可控电化学法合成超细金属氧化物粉体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用两室(阴离子交换膜为隔膜)可控电化学的方法,研究了Zn~(2+)、Al~(3+)、La~(3+)和Mg~(2+)等四种不同金属离子制备其纳米金属氧化物的制备条件,着重讨论了金属离子的电极电势、电流密度、分散剂、焙烧温度等条件对其纳米金属氧化物的制备工艺的影响,利用TEM、TG-DTA、XRD和UV等测试手段对制备产物进行表征,并探索其纳米金属氧化物的制备机理。
     通过阴离子交换膜在两室可控电化学反应过程中起到有效的隔离作用,在阴极室可形成稳定的沉淀环境。利用控制阴极上的电流密度大小来控制沉淀离子生成的速度,进而可形成金属离子沉淀物晶核不同程度的过饱和度,在不加分散剂的情况下,可以形成获得颗粒均匀的纳米尺寸的金属氧化物的制备环境,实验证明电流密度大小对制备金属氧化物起到至关重要的作用。
     通过研究不同的溶液制备体系,能够有效地控制电解体系中的电解反应,可以避免具有不同氧化还原电势的金属离子在阴极上优先还原,实验证明选择合适的溶液制备纳米金属氧化物体系可达到目标化学反应的控制和实现。
     研究了可控电化学反应得到的其金属氢氧化物沉淀,在不同的温度下进行热解反应,可以得到结构、粒度均不同的金属氧化物粉体,并发现随着热解温度的升高,其氧化物的颗粒尺寸逐渐增加,晶型不断完善,因此,确定合适的热解温度是制备出纳米金属氧化物非常重要条件之一。
The electrolyzing method in both chambers divided by anion-exchanging membrance is studied in the paper, analyzing preparation conditions of nanoscale oxides made of different ions of Zn~(2+), Al~(3+), La~(3+) and Mg~(2+), discussing the relations of the preparation conditions of ionic electrode potential, current density, disperser, calcining temperature to the influence of prepatation technology of nanoscale oxides. The nanoscale materials are characterized by using the methods of TEM,TG-DTA,XRD and UV. Its preparation mechanics is investigated in the paper.
     Anion-exchanging membrane is used as membrane to form the stable precipitation environment in process of controllably electrolyzing in the both chamber. The productive deposition speed is controlled by the electrolyzing speed to form certain extent supersaturation of crystal nucleus, which is more important for forming nanoscale oxides. The preparation environment of uniform and nanoscale oxides particles is obtained without adding disperser. The variant current density is vital to the preparation of nanoscale oxides.
     Electricity potential of oxidizing and deoxidizing of metal ions and the system of preparing solution are chosen fitly to avoid deoxidization of metal ions on cathode by controlling electrolytic reaction in the different solution system. The fact that the system of preparing solution which is used to make nanoscale oxides is seleced properly to realize the aiming reactions is confirmed by by the experiments.
     The predecessors of nanoscale oxides produced by the controllably electrolyzing deposition method can be made to form oxides of different sizes and crystal groups under different heat temperatures. With calcined temperatures rising, the size of oxide particles will be augmented and crystal group will be perfected, thus one of the most important factors of making nanoscale materials can’t be ignored by making sure of calcined temperatures.
引文
[1]丁衡高.微米/纳米技术文集[M].北京:国防工业出版社,1994.6-8
    [2]张立德.超细粉体制备与应用技术[M].北京:中国石化出版社,2001.1-16.
    [3]杨剑,滕凤恩.纳米材料综述[J].材料导报,1997,12(2):6-10.
    [4] Jana N R,Peng X.Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals [J].J.Am.Chem.Soc,2003,125:14280.
    [5] Wu Y,Yang P.Direct Observation of Vapor-Liquid-Solid Nanowire Growth[J]. J.Am.Chem. Soc,2001,123:3165.
    [6] Elghanian R,Storhoff J,Mucic R C,et al. Selective Colorimetric Detection of Polynucle Oides Based on The Distanee-dependent Optical Properties of Gold Nanoparticles[J]. Seience,1997,277:1078.
    [7]朱静.纳米材料和器件[M].北京:清华大学出版社,2003:156-172.
    [8]吴白芦.纳米技术与固体物理的新发展[J].现代科学仪器,1998,(2):34-43.
    [9]师昌绪.跨世纪材料科学与技术若干热点问题[J].自然科学进展,1999,9(l):l-13.
    [10] John B Wiley.Rapid Solide-State Precursor Synthesis of Materials[J].Seience, 1992,128(l):1093-1097.
    [11]A H Heuer.Innovative Materials Processing Strategies:A Biomimetie Approach[J]. Science,1992,128(2):1098-1105.
    [12] H Gleiter.Nanostruetured Materials[J]. Acta Metallurgia Sinica,1997, 33(2): 165-174.
    [13]解思深.纳米材料体系物理简介[J].现代科学仪器,1998,(1-2):17-23.
    [14]卢柯,周飞.纳米晶体材料的研究现状[J].金属学报,1997,23(1):99-106.
    [15] Siegel R W.Mechanical Properties of Nanophase materials[J].Materials Science Forum,1997,235-238:851-860.
    [16] Andrievski R A.State of the Art and Perspectives in Particulate Nanostruetured materials[J].Materials Science Forum,1998,282-283:l-10.
    [17] Koch C C.Nanostruetured Materials for Structural Applications:Promise and Progress[J]. Metals&Materials Society,1998:497-507.
    [18]许并社等编著.纳米材料及应用技术[M].北京:化学工业出版社,2004.375-386.
    [19]徐滨士编著.纳米表面工程[M].北京:化学工业出版社,2004,15-40.
    [20]邱关明编著.新型陶瓷[M].北京:兵器工业出版社,1993:94-100.
    [21]张立德,牟季美著.纳米材料学[M].沈阳:辽宁科学技术出版社,1994.125-150.
    [22]王世敏等编著.纳米材料制备技术[M].北京:化学工业出版社,2002.7-141.
    [23]张立德.超细粉体制备与应用技术[M].北京:中国石化出版社,2001.80-177.
    [24]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001.523-586.
    [25]李春中,牛以华,陈爱平.TiCl4-O2体系高温反应制备超细TiO2光催化材料的研究[J].无机材料学报,1999,14(5):20-23.
    [26]姚超,朱毅青,成庆堂,等.纳米级二氧化钛粉体的制备方法和发展趋势[J].现代化工,2000, 20(7):20-23.
    [27] Schimanke G,Martin M. In Situ Study oh the Phase Transition of Nanocrystalline to Hematite[J]. Solid State Ionics,2000,136-137(1-4):1235-1240.
    [28] Chang W,et al. Chemical Vapor Condensation of Nanostructured Ceramic Powders[J]. Nanostruct Mater,1994,345(4):507.
    [29] Dimess L,Hahn H. Synthesis of Nanocrystalline Mn-oxides by Gas Condensation[J].Solid State Ionics,1999,123(1-4):39-45.
    [30] Naofum I U.,Shunsuke I,Takash I K.Formation of Porous Sphercal Aggregated Structure Of ZnO Nanoparticle by Low-temperature Heating of Zn(OH)2 in Diol Solution[J].Materials Letters, 2007,61:1729-1734.
    [31]蒋红梅,郭人民,赵小玲.沉淀转化法制备纳米氧化镁及改性工艺研究[J].西北大学学报, 2004,(34):306-308.
    [32]邢怀勇,刘东亮,付伯承.化学沉淀法制备纳米氧化铝粉末[J].山东陶瓷,2006,29(5):11-14.
    [33]汪信,陆路德.纳米金属氧化物的制备及应用研究的若干进展[J].无机化学学报,2000, 16(2):213-217.
    [34]酒金婷,李小宁,葛月等.聚合物燃烧方法制备Co3O4纳米粒子[J].应用化学, 2001, 18(9): 755-757.
    [35] Gui Z, Fan R, Chen X. A New Metastable Phase of Needle-like Nanocrystalline VO2·H2O and Phase Transformation[J].Journal of Solid State Chemistry, 2001,157:250-254.
    [36]董相廷,闫景辉,于薇.水热晶化法制备CeO2纳米晶[J].稀有金属材料与工程,2002,32(5):24-25.
    [37]尚静,徐自力,杜尧国.TiO2纳米粒子的结构表面特征及光催化活性研究[J].无机材料学报,2001,16(6):1211-1216.
    [38] Nyman M,Gu B X,Wang L.Synthesis and Characterization of A New Microporous Cesium Silicotitanate (SNL-B) Molecular Sieve[J].Microporous and Mesoporous Materials,2000,40: 115-125.
    [39] Li J,Chen Z,Wang R J,et al. Low Temperature Route towards New Materials: Solvothermal Synthesis of Metal Chalcogenides in Ethylenediamine[J]. Chem.Rev.,1999,190:707-711.
    [40] M.Boutonnet,J.Kizling. Reverse Microemulsion Systhesis of Nanostructure[J]. Colloid and Surfaces,1982,5:209-212.
    [41] J Nagy. Multinuclear NMR Characterization of Microe-mulsions:Preparation of Monodispere Colloidal Metal Boride Particles[J].Colloid and Surfaces, 1989,35:201-204.
    [42]杜作娟,古映莹.水热法合成锐钛矿型纳米二氧化钛[J].精细化工中间,2002,32(5):24-25.
    [43]施利毅,胡莹玉.微乳液反应法合成二氧化钛超细粒子[J].功能材料,1999,30(5):495.
    [44] Hideki S,Hajime K,et al. Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysisand Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles: Effect of Alcohol Addition[J]. Langmuir,1998,14:2208.
    [45]王晓慧,王子忱,李熙等.超微粒Co3O4的合成与表征[J].高等学校化学学报,1991,(11-12): 1421-1424.
    [46]董国利,高荫本,陈诵英.纳米级TiO2粉体的制备研究[J].无机化学学报,1998,14(3):327-332.
    [47]王零森,尹帮跃,樊毅.乙二醇在络合物溶胶-凝胶法中的应用研究[J].精细化工中间, 1999,27(3):337-341.
    [48]廖莉玲,刘吉平.固相法合成纳米二氧化镁[J].精细化工,2001,18(12):335-337.
    [49] Li Feng,Yu Xianghua,Pan Hongjun,etal. Syntheses of MO2 (M = Si,Ce,Sn) Nanoparticles by Solid-state Reactions at Ambient Temperature Solid[J]. State.Sciences.,2000,2(8):767-772.
    [50]余建群,贾殿赠,郑毓峰.纳米氧化镍、氧化锌的合成新方法[J].无机化学学报,1999,15 (1):95-98.
    [51]余建群,徐政,贾殿赠.纳米物的合成新方法[J].功能材料与器件学报,1999,5(4):267-272.
    [52]叶皓,熊金平,赵旭辉.电沉积纳米ZnO薄膜[J].材料保护,2003,36(4):41-42.
    [53]周幸福,韩爱杰,楮道葆等.电化学溶解镍阳极法制备纳米NiO[J].安徽师范大学学报(自然科学版),2002,25(1):42-45.
    [54]楮道葆,周幸福,林昌健.电化学法制备高热稳定性锐钛矿型电化学TiO2[J].电化学,1999,5(4):443-447.
    [55]周幸福,楮道葆,韩爱杰.非水体系中电解镍中间产物制备纳米NiO[J].物理化学学报,2001,17(4):367-371.
    [56]顾家山,韩爱杰,周幸福等.电化学法制备纳米NiO及反应机理的研究[J].电化学, 2002,8(4):427-430.
    [57]郑波,任志刚,童剑英等.电化学方法制备超细氧化铋粉末[J].化学研究与应用,2004, 16(3):411-412.
    [58]周幸福,赵俊峰,楮道葆.电化学合成系列锡配合物及纳米SnO2的制备[J].化学学报, 2004,62(4):414-417.
    [59]周幸福,楮道葆.电化学溶解金属铜制备纳米CuO[J].应用化学,2002,19(7):708-710.
    [60]龚良发,郭林,李欢军.氧化物纳米微粒的制备与应用[J].化学工程师,1999,71(2):28-29.
    [61]唐波,葛介超,王青先等.金属氧化物纳米材料的制备新进展[J].化学进展,2002,21(10):709.
    [62] Wang C Y,Zhou Y,Mo X,et al. Synthesis of Fe3O4 Powder by A Novel Arc Discharge Method[J]. Materials Research Bullitin,2000,35(5):755-759.
    [63]王翠英,陈耀祖.交流电沉积法制备金属氧化物纳米材料及形貌控制[J].化学物理学报, 2001,14(3):350-354.
    [64] Wang C Y,Zhu G M,Chen ZY ,et al. The Preparation of Various Metal Oxides/Hydroxides and Their Morphology Control by A Novel Arc-discharge Method[J]. Materials Research Bullitin,2001, 36(13-14):2333-2337.
    [65]张凤林,潘湛昌,张环华.电化学和沉淀法制备的纳米结构CeO2的微观结构比较[J].稀有金属,2003,27(3),332-334.
    [66] Therese G H A,Kamath P V,Electrochemical Synthesis of Metal Oxides and Hydroxides[J]. Chem.Mater,2000,12(5):1195-1204.
    [67] Cogle R T,Switzer J A.Electrochemical Synthesis of Ceramic Films and Powders[P]. US Patent: 4882014,November 1989.
    [68] Paunovic M,Schlesinger M.Fundamentals of Electrochemical Deposition[J].John Wiley& Sons, Inc:New York,1998,1.
    [69]余锡宾,王桂华,罗衍庆.二氧化钛纳米微粒的制备与光催化活性化学研究与应用[J].应用化学,2000,12(1):16-17.
    [70]钟洪辉,张绍衡编著.电化学分析法[M],第二版.重庆:重庆大学出版社,1993:102-103.
    [71]曹颖,王国胜.纳米氧化镁制备技术的研究进展[J].辽宁化工,2008,37(1):40-43.
    [72]张月甫,李玉国.纳米氧化锌的制备技术及其应用前景[J].山东师范大学学报(自然科学版,2008,23(2):39-42.
    [73]关敏,李彦生.国内外纳米ZnO研究和制备概况[J].化工新型材料,2005,33(2): 18-21.
    [74] Watari,takanori,Nakayoshi,et al.Akio Preparation of Sulm Icron Magnesiun Oxide Powders by Vapor-phase Reaction of Mmagnesiun and Oxygen[J].Journal of the Chemical Society of Japan,1984,(6):1075-1076.
    [75]占丹.流变相-前驱物法制备纳米氧化镁粉体[J].化学试剂,2007,29(3):141-142.
    [76]陈改荣,徐绍红,等.硬脂酸溶胶-凝胶法制备氧化镁纳米微粒的研究[J].功能材料, 2002,35(5):521-523.
    [77]张月甫,李玉国.纳米氧化锌的制备技术及其应用前景[J].山东师范大学学报(自然科学版,2008,23(2):39-42.
    [78]张月甫,李玉国等.纳米氧化锌的制备技术及其应用前景[J].山东师范大学学报(自然科学版,2008,23(2):39-42.
    [79]关敏,李彦生.国内外纳米ZnO研究和制备概况[J].化工新型材料,2005,33(2): 18-21.
    [80]张凯霞,宋国利.纳米晶氧化锌的光吸收特性的研究[J].黑龙江大学自然科学学报,2003,20(4):77.
    [81]翟永清,姚子华,穆晓楠.用碳酸氢铵作沉淀剂制备La2O3纳米晶体[J].化学研究与应用,2005,17(3):359-361.
    [82] R.C.Weast.CRC Handbook of Chemistry and Physics(1985-1986)[R], 66th:D151-155.
    [83] LaMer V K,Dinegar R H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols[J]. J.Am.Chem.Soc,1950,(72):4847.
    [84]张昭,彭少方,刘栋昌编著.无机精细化工工艺学[M].北京:化学工业出版社,2002.15-16.
    [85] Sugimoto T, Yamaguchi G. Contact Recrystallization of Silver Halide Microcrystals in Solution[J]. J.Crystal.Growth,1976,(34):253.
    [86]张立德,牟季美编著.纳米材料学[M].沈阳:辽宁科学技术出版社,1994.95.
    [87]龚良发,郭林,李欢军.氧化物纳米微粒的制备与应用[J].化学工程师,1999,(2):29-30.
    [88]张立德著.超细粉体制备与应用[M].北京:化学工业出版社,2003.388-389.
    [89] H.T.库特利雅夫采夫等著.陈国亮,柴华丽,祝大昌等译.应用电化学[M].上海:复旦大学出版社,1992:220-237.
    [90]张立德,牟季美编著.纳米材料学[M].沈阳:辽宁科学技术出版社,1994.150-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700