化学镀镍层孔隙率影响因素及降低对策
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压支柱是矿井下常用的机械支撑装置,为提高液压支柱的抗腐蚀性能,常在支柱表面进行化学镀镍处理。但在实际的生产中,由于前处理不充分(或者过度)、化学镀过程中操作不当等原因,常常会导致化学镀镍磷合金层产生比较高的孔隙率,导致形成以铁基体为阳极,化学镀镍层为阴极的腐蚀微电池,加剧腐蚀。因此,有必要研究化学镀Ni-P合金镀层孔隙率的影响因素以及降低对策。
     本文首先使用扫描电镜(SEM)测试验证了贴滤纸法无法定量、准确表征化学镀镍磷合金镀层微孔,首次提出了用铁溶出值定量表征化学镀镍磷合金镀层孔隙率的方法。确定了铁溶出值法测试溶液的组成:腐蚀介质H_2SO_4、氧化剂为H_2O_2、显色剂为KSCN。设计了一个简易的铁溶出实验槽,并确定了测试的操作规范,测得了铁离子吸光度标准曲线,并推导出了铁溶出值与透射率之间的计算公式,并用定量的方法证明了镍(镍离子)对铁离子吸光度没有影响。对铁溶出值法和贴滤纸法进行了对照,验证了铁溶出值法的可靠性。
     研究了基体及前处理对镀层孔隙率的影响,发现在不同材质基体上相同厚度的镀层,孔隙率不一致;表面粗糙度越低,孔隙率越低。前处理对孔隙率影响很大,不除油和不酸洗将会导致极高的孔隙率。
     研究了化学镀镍过程对镀层孔隙率的影响,发现随着化学镀周期的增加即镀液的老化,孔隙率升高。使用400r/min磁力搅拌、强超声波、热启镀、间歇提拉、及时补加等操作方式有利于降低孔隙率。分别选取十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTAB)、OP-10三种具有代表性的阴离子、阳离子、两性表面活性剂进行研究,得到各自在化学镀镍浴中的最佳浓度分别为20ppm、1ppm、20ppm,都能明显降低孔隙率。另外比较了三种表面活性剂在最佳使用浓度时的封孔效果,发现OP-10最好、十二烷基硫酸钠次之,十六烷基三甲基溴化铵最差,但区别很小。
     研究钝化处理对孔隙率的影响,发现用30g/L的K_2Cr_2O_7钝化10min(70℃)可以降低化学镀镍磷合金镀层的孔隙率。进行Tafel和EIS测试,发现经钝化后的化学镀镍磷合金镀层与未钝化的相比,耐蚀性明显提高,跟孔隙率明显降低相一致。此外,与单次钝化相比,进行多次钝化和空停更能降低孔隙率。
Hydraulic pillars are commonly used for mechanical support equipment under mine, to improve the corrosion resistance of hydraulic props, electroless nickel plating surface treatment are often used on the surface of pillars. However, in actual production, because of pre-treatment not fully(or over), improper operation in process of electroless plating or other reasons, it often results in relatively high porosity on the surface of electroless nickel-phosphorus alloy, and then leads to formation of corrosion micro-batteries with iron substrate as its anode and nickel plating as its cathode, results in corrosion accelerated. Therefore, it is of great significance to research the factors which affects the porosity of electroless nickel-phosphorus alloy and reduction measures.
     First of all, scanning electron microscopy (SEM) test was used to prove that the microporous of electroless nickel-phosphorus alloy coating could not be accurately and quantitatively characterize in the way of posting filter, iron solubility value was first used to quantitatively characterize the porosity of electroless nickel plating in this paper. The composition of the iron solubility test solution was determined, a simple iron solubility experimental tank was designed, and the test practices were determined, iron absorbance standard curve was tested, and the formula between transmission rate and iron solubility value was derived, quantitative method was used to prove that nickel(Ni ion) did not affect the absorbance of iron ions. The iron solubility value method was compared with the posting filter method and was proved to be reliable.
     Impacts of matrix and pre-treatment on porosity of coating were researched, the same thick coatings on different matrix of materials, different porosity; the lower surface roughness was, the lower porosity was. Pre-treatment had a great influence on the porosity, no degreasing and acid washed wiould lead to very high porosity. The effect of process of chemical plating on the porosity were researched, with the increase of plating cycle or the aging of the bath, the porosity increased. 400r/min magnetic stirring, strong ultrasound, hot start-plated, intermittent lifting and immersed in the bath and timely additional helped to reduce porosity.
     Three representative anionic, cationic, amphoteric surfactants, sodium lauryl sulfate(SDS), OP-10 cetyltrimethylammonium bromide(CTAB), were selected to be studied, the conclusion was that their respective best concentration in electroless nickel plating bath ware 20ppm, 1ppm and 20ppm, they could significantly reduce the porosity. Also sealing effect of three surfactants were compared when they were in their respective best concentration in electroless nickel plating baths, and found that OP-10 was best, followed by sodium dodecyl sulfate, cetyltrimethylammonium bromide worst, but the difference was little.
     The impacts of passivation treatment to the porosity were researched, it was found that it could reduce porosity of Ni-P alloy coating after passivated in 30g/L K_2Cr_2O_7 for 10min at 70℃. Tafel and EIS tests were used to found that compared to unpassivated, the corrosion resistance decreased significantly for by-passivated Ni-P alloy coating, consistent with the porosity significantly reduction. In addition, compared with a single passivation, several passive and air parked reduced the porosity.
引文
[1]胡信国.化学镀镍的发展前景[J].电镀与精饰. 1995, 17(3): 3
    [2]李春露.化学镀镍的工业应用[J].表面工程资讯. 2005, 5(2): 1-2
    [3] Maura Crobu, Andrea Scorciapino, Bernhard Elsener et al. The corrosion resistance of electroless deposited nano-crystalline Ni-P alloys[J]. Electrochimica Acta, 2008, 53(8): 3364-3370
    [4] Maura Crobu, Andrea Scorciapino, Bernhard Elsener et al. The corrosion resistance of electroless deposited nano-crystalline Ni-P alloys[J]. Electrochimica Acta, 2008, 53(8): 3364-3370
    [5] D.D.N. Singh, Rita Ghosh. Electroless nickel-phosphorus coatings to protect steel reinforcement bars from chloride induced corrosion[J]. Surface and Coatings Technology, 2006, 201(1-2): 90-101
    [6] Y.W. Song, D.Y. Shan, E.H. Han. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys[J]. Electrochimica Acta, 2008, 53(5): 2135-2143
    [7] Guojin Lu, Giovanni Zangari. Corrosion resistance of ternary Ni-P based alloys in sulfuric acid solutions[J]. Electrochimica Acta, 2002, 47(18): 2969-2979
    [8]李宁,黎德育,袁国伟.化学镀镍基合金理论与技术[M].哈尔滨工业大学出版社, 2000
    [9]郭志军.化学镀非晶态镍磷合金的故障及其处理方法[J].材料保护. 1992, 25(5): 46-48
    [10]李宁.化学镀实用技术[M].化学工业出版社, 2004
    [11] Zallen R,黄徇等.非晶态固体物理学[M].北京大学出版社, 1988
    [12] Hajdu J. Electroless plating: the past is prologue[J]. Plating & Surface Finishing.1996, 83(9): 29-33
    [13] Das L, Chin DT, Zeller RL et al. Effect of microstucture of ferrous substrate on porosity of electroless nickel coating[J]. Plating and Surface Finishing. 1995, 82(10): 56-60
    [14] Rajann K. S,胡铁骑.磷含量与热处理对化学镀镍抗蚀性能的影响[J].材料保护. 1991, 24(9): 42-45
    [15]倪孝平.汽车铝轮毂电镀工艺初探(三)[J].电镀与涂饰. 2006, 26(8): 42-45
    [16] Ernst P, Wadsworth IP, Marshall GW. Porosity of electroless nickel coatings investigated using different porosity tests and their application[J]. Transations of the Institute of the Metal Finishing. 1997, 75: 194-198
    [17] Das L, Chin DT, Evarts GL et al. Electrochemical porosity measurement of electroless nickel coatings on ferrous substrates - Information resulting from AESF research project[J]. Plating and Surface Finishing. 1997, 84(7): 66
    [18] Kerr C, Barker D, Walsh FC. Studies of porosity in electroless nickel deposits on ferrous substrates[J]. Transations of the Institute of the Metal Finishing. 1996, 74(6): 214-220
    [19]张永忠,张奎,樊建中等.化学镀镍磷合金研究进展[J].宇航材料工艺. 1998, (6): 7-12
    [20]范建凤,王青.表面活性剂在化学镀镍中的应用[C]. 2008年(第十届)国际表面活性剂和洗涤会议论文集.上海, 2008年9月
    [21]郝竞.中温低磷化学镀镍磷合金工艺研究[D].山东大学硕士论文, 2007
    [22]姜晓霞,沈伟.化学镀理论与实践[M].国防工业出版, 2000
    [23]蒋天智,刘少友,周昊.十六烷基三甲基溴化铵对化学镀Co-Ni-P的影响[J].日用化学工业. 2007, 37(4): 219-222
    [24] Jin Y, Sun DB, Yu JZ, et al. Effects of complexing agent on the morphology and porosity of electroless nickel deposits[J]. Transations of the Institute of the Metal Finishing. 1999, 77(5): 181-184
    [25]肖作安,占丹.酸性化学镀镍络合剂的研究[J].襄樊学院学报. 2008, 29(8): 31-34
    [26] I Baskaran, T.S.N. Sankara Narayanan, A. Stephen. Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni-P deposits[J]. Materials Chemistry and Physics. 2006, 99(1): 117-126
    [27] Kwang-Lung Lin, Jia-Wei Hwang. Effect of thiourea and lead acetate on the deposition of electroless nickel[J]. Materials Chemistry and Physics. 2002, 76(2): 204-211
    [28] T. Mimani, S.M. Mayanna. The effect of microstructure on the corrosion behaviour of electroless Ni-P alloys in acidic media[J]. Surface andCoatings Technology. 1996, 19(1-3): 246-251
    [29]卢亚辉,黄燕滨,时小军.化学镀非晶态Ni-P镀层孔隙率及其结构研究[J].中国表面工程. 2002, 3: 40-45
    [30] Ashassi-Sorkhabi H, Moradi-Haghighi M, Hosseini MG. Effect of rare earth(Ce, La) compounds in the electroless bath on the plating rate, bath stability and microstructure of the nickel–phosphorus deposits[J]. Surface and Coatings Technology. 2008, 202(9): 1615-1620
    [31] Kerr C, Barker D, Walsh FC. Porosity and corrosion rate measurements for electroless nickel deposits on steel using electrochemical techniques[J]. Transations of the Institute of the Metal Finishing. 1997, 75: 81-87(2)
    [32] Bernhard Elsener, Antonella Rossi. The corrosion resistance of electroless deposited nano-crystalline Ni-P alloys[J]. Electrochimica Acta. 2008, 53(8): 3364-3370
    [33] Harada, Ryutaru. Electress Plating method and device therefor[P]. JP 95316827, 1995-12-05
    [34]沈涪.镀液搅拌—化学镀镍过程中一个重要的工艺条件[J].机电元件. 2004, 24(4): 23-24
    [35] Matthew JS.化学镀镍工艺性能:搅拌、装载量、稳定剂添加量的影响[C]. 1999年美国化学镀镍会议论文集
    [36]张勇,安振涛,闫军等.低温、高速、高稳定性化学镀镍研究进展[J].表面技术. 2008, 37(6): 81-83
    [37]张颖,陶珍东,汪娟等.超声振荡辅助化学镀镍及其性能研究[J].电镀与涂饰. 2009, 28(10): 18-21
    [38] Taher Rabizadeh, Saeed Reza Allahkaram, Arman Zarebidaki. An investigation on effects of heat treatment on corrosion properties of Ni-P electroless nano-coatings[J]. Materials and Design. 2010, 31(7): 3174-3179
    [39] Gavrilow GG. Chemical (Electroless) Nickel Plating[M]. Red hill: Portcullis Press, 1999
    [40] H. Ashassi-Sorkhabi, S.H. Rafizadeh. Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits[J]. Surface and Coatings Technology. 2004, 176(3): 318-326
    [41]马静,胡建文,阎冬青. Ni-P化学镀层钝化处理工艺研究[J].河北工业科技. 2005, 25(2): 82-85
    [42]赵海燕.不锈钢点蚀检测方法的研究[D].华东师范大学硕士论文, 1990
    [43]朱立群,刘慧丛,吴俊.化学镀镍层封孔新工艺的研究[J].电镀与涂饰. 2002, 21(3):29-33
    [44] Guojin Lu, Earl T. Ada, Giovanni Zangari. Investigations of the effect of chromate conversion coatings on the corrosion resistance of Ni-based alloys[J]. Electrochimica Acta. 2004, 49(9-10): 1461–1473
    [45] Songlin Mu, Ning Li, Deyu Li et al. Corrosion behavior and composition analysis of chromate passive film on electroless Ni-P coating[J]. Applied Surface Science. 2010, 256(13): 4089-4094
    [46]俞宏英,孙冬柏,黄锦滨等.化学镀镍磷合金镀层封孔处理工艺及性能[J].功能材料. 2001,32(3): 262-263, 268
    [47]马静,胡建文,阎冬青. Ni-P化学镀层钝化处理工艺研究[C]. 2007年上海市电子电镀学术年会论文集.上海, 129-134
    [48]胡光辉,唐锋,黄华娥等.化学镀镍层的碱性钝化方法[P]. CN 101709466 A, 2010-05-19
    [49]阎冬青,胡建文,刁美艳等. Ni-P化学镀层镀后封闭工艺的研究[J].河北师范大学学报(自然科学版). 2006, 30(6): 689-692
    [50] Mu S L, Li N, Li D Y et al. Investigation of a transparent chromate (III) passive film on electroless Ni–P coating by XPS and electrochemical methods[J]. Electrochimica Acta, 2009, 26(54): 6718–6724
    [51] P.S.Kumar. Studies on Crystallization of Electroless Ni-P Coatings [J]. Journal of Materials Processing Technonogy. 1996, 6(2): 11-20
    [52] W.J.VanOoij, T.Child. Protecting metals with silane coupling agents[J]. Chem. FEB. 1998, 28(2): 26-35
    [53]孙明志.化学镀镍磷合金镀层封孔工艺及耐蚀性能研究[D].中国海洋大学硕士生学位论文, 2009
    [54]刘迎春,俞宏英,孟惠民等.化学镀镍-磷合金镀层溶胶-凝胶封孔技术[C]. 2004年第七届全国化学镀会议论文集.深圳, 90-94
    [55]朱立群,丁学谊,刘孟兰等.化学镀Ni-P合金层表面涂覆溶胶-凝胶的研究[J].中国表面工程. 1999, (1): 29-36
    [56]孙明志,高荣杰,杜敏.二次封孔对化学镀双层镍磷合金耐蚀性的影响[J].中国海洋大学学报. 2009, 39(sup.): 389-395
    [57]俞宏英,孙冬柏,黄锦滨等.化学镀镍磷合金镀层孔隙率的电化学评价[J].电化学. 2000, 6(3): 335-340
    [58]郭东萍,薛士科,王春玉.化学镀镍磷层孔隙率的电化学评价[J].材料保护. 2007, 40(9): 28-30
    [59]国际锡研究所.镀锡板指南[M].冶金工业出版社. 1989: 145-149
    [60]穆松林.化学镀镍磷镀层三价铬与无铬钝化膜的制备及成膜机制[D].哈尔滨工业大学工学博士学位论文, 2010
    [61]张允诚,胡如南,向荣.电镀手册(第三版)[M]: 684-687.国工业出版社, 2007年1月
    [62]郭崇武,王吉民.用光度法测定镀铬溶液中的铜、铁、镍杂质[J].电镀与精饰. 2011, 33(1): 42-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700