Mercury(Ⅱ) and silver(Ⅰ) indication in water via enhanced fluorescence signaling. Journal of the American Chemical Society,1992,114(24):9704-9705.
    [162]Cheng C.-C., Chen Z.-S., Wu C.-Y., Lin C.-C., Yang C.-R., Yen Y.-P., Azo dyes featuring a pyrene unit:new selective chromogenic and fluorogenic chemodosimeters for Hg(Ⅱ). Sensors and Actuators B:Chemical,2009,142(1):280-287.
    [163]Qu Y., Yang J., Hua J., Zou L., Thiocarbonyl quinacridone-based "turn on" fluorescent chemodosimeters for highly sensitive and selective detection of Hg(Ⅱ). Sensors and Actuators B:Chemical,2012,161(1):661-668.
    [164]Kim H. N., Ren W. X., Kim J. S., Yoon J., Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews,2012,41(8): 3210-3244.
    [165]Kumar M., Reja S.I., Bhalla V., A charge transfer amplified fluorescent Hg2+ complex for detection of picric acid and construction of logic functions. Organic Letters,2012, 14(23):6084-6087.
    [166]Khan T. K., Ravikanth M.,3-(Pyridine-4-thione)BODIPY as a chemodosimeter for detection of Hg(Ⅱ) ions. Dyes and Pigments,2012,95(1):89-95.
    [167]Chen C., Du Y., Li J., Yang X., Wang E., Fabrication of a sensor chip containing Au and Ag electrodes and its application for sensitive Hg(Ⅱ) determination using chronocoulometry. Analytica Chimica Acta,2012,738(0):45-50.
    [168]Dave N., Chan M. Y., Huang P. J. J., Smith, B. D., Liu J., Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(Ⅱ) detection and removal in water. Journal of the American Chemical Society,2010, 132(36):12668-12673.
    [169]Li Y., Wei F., Lu Y., lie S., Zhao L., Zeng X., Novel mercury sensor based on water soluble styrylindolium dye. Dyes and Pigments,2013,96(2):424-429.
    [170]Firooz A. R., Movahedi M., Ensafi A. A., Selective and sensitive optical chemical sensor for the determination of Hg(Ⅱ) ions based on tetrathia-12-crown-4 and chromoionophore I. Sensors and Actuators B:Chemical,2012,171-172(0):492-498.
    [171]Liu X. Y., Bai D. R., Wang S., Charge-transfer emission in nonplanar three-coordinate organoboron compounds for fluorescent sensing of fluoride. Angewandte Chemie, 2006,118(33):5601-5604.
    [172]Xu W.-J., Liu S.-J., Zhao X.-Y, Sun S., Cheng S., Ma T.-C., Sun H.-B., Zhao Q., Huang W., Cationic iridium(Ⅲ) complex containing both triarylboron and carbazole moieties as a ratiometric fluoride probe that utilizes a switchable triplet-singlet emission. Chemistry-A European Journal,2010,16(24):7125-7133.
    [173]Raad F. S., El-Ballouli A. A. O., Moustafa R. M., Al-Sayah M. H., Kaafarani B. R., Novel quinoxalinophenanthrophenazine-based molecules as sensors for anions: synthesis and binding investigations. Tetrahedron,2010,66(16):2944-2952.
    [174]Baker J. L., Sudarsan N., Weinberg Z., Roth A., Stockbridge R. B., Breaker R. R., Widespread genetic switches and toxicity resistance proteins for fluoride. Science, 2012,335(6065):233-235.
    [175]Aboubakr H., Brisset H., Siri O., Raimundo J.-M., Highly specific and reversible fluoride sensor based on an organic semiconductor. Analytical Chemistry,2013, 85(20):9968-9974.
    [176]Bao Y, Liu B., Wang H., Tian J., Bai R., A "naked eye" and ratiometric fluorescent chemosensor for rapid detection of F-based on combination of desilylation reaction and excited-state proton transfer. Chemical Communications,2011,47(13):3957-3959.
    [177]Xu W., Liu S., Sun H., Zhao X., Zhao Q., Sun S., Cheng S., Ma T., Zhou L., Huang W., FRET-based probe for fluoride based on a phosphorescent iridium(Ⅲ) complex containing triarylboron groups. Journal of Materials Chemistry,2011,21(21): 7572-7581.
    [178]Guha S., Saha S., Fluoride ion sensing by an anion-π interaction. Journal of the American Chemical Society,2010,132(50):17674-17677.
    [179]Xiong J., Sun L., Liao Y., Li G.-N., Zuo J.-L., You X.-Z., A new optical and electrochemical sensor for fluoride ion based on the functionalized boron-dipyrromethene dye with tetrathiafulvalene moiety. Tetrahedron Letters,2011, 52(46):6157-6161.
    [180]Bhalla V., Roopa, Kumar, M., Sharma, P. R., Kaur, T., Hg2+ induced hydrolysis of pentaquinone based schiff base:a new chemodosimeter for Hg2+ ions in mixed aqueous media. Dalton Transactions,2013,42(42):15063-15068.
    [181]Bhalla V., Kumar R., Kumar M., Dhir A., Bifunctional fluorescent thiacalix[4]arene based chemosensor for Cu2+ and F- ions. Tetrahedron,2007,63(45):11153-11159.
    [182]Rao M. R., Mobin S. M., Ravikanth M., Boron-dipyrromethene based specific chemodosimeter for fluoride ion. Tetrahedron,2010,66(9):1728-1734.
    [183]Jia Y., Li Z., Shi W., A colorimetric chemosensor for F-based on alizarin complexone and layered double hydroxide ultrafilms. Sensors and Actuators B:Chemical,2013, 188(0):576-583.
    [184]Xu Z.-H., Hou X.-F., Xu W.-L., Guo R., Xiang T.-C., A highly sensitive and selective fluorescent probe for Hg2+ and its imaging application in living cells. Inorganic Chemistry Communications,2013,34(0):42-46.
    [185]Das P., Kesharwani M. K., Mandal A. K., Suresh E.. Ganguly B.. Das A., An alternative approach:a highly selective dual responding fluoride sensor having active methylene group as binding site. Organic & Biomolecular Chemistry,2012,10(11): 2263-2271.
    [186| Lee S. H., Parthasarathy A., Schanze K. S., A sensitive and selective mercury(Ⅱ) sensor based on amplified fluorescence quenching in a conjugated polyelectrolyte/ spiro-cyclic rhodamine system. Macromolecular Rapid Communications,2013,34(9): 791-795.
    [187]Taki M., Akaoka K., Iyoshi S., Yamamoto Y., Rosamine-based fluorescent sensor with femtomolar affinity for the reversible detection of a mercury ion. Inorganic Chemistry, 2012,51(24):13075-13077.
    [1881 Su D., Yang X., Xia Q., Chai F., Wang C., Qu F., Colorimetric detection of Hg2+ using thioctic acid functionalized gold nanoparticles. RSC Advances,2013,3(46): 24618-24624.
    [189]Zhang X., Huang X.-J., Zhu Z.-J., A reversible Hg(ii)-selective fluorescent chemosensor based on a thioether linked bis-rhodamine. RSC Advances,2013,3(47): 24891-24895.
    [190]de Silva A. P., McClean G. D., Pagliari S., Direct detection of ion pairs by fluorescence enhancement. Chemical Communications,2003,39(16):2010-2011.
    [191]Suresh M., Mishra S., Mishra S. K., Suresh E., Mandal A. K., Shrivastav A., Das A., Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism. Organic Letters,2009,11(13):2740-2743.
    [192]Yang H., Zhou Z., Li F., Yi T., Huang C., New Hg2+ and Ag+ selective colorimetric sensor based on thiourea subunits. Inorganic Chemistry Communications,2007, 10(10):1136-1139.
    [193]Yu Y., Lin L.-R., Yang K.-B., Zhong X., Huang R.-B., Zheng L.-S., p-Dimethylaminobenzaldehyde thiosemicarbazone:a simple novel selective and sensitive fluorescent sensor for mercury(Ⅱ) in aqueous solution. Talanta,2006,69(1): 103-106.
    [194]Peng X., Wu Y, Fan J., Tian M., Han K., Colorimetric and ratiometric fluorescence sensing of fluoride:tuning selectivity in proton transfer. The Journal of Organic Chemistry,2005,70(25):10524-10531.
    [195]Sharma S., Hundal M. S., Hundal G., Selective recognition of fluoride ions through fluorimetric and colorimetric response of a first mesitylene based dipodal sensor 15employing thiosemicarbazones. Tetrahedron Letters,2013,54(19):2423-2427.
    [196]Han F., Bao Y, Yang Z., Fyles T. M., Zhao J., Peng X., Fan J., Wu Y, Sun S., Simple bisthiocarbonohydrazones as sensitive, selective, colorimetric, and switch-on fluorescent chemosensors for fluoride anions. Chemistry - A European Journal,2007, 13(10):2880-2892.
    [197]Bose P., Ghosh P., Visible and near-infrared sensing of fluoride by indole conjugated urea/thiourea ligands. Chemical Communications,2010,46(17):2962-2964.
    [198]Torre C. D., Petochi T., Corsi I., Dinardo M. M., Baroni D., Alcaro L., Focardi S., Tursi A., Marino G., Frigeri A., Amato E., DNA damage, severe organ lesions and high muscle levels of As and Hg in two benthic fish species from a chemical warfare agent dumping site in the Mediterranean Sea. Science of The Total Environment,2010, 408(9):2136-2145.
    [199]Stacchiotti A., Morandini F., Bettoni F., Schena I., Lavazza A., Grigolato P. G., Apostoli P., Rezzani R., Aleo M. F., Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead. Toxicology,2009,264(3): 215-224.
    [200]Cernichiari E., Myers G. J., Ballatori N., Zareba G., Vyas J., Clarkson T., The biological monitoring of prenatal exposure to methylmercury. NeuroToxicology,2007, 28(5):1015-1022.
    [201]Nolan E. M., Lippard S. J., Tools and tactics for the optical detection of mercuric ion. Chemical Reviews,2008,108(9):3443-3480.
    [202]Bothra S., Solanki J. N., Sahoo S. K., Callan J. F., Anion-driven selective colorimetric detection of Hg2+ and Fe3+ using functionalized silver nanoparticles. RSC Advances, 2014,4(3):1341-1346.
    [203]Jiang H., Jiang J., Cheng J., Dou W., Tang X., Yang L., Liu W., Bai D., A sensitive colorimetric and ratiometric fluorescent chemodosimeter for Hg2+ and its application for bioimaging. New Journal of Chemistry,2014,38(1):109-114.
    [204]Gu Z., Zhao M., Sheng Y., Bentolila L. A., Tang Y.. Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Analytical Chemistry, 2011,83(6):2324-2329.
    [205]Zhao Y, Lin Z., He C., Wu H., Duan C., A "turn-on" fluorescent sensor for selective Hg(II) detection in aqueous media based on metal-induced dye formation. Inorganic Chemistry,2006,45(25):10013-10015.
    [206]Ghaedi M., Fathi M.R., Shokrollahi A., Shajarat F., Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy. Analytical Letters,2006,39(6):1171-1185.
    [207]Beauchemin D., Inductively coupled plasma mass spectrometry. Analytical Chemistry, 2008,80(12):4455-4486.
    [208]Pereiro R., Diaz C., Speciation of mercury, tin, and lead compounds by gas chromatography with microwave-induced plasma and atomic-emission detection (GC-MIP-AED). Anal Bioanal Chem,2002,372(1):74-90.
    [209]Leopold K., Foulkes M., Worsfold P., Methods for the determination and speciation of mercury in natural waters-A review. Analytica Chimica Acta,2010,663(2):127-138.
    [210]de Silva A. P., Gunaratne H. Q. N., Gunnlaugsson T.. Huxley A. J. M., McCoy C. P., Rademacher J. T., Rice T. E., Signaling recognition events with fluorescent sensors and switches. Chemical Reviews,1997,97(5):1515-1566.
    [211]Scrafton D. K., Taylor J. E., Mahon M. F., Fossey J. S., James T. D., "Click-fluors": modular fluorescent saccharide sensors based on a 1,2,3-triazole ring. The Journal of Organic Chemistry,2008,73(7):2871-2874.
    [212]Liu L., Zhang G., Xiang J., Zhang D., Zhu D., Fluorescence "turn on" chemosensors for Ag+ and Hg2+ based on tetraphenylethylene motif featuring adenine and thymine moieties. Organic Letters,2008,10(20):4581-4584.
    [213]Kim H. N., Guo Z., Zhu W., Yoon J., Tian H., Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chemical Society Reviews,2011,40(1): 79-93.
    [214]Zhang X., Chi L., Ji S., Wu Y., Song P., Han K., Guo H., James T. D., Zhao J., Rational design of d-PeT phenylethynylated-carbazole monoboronic acid fluorescent sensors for the selective detection of a-hydroxyl carboxylic acids and monosaccharides. Journal of the American Chemical Society,2009,131(47): 17452-17463.
    [215]Zhu X.-J., Fu S.-T., Wong W.-K., Guo J.-P., Wong W.-Y., A near-infrared-fluorescent chemodosimeter for mercuric ion based on an expanded porphyrin. Angewandte Chemie,2006,118(19):3222-3226.
    [216]Jun M.E., Roy B., Ahn, K.H., "Turn-on" fluorescent sensing with "reactive" probes. Chemical Communications,2011,47(27):7583-7601.
    [217]Yan Y., Hu Y, Zhao G., Kou X., A novel azathia-crown ether dye chromogenic chemosensor for the selective detection of mercury(Ⅱ) ion. Dyes and Pigments,2008, 79(2):210-215.
    [218]Kim S. H., Song K. C., Ahn S., Kang Y. S., Chang S.-K., Hg2+-selective fluoroionophoric behavior of pyrene appended diazatetrathia-crown ether. Tetrahedron Letters,2006,47(4):497-500.
    [219]Othman A. B., Lee J. W., Wu J.-S., Kim J. S., Abidi R., Thuery P., Strub J. M., Van Dorsselaer A., Vicens J., Calix[4]arene-based, Hg2+-induced intramolecular fluorescence resonance energy transfer chemosensor. The Journal of Organic Chemistry,2007,72(20):7634-7640.
    [220]Mahato P., Ghosh A., Saha S., Mishra S., Mishra S. K., Das A., Recognition of Hg2+ using diametrically disubstituted cyclam unit. Inorganic Chemistry,2010,49(24): 11485-11492.
    [221]Kim S. H., Kim J. S., Park S. M., Chang S.-K., Hg2+-selective off-on and Cu2+-selective on-off type fluoroionophore based upon cyclam. Organic Letters,2006, 8(3):371-374.
    [222]Shi L., Song W., Li Y, Li D.-W., Swanick K. N., Ding Z., Long Y.-T., A multi-channel sensor based on 8-hydroxyquinoline ferrocenoate for probing Hg(Ⅱ) ion. Talanta,2011, 84(3):900-904.
    [223]Cheng Y, Zhang M., Yang H., Li F., Yi T., Huang C., Azo dyes based on 8-hydroxyquinoline benzoates:synthesis and application as colorimetric Hg2+-selective chemosensors. Dyes and Pigments,2008,76(3):775-783.
    [224]Caballero A., Martinez R., Lloveras V., Ratera I., Vidal-Gancedo J., Wurst K., Tarraga A., Molina P., Veciana J., Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines. Journal of the American Chemical Society,2005,127(45):15666-15667.
    [225]Lin W.-C., Wu C.-Y., Liu Z.-H., Lin C.-Y., Yen Y.-P., A new selective colorimetric and fluorescent sensor for Hg2+ and Cu2+ based on a thiourea featuring a pyrene unit. Talanta,2010,81(4-5):1209-1215.
    [226]Basheer M. C., Alex S., Thomas K.G., Suresh C. H., Das S., A squaraine-based chemosensor for Hg2+ and Pb2+. Tetrahedron,2006,62(4):605-610.
    [227]Luo C., Zhou Q., Zhang B., Wang X., A new squaraine and Hg2+-based chemosensor with tunable measuring range for thiol-containing amino acids. New Journal of Chemistry,2011,35(1):45-48.
    [228]Ros-Lis J. V., Marcos M. D., Martinez-Manez R., Rurack K., Soto J., A Regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ Ions. Angewandte Chemie International Edition,2005,44(28):4405-4407.
    [229]Kim H. J., Park J. E., Choi M. G., Ahn S., Chang S.-K., Selective chromogenic and fluorogenic signalling of Hg2+ ions using a fluorescein-coumarin conjugate. Dyes and Pigments,2010,84(1):54-58.
    [230]Yang X.-F., Li Y., Bai Q., A highly selective and sensitive fluorescein-based chemodosimeter for Hg2+ ions in aqueous media. Analytica Chimica Acta,2007, 584(1):95-100.
    [231]Yang Y.-K., Ko S.-K., Shin I., Tae J., Fluorescent detection of methylmercury by desulfurization reaction of rhodamine hydrazide derivatives. Organic & Biomolecular Chemistry,2009,7(22):4590-4593.
    [2321 Castro M., Cruz J., Otazo-Sanchez F., Perez-Marin L., Theoretical study of the Hg2+ recognition by 1,3-diphenyl-thiourea. The Journal of Physical Chemistry A,2003, 107(42):9000-9007.
    [233]Leng B., Zou L., Jiang J., Tian H., Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles. Sensors and Actuators B:Chemical,2009,140(1):162-169.
    [234]Zou Q., Tian H., Chemodosimeters for mercury(Ⅱ) and methylmercury(Ⅰ) based on 2,1,3-benzothiadiazole. Sensors and Actuators B:Chemical,2010,149(1):20-27.
    [235]Lee M. H., Lee S. W., Kim S. H., Kang C., Kim J. S., Nanomolar Hg(Ⅱ) detection using nile blue chemodosimeter in biological media. Organic Letters,2009,11(10): 2101-2104.
    [236]Zou Q., Zou L., Tian H., Detection and adsorption of Hg2+ by new mesoporous silica and membrane material grafted with a chemodosimeter. Journal of Materials Chemistry,2011,21(38):14441-14447.
    [2371 Guo Z., Zhu W., Zhu M., Wu X., Tian H., Near-infrared cell-permeable Hg2+-selective ratiometric fluorescent chemodosimeters and fast indicator paper for MeHg+ based on tricarbocyanines. Chemistry-A European Journal,2010,16(48):14424-14432.
    [238]Wang H., Chan W.-H., Cholic acid-based fluorescent sensor for mercuric and methyl mercuric ion in aqueous solutions. Tetrahedron,2007,63(36):8825-8830.
    [239]Aoun R., Yassin A., Jamal M. H., Kanj A., Rault-Berthelot J., Poriel C., Synthesis of a fluoresceine-derivatized fluorene and its electrogenerated copolymers with fluorene: new pH indicators. Synthetic Metals,2008,158(21-24):790-795.
    [240]Neher D., Polyfluorene homopolymers:conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence. Macromolecular Rapid Communications,2001,22(17):1365-1385.
    [241]Bliznyuk V. N., Carter S. A., Scott J. C., Klarner G., Miller R. D., Miller D. C., Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices. Macromolecules,1998,32(2):361-369.
    [242]Sanchez J. C., Trogler W. C., Efficient blue-emitting silafluorene-fluorene-conjugated copolymers:selective turn-off/turn-on detection of explosives. Journal of Materials Chemistry,2008,18(26):3143-3156.
    [243]Wong W.-Y., Ho C.-L., Di-, oligo- and polymetallaynes:syntheses, photophysics, structures and applications. Coordination Chemistry Reviews,2006,250(19-20): 2627-2690.
    [244]Fang Q., Xu B., Jiang B., Fu H., Zhu W., Jiang X., Zhang Z., A novel fluorene derivative containing four triphenylamine groups:highly thermostable blue emitter with hole-transporting ability for organic light-emitting diode (OLED). Synthetic Metals,2005,155(1):206-210.
    [245]Wu H., Zhou G., Zou J., Ho C.-L., Wong W.-Y., Yang W., Peng J., Cao Y., Efficient polymer white-light-emitting devices for solid-state lighting. Advanced Materials, 2009,21(41):4181-4184.
    [246]Zhang F., Mammo W., Andersson L. M., Admassie S., Andersson M. R., Inganas O., Low-bandgap alternating fluorene copolymer/methanofullerene heterojunctions in efficient near-infrared polymer solar cells. Advanced Materials,2006,18(16): 2169-2173.
    [247]Qin C., Fu Y, Chui C.-H., Kan C.-W., Xie Z., Wang L., Wong W.-Y, Tuning the Donor-acceptor strength of low-bandgap platinum-acetylide polymers for near-infrared photovoltaic applications. Macromolecular Rapid Communications, 2011,32(18):1472-1477.
    [248]Qu Y., Hua J., Tian H., Colorimetric and ratiometric red fluorescent chemosensor for fluoride ion based on diketopyrrolopyrrole. Organic Letters,2010,12(15):3320-3323.
    [249]Li B., Wang L., Kang B., Wang P., Qiu Y, Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells,2006,90(5): 549-573.
    [250]Belfield K. D., Hagan D. J., Van Stryland E. W., Schafer K. J., Negres R. A., New two-photon absorbing fluorene derivatives:synthesis and nonlinear optical characterization. Organic Letters,1999,1(10):1575-1578.
    [251]Mohammed O. F., Vauthey E., Excited-state dynamics of nitroperylene in solution: solvent and excitation wavelength dependence. The Journal of Physical Chemistry A, 2008,112(17):3823-3830.
    [252]Arce R., Pino E. F., Valle C., Agreda J. S., Photophysics and photochemistry of 1-nitropyrene. The Journal of Physical Chemistry A,2008,112(41):10294-10304.
    [253]Naumov P. E., Sakurai K., Ishikawa T., Takahashi J., Koshihara S.-Y., Ohashi Y., Intramolecular nitro-assisted proton transfer in photoirradiated 2-(2',4'-dinitrobenzyl)pyridine:polarized optical spectroscopic study and electronic structure calculations. The Journal of Physical Chemistry A,2005,109(32): 7264-7275.
    [254]Upadhyay K. K., Mishra R. K., Kumar V., Chowdhury P. K. R., A coumarin based ICT probe for fluoride in aqueous medium with its real application. Talanta,2010,82(1): 312-318.
    [255]de Silva A. P., Fox D. B., Huxley A. J. M., Moody T. S., Combining luminescence, coordination and electron transfer for signalling purposes. Coordination Chemistry Reviews,2000,205(1):41-57.
    [256]Valeur B., Leray I., Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews,2000,205(1):3-40.
    [257]Martinez R.. Espinosa A., Tarraga A., Molina P., Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations. Tetrahedron,2008,64(9):2184-2191.
    [258]Kaur S., Kumar S., Photoactive chemosensors 4:a Cu2+ protein cavity mimicking fluorescent chemosensor for selective Cu2+ recognition. Tetrahedron Letters,2004, 45(26):5081-5085.
    [259]Aksuner N., Henden E., Yilmaz I., Cukurovali A., Selective optical sensing of copper(Ⅱ) ions based on a novel cyclobutane-substituted Schiff base ligand embedded in polymer films. Sensors and Actuators B:Chemical,2008,134(2):510-515.
    [260]Li H., Huang X.-X., Kong D.-M.. Shen H.-X., Liu Y., Ultrasensitive, high temperature and ionic strength variation-tolerant Cu2+ fluorescent sensor based on reconstructed Cu2+-dependent DNAzyme/substratecomplex. Biosensors and Bioelectronics,2013, 42(0):225-228.
    [261]Gudipaty S. A., Larsen A. S., Rensing C., McEvoy M. M., Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiology Letters,2012,330(1):30-37.
    [262]Price K. A., Hickey J. L., Xiao Z., Wedd A. G. James S. A., Liddell J. R., Crouch P. J., White A. R., Donnelly P. S., The challenges of using a copper fluorescent sensor (CSI) to track intracellular distributions of copper in neuronal and glial cells. Chemical Science,2012,3(9):2748-2759.
    [263]Wang L., Yan J., Qin W., Liu W., Wang R., A new rhodamine-based single molecule multianalyte (Cu2+, Hg2+) sensor and its application in the biological system. Dyes and Pigments,2012,92(3):1083-1090.
    [264]Saluja P., Kaur N., Singh N., Jang D. O., A benzimidazole-based fluorescent sensor for Cu2+ and its complex with a phosphate anion formed through a Cu2+ displacement approach. Tetrahedron Letters,2012,53(26):3292-3295.
    [265]Ma J.-P., Yu Y., Dong Y.-B., Fluorene-based Cu(Ⅱ)-MOF:a visual colorimetric anion sensor and separator based on an anion-exchange approach. Chemical Communications,2012,48(24):2946-2948.
    [266]Anbu S., Shanmugaraju S., Ravishankaran R., Karande A. A., Mukherjee P. S., A phenanthrene based highly selective fluorogenic and visual sensor for Cu2+ ion with nanomolar detection limit and its application in live cell imaging. Inorganic Chemistry Communications,2012,25(0):26-29.
    [267]Sirilaksanapong S., Sukwattanasinitt M., Rashatasakhon P.,1,3,5-Triphenylbenzene fluorophore as a selective Cu2+ sensor in aqueous media. Chemical Communications, 2012,48(2):293-295.
    [268]Burdette S. C., Frederickson C. J., Bu W., Lippard S. J., ZP4, an improved neuronal Zn2+ sensor of the zinpyr family. Journal of the American Chemical Society,2003, 125(7):1778-1787.
    [269]Liu W., Xu L., Sheng R., Wang P., Li H., Wu S., A water-soluble "switching on" fluorescent chemosensor of selectivity to Cd2+. Organic Letters,2007,9(19): 3829-3832.
    [270]Hou F., Cheng J., Xi P., Chen F., Huang L., Xie G., Shi Y, Liu H., Bai D., Zeng Z., Recognition of copper and hydrogen sulfide in vitro using a fluorescein derivative indicator. Dalton Transactions,2012,41(19):5799-5804.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700