新型含钨纳米材料的合成及其在烯烃选择氧化反应中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,烯烃氧化反应是有机合成中最重要最基本的化学反应之一。但这一类反应往往需要使用有毒有害的有机溶剂(如卤代烃类)和导致酸污染的氧化剂(如过氧酸类),不符合现在大力提倡的“绿色化学”的发展方向。
     从减少污染、保护环境的绿色化学角度出发,近几年国内外开发了不少新型氧化方法,研究开发了许多污染少、能耗小、环境相容性好的氧源,如过氧化氢、分子氧等,这些可能是极具应用前景的烯烃氧化方法。过氧化氢是一种较为理想的环境友好氧源,反应后生成对环境无害的水,而且“活性氧”的含量高。在双氧水-氧化体系中,过渡金属(如钨、锰、钼和铑)化合物都是非常有效的催化剂,其中钨基催化剂表现出了很高的双氧水利用率和目标产物选择性。钨基催化剂对双氧水的分解无催化作用,并且相对于其他过渡金属化合物而言,钨化合物便宜易得。因此,钨基催化剂的研究是研究人员广泛关注的热点。
     含氧杂环化合物(9-氧-双环[3.3.1]-2,6壬二醇(1)和2-羟基-9-氧-双环[3.3.1]-6-壬酮(2))是非常重要的化工中间体,它可以合成多种内酯化合物,而内酯化合物是合成生物活性药物的重要前体。例如,5-羟基-γ-十内酯是一种潜在的肿瘤细胞抑制剂。因此,合成氧杂环化合物对于医药领域具有非常重要的意义。文献调研表明,在氧杂环化合物的合成过程中普遍存在酸污染、难分离等缺点。为此,本论文旨在开发一条合成氧杂环化合物的新路线,并寻找高活性、高稳定性、可多次回收利用的新型含钨纳米催化剂,为氧杂环化合物的工业化生产提供理论基础。
     论文的主要工作及结果如下:
     1.钨酸或磷钨酸催化1,5-环辛二烯选择氧化制备氧杂环化合物的绿色路线
     实现了以1,5-环辛二烯为原料,H_2O_2为氧化剂,在催化剂钨酸或磷钨酸的作用下一步合成氧杂环化合物的绿色合成路线。
     a.以钨酸为催化剂时,双氧水与COD的摩尔比例越高,COD的转化率和1+2的选择性越高,但是考虑到成本我们选取3:1为最佳比例;催化剂的用量不仅影响COD的转化率和目标产物(1+2)的选择性,也影响化合物1和2的分布;溶剂的影响也很大,对于醇类,支链越多,(1+2)的选择性越好,非质子性溶剂也有很好的选择性。COD与溶剂的体积比越大,催化剂的活性越高。
     b.HPW相比钒钼杂多酸催化剂,无论从活性还是选择性的角度都具有明显的优势,HPW是COD选择氧化的优良催化剂。以磷钨酸为催化剂时,双氧水与COD的摩尔比例越高,COD的转化率和(1+2)的选择性越高;催化剂的用量越大,COD的转化率越高;溶剂的影响也很大,叔丁醇是一个很好的溶剂;叔丁醇与COD的体积比对反应也有很大影响,叔丁醇与COD的体积比小于10时,活性和选择性都好;反应温度越高,催化剂的催化性能也越好,但是双氧水更容易分解,因此选择60℃为最佳反应温度。
     整个催化过程不采用任何相转移催化剂和有毒溶剂,只以H_2O_2为氧源,产物为水,清洁无毒害,符合绿色环保的要求。并且目标产物的总得率很高,具有工业化前景。
     2.含钨介孔泡沫材料的原位合成及其在1,5-环辛二烯选择氧化反应中的性能研究
     对于上述催化氧化1,5-环辛二烯制氧杂环化合物的绿色路线,以钨酸或磷钨酸为均相催化剂的方法虽然(1+2)总得率很高,但是均相催化存在催化剂难以回收再利用的缺点。于是我们采用原位合成方法制备了WO_3-MCF介孔泡沫分子筛催化剂。将此催化剂应用于上述反应,也取得了很好的结果。为了便于比较,我们也利用浸渍法合成了WO_3/MCF催化剂。TEM、XRD、Raman和UV-Vis。DRS表征结果说明,当氧化钨含量小于20%时,钨物种高度分散在MCF中,大部分钨物种能有效进入MCF的骨架,其它则以孤立的或低聚态的钨物种形式分布于催化剂中。另外,研究发现钨物种主要以无定形的形式存在,这样富含催化氧化活性中心的无定形钨物种提高了对1,5-环辛二烯的催化氧化性能。并且原位合成的催化剂上三氧化钨的分散性能要强于普通浸渍法制备的催化剂。XRD和TPR表征表明,原位合成方法中,钨物种与二氧化硅基体之间的相互作用较强,能有效阻止钨物种的脱落,并有效降低钨物种在催化剂表面的聚集程度。而普通浸渍法中,钨物种在催化剂表面聚集明显。WO_3-MCF介孔分子筛催化剂具有良好的1,5-环辛二烯催化氧化性能。在优化反应条件下,10%WO_3-MCF表现出100%的1,5-环辛二烯转化率和98%的氧杂环化合物的选择性和收率,该结果与均相钨酸性能相近。套用实验表明,原位合成方法制备的催化剂与普通浸渍法相比,具有更好的稳定性。WO_3-MCF可以套用四次仍保持较高的催化性能。
     3.单分散高活性含钨介孔泡沫材料的合成及其在1,5-环辛二烯选择氧化反应中的催化性能研究
     虽然WO_3-MCF催化剂较均相催化剂有了很大改进,但是ICP测试表明此催化剂存在钨物种的脱落问题,因此需要找寻新的方法避免这一问题的发生。另外由表征可以看出钨物种的存在方式包括单分散的钨物种、二聚或低聚的钨物种、多聚态的钨物种和晶态三氧化钨。为了研究单分散的钨物种对此反应的影响,我们合成了单分散的含钨介孔泡沫材料。将上一章合成的新型含钨介孔分子筛WO_3-MCF,用乙酸铵处理后,得到WO_3-MCF-1。TEM和氮物理吸附表征结果表明,乙酸铵处理后的样品WO_3-MCF-1保持载体原有的孔道结构。XPS、UV-Raman和UV-Vis。DRS表征说明,在10%WO_3-MCF-1催化剂中,钨物种主要以孤立的[WO_4]~(2-)形式存在;UV-Vis。DRS还证实晶态WO_3首先被洗去,随后是聚集态的钨物种。ICP表征表明,对于原位合成法,在钨含量达到或大于3.94%时,乙酸铵处理后的样品中钨含量保持在0.30%,这一部分钨物种可以稳定存在于MCF骨架中。乙酸铵处理法可以得到含单分散[WO_4]~(2-)活性中心的催化剂,这种高度分散的钨物种对1,5-环辛二烯的氧化反应具有很高的活性,且该活性组分与载体之间的相互作用很强,能够有效的防止了钨物种的流失,使得催化剂显示出优异的稳定性能。10%WO_3-MCF-1催化剂在1,5-环辛二烯的选择氧化中催化活性最好,TON值为427.2,环氧化合物的选择性高达92.7%,远高于以浸渍法制备的10%WO_3/MCF-1催化剂,其TON值仅为72,环氧化合物的选择性仅为68.5%。由第二部分和第三部分的研究结果可知,催化剂中活性组分钨物种的分散度、存在状态均对催化性能具有很大的影响。
     4.锚定法合成的HPW-NH_2-MCF催化剂及其在1,5-环辛二烯选择氧化反应中的催化性能的研究
     虽然上部分工作克服了钨物种的脱落问题,但是反应得到的主产物为1,5-环辛二烯的单环氧化合物,催化剂的总体性能偏低,因此需要寻找一种催化剂,既能得到好的催化性能又能避免活性组分的脱落。因此,我们以氨基化修饰的介孔泡沫材料MCF材料作为载体,通过酸碱中和作用使12-磷钨酸固载在MCF的孔道中,合成了催化剂HPW-NH_2-MCF(简称锚定法合成催化剂),并与采用简单浸渍法合成的催化剂HPW/MCF进行比较。BET结果表明,APTES的修饰以及HPW的引入都会导致分子筛比表面积降低,孔容减小;TEM结果表明,磷钨酸物种高度分散在MCF中,MCF的孔道结构保持完好。~(13)C and ~(29)Si MAS NMR表征证明,APTES被成功嫁接在MCF表面。FT-IR和XPS表征结果表明,HPW和NH_2-MCF之间存在强相互作用。~(31)P MAS-NMR表征结果显示HPW-NH_2-MCF上的HPW仍保持其特征Keggin结构。16%HPW-NH_2-MCF,16%HPW-NH_2-SBA-15和16%HPW-NH_2-MCM-41催化性能研究表明,16%HPW-NH_2-MCF的催化性能最好。介孔泡沫催化材料HPW-NH_2-MCF的独特结构,即超大孔径、3-D的孔道结构和由窗口交叉相连的结构单元,有效的提高了反应速率,也提高了氧杂环化合物的收率。在优化反应条件下,16%HPW-NH_2-MCF表现出100%的1,5-环辛二烯转化率和99%的氧杂环化合物选择性。同时套用实验表明,锚定法制备的催化剂可以套用6次,1,5-环辛二烯的转化率仍然高达99%,主要产物氧杂环化合物的选择性仍保持在96%以上。与普通浸渍法制备的16%HPW/MCF催化剂相比,氨基锚定催化剂具有更好的稳定性。非均相测试实验表明16%HPW-NH_2-MCF催化剂是真正的非均相催化剂。
     5.锚定法合成的Keggin磷钨酸催化剂在其他烯烃选择氧化反应中的性能研究及催化剂低成本化探索
     由上部分工作可知,锚定法确实优于传统浸渍法,该方法操作较简单,容易控制,能使磷钨酸高度分散在介孔分子筛孔道内,并且HPW和NH_2-MCF之间存在强的相互作用,可以有效阻止HPW的溶脱。因此将这一方法拓展应用于其他烯烃的选择氧化反应中。研究发现24%HPW-NH_2-MCF具有良好的环戊烯催化氧化性能。在优化条件下,此催化剂表现出100%的环戊烯转化率和71.8%的戊二醛选择性。同时套用实验表明,锚定法制备的催化剂可以套用8次,环戊烯的转化率仍然高达99%,主要产物戊二醛的选择性仍保持在60%以上。非均相测试实验表明24%HPW-NH_2-MCF催化剂是真正的非均相催化剂。16%HPW-NH_2-SBA-15具有良好的双环戊二烯催化氧化性能。在优化反应条件下,表现出100%的双环戊二烯转化率和97%的双环戊二烯二环氧化物的选择性。同时套用实验表明,锚定法制备的催化剂可以套用6次,双环戊二烯的转化率仍然高达100%,双环戊二烯二环氧化物的选择性仍保持在96%以上。与普通浸渍法制备的16%HPW/SBA-15催化剂相比,该方法制备的催化剂具有更好的稳定性。非均相测试实验表明16%HPW-NH_2-SBA-15催化剂也是真正的非均相催化剂。
     MCF载体的合成需要正硅酸乙酯和P123,因此成本较高。我们试图将锚定法应用于自制二氧化硅和商业二氧化硅。研究发现16%HPW-NH_2-SiO_2在1,5-环辛二烯选择氧化反应中也具有良好的催化性能。非均相测试实验表明16%HPW-NH_2-SiO_2在反应中是真正的非均相催化剂。此催化剂可以套用7次仍能保持较好的催化性能,与普通浸渍法制备的催化剂相比,具有更好的稳定性。反应结束后溶液中没有检测到溶脱的HPW,说明催化剂在此体系中非常稳定。16%HPW-NH_2-SiO_2(商业)在1,5-环辛二烯选择氧化反应中也具有良好的催化性能。该催化剂可以套用6次还保持较好活性。套用实验充分说明锚定法制备的催化剂稳定性很好。非均相测试实验也证明16%HPW-NH_2-SiO_2(商业)在反应中是真正的非均相催化剂。
As we know,the oxidation of olefins is a very useful and important reaction in organic synthesis.Classic routes for the reaction employ chlorocarbon such as chloroform and 1,2-dichloroethane as solvents and peroxo acids as oxidants.These reaction processes fall short of green chemistry.
     Nowadays,the development of environmental friendly techniques is one of the prior goals of chemical research,which is especially true in the field of the oxidation of olefins where there is an urgent need to replace wasteful and toxic stoichiometric oxidants with "clean" oxygen donors,such as hydrogen peroxide and oxygen.It is known that oxidation of organic substrates with hydrogen peroxide is very attractive and has been long studied.Hydrogen peroxide as oxidant is riskless and non-polluting. In hydrogen peroxide system,the reaction is catalyzed by a number of transition metal compounds such as W,Mn,Mo,and Rh.Among the most efficient catalysts,tungsten containing compounds are cheap and do not decompose to H_2O_2.Thus,there is considerable interest in the synthesis and characterization of novel tungsten-containing catalysts.
     It is commonly accepted that 9-oxabicyclo[3.3.1]nonane-2,6-dioles(1) and 2-hydroxy-9-oxabicyclo[3.3.1]nonane-6-one(2) are the major starting material for the synthesis ofγ-butyrolactones.γ-Butyrolactone structure is a versatile building block in organic synthesis since countless compounds containing this function group show interesting biological activity.For example,5-hydroxy-γ-decalactone is a potent cytotoxic agent on different tumor cell lines.Therefore,it is of great significance to develop efficient and accessible approaches to afford these products(1 and 2).Classic routes for 1 and 2 employ peroxo acid or permanganate as oxidants.However,the performic acid,as well as peracetic acid and permanganate,is expensive chemicals and leads to great amounts of byproducts.Therefore,difficult separation of 1 from the products mixture is inevitable in these routes because of the low conversion and selectivity.Herein we report a green procedure for the O-hetero-cyclization of cycloocta-1,5-diene(COD) by catalytic oxidation with aqueous H_2O_2.The main purpose of this dissertation is to develop novel catalysts that is highly efficient,highly stable and can be reused for several times.In addition,different types of tungsten containing catalyst is investigated,as well as their catalytic activity for the selective oxidation of COD,and all the catalysts have been characterized with various analytical and spectroscopic techniques.
     1.Green Catalytic Process for the Selective Oxidation of cycloocta-1,5-diene over tungstic acid and phosphotungstic acid
     Novel one-step green process for the synthesis of compounds(1 and 2) from the selective oxidation of COD has been reported with hydrogen peroxide(H_2O_2) as oxidant,tert-butanol as solvent,and tungstic acid(H_2WO_4) or phosphotungstic acid (H_3PW_(12)O_(40)) as catalyst.
     It can be seen that the conversion of COD rises with the increase of molar ratios of H_2O_2 to COD.And the molar ratios of H_2O_2 to COD can dramatically affect the yield of the object products.Considering both good catalytic performance and H_2O_2 utility,the 3:1 ratio of the H_2O_2 to COD is needed.It was found that conversion of COD in a fixed reaction period ascends with increasing catalyst dosage,and the amounts of catalysts not only affect the rate of the reaction but also affect the distribution of 1 and 2.For the alcoholic solvents,tert-butanol is the best,the large alkyl of which hinders the formation of ethers.Some other water-soluble solvents, such as 1,4-dioxane,acetonitrile and tetrahydrofuran,having no trend to give ethers, were also tested,and the conversion of COD and selectivity of object products are also high.There is an optimum volume ratio of tert-butanol to COD at which a maximum amount of 1+2 is formed.Initially,with a decrease in the volume ratio from 20 to 5,the selectivity of object products increases from 88 to 98%.
     Among different heteropoly acids,phosphotungstic acid is the best one in conversion and selectivity of the reaction.It is also found that phosphotungstic acid was very suitable as catalyst for this reaction.The conversion of COD rises with the increase of molar ratios of H_2O_2 to COD.The conversion of COD rises with the increase of catalyst dosage.Tert-butanol is also a good solvent.The conversion of COD and selectivity of 1+2 rises with the decrease of volume ratios of solvent to COD in the volume ratio from 20 to 10,the good results can be got within the volume ratio of 10.The conversion of COD and selectivity of 1+2 rises with the increase of reaction temperature.The optimum temperature is 60℃considering the H_2O_2 utility.
     This process that doesn't need any phase-transfer catalysts meets the requirements of environmental protection with H_2O_2 as the oxidant and water as the only by-product.In addition,this method was highly efficient,which accords well with all of the requirements of green chemistry,resulting in its possibility in large-scale industrial production.
     2.Synthesis of W-containing mesocellular silica foam catalysts and their application in the O-heterocyclization of cycloocta-1,5-diene with aqueous H_2O_2
     In our previous work,tungstic acid was reported as an efficient homogeneous catalyst for the title reaction.However,the difficulties of separating and recovering the catalysts from the product mixture during the homogeneous process made such catalysts impractical for large-scale industrial production processes.The in situ synthesized method-derived 10 wt.%WO_3-MCF and the impregnated method-derived 10 wt.%WO_3/MCF catalysts both exhibit excellent performances for the target reaction(O-heterocyclization).The ultralarge mesopores of the catalysts are helpful for the transport of the large raw material and products during the reaction.The heterogeneous tungsten trioxide containing MCF catalyst synthesized via the in situ synthesized method shows higher WO_3 species dispersion compared to the one synthesized by the impregnation method as proved by XRD,TEM,Raman and UV-vis DRS results.According to the XRD result,the tungsten oxide on the catalyst synthesized by the impregnation method is more easily aggregated after the reaction than the one on the catalyst synthesized by the in situ synthesized method.TPR and XRD results show that the 10 wt.%WO_3-MCF catalyst shows stronger interaction between active tungsten oxide species and the MCF material than that of WO_3/MCF catalysts.The recycling experiment results indicate that the in situ synthesized method- derived catalyst shows far better stability than the impregnated one.Although there is detectable leaching of tungsten species from 10%WO_3-MCF based on ICP-AES analysis,the in situ method derived WO_3-MCF catalyst can still be reused for more than 4 times.
     3.High-activity,single-site mesoporous WO_3-MCF materials for the catalytic epoxidation of cycloocta-1,5-diene with aqueous hydrogen peroxide
     In our previous work,WO_3-containing mesocellular silica foam catalysts is highly efficient in the O-heterocyclization of cycloocta-1,5-diene.However,there is detectable leaching of tungsten species from 10%WO_3-MCF based on ICP-AES analysis.So it is important to find a more stable catalyst.According to the characterizations,it can be seen that the tungsten species are presented as the isolated tetrahedral {WO_4} species,low-condensed polymeric tungsten oxide species, high-condensed polymeric tungsten oxide species and a little crystalline WO_3.It is hard to understand the role of the isolated tetrahedral {WO_4} species over the reaction. In the present study,in order to understand the role model of isolated tetrahedral {WO_4} species on mesocellular silica foam materials and how these properties influence the catalytic activity and selectivity,the isolated tetrahedral {WO_4} species doped mesocellular silica foam(MCF) materials are synthesized and systematically characterized by various analytical and spectroscopic techniques,including N_2 sorption,TEM,UV-vis DRS,UV-Raman and XPS.The AMA-treated WO_3-MCF catalysts exhibit good performance which has been attributed to the ultra-large mesopores of the catalysts for this reaction.The AMA-treated catalysts retain the special structure of the supports under the treating conditions.The most isolated tungsten atoms are well embedded in the supports when the catalysts were treated with AMA,which were proved by UV-Vis.DRS,XPS and UV-Raman experiments. The UV-Vis.DRS results also indicate the crystalline tungsten trioxide species were firstly removed,then the polymeric WO_3 species.The tungsten percent comes to a fixed value for the catalysts of different WO_3 loadings as confirmed by ICP method. Different preparation methods lead to different final residual tungsten percent,but only the in situ method can lead to the perfect single-site {WO_4} tetrahedral species. It is also demonstrated from the recycling experiment that the AMA-treated WO_3-MCF catalyst shows excellent stability.
     4.Preparation and catalytic behavior of highly active and stable amiuopropyl-immobilized phosphotungstie acid on mesoeellular silica foam for the O-heterocyclization of cycloocta-1,5-diene with aqueous H_2O_2
     Although it is demonstrated from the recycling experiment that the AMA-treated WO_3-MCF catalyst shows excellent stability,the main product is COD epoxide. Hence,there is a strong driving force to find a highly active catalyst without any leaching of tungsten species so that no heavy metal containing waste water was generated.The heteropoly phosphotungstic acid,H_3PW_(12)O_(40),has been successfully immobilized on the surface of mesoporous MCF,SBA-15 and MCM-41 by means of chemical bonding to aminosilane groups.Characterization results from N_2 sorption indicate that the surface area decreased after grafting amine to silica.The aminopropyl functional groups were successfully grafted on the MCF silica from ~(13)C and ~(29)Si MAS NMR results.The strong interaction between the NH_2 groups in the silanes moieties and HPW molecules can be convinced from FT-IR and XPS results.~(31)p MAS-NMR indicated that the HPW can keep its Keggin structure after the immobilization.The HPW-NH_2-MCF is highly efficient in the title reaction with a COD conversion up to 100%and(1+2) selectivity up to 98%.Comparison of 16%HPW-NH_2-MCF,16% HPW-NH_2-SBA-15 and 16%HPW-NH_2-MCM-41 reveals that 16%HPW-NH_2-MCF is the most effective one.This finding uncovers that the ultra large pores and the unique three dimensional cell-window of MCF are more favorable for the title reaction than the SBA-15 and MCM-41 counterparts owning only two dimensional pore structures.The HPW-NH_2-MCF could be used for more than six times without any significant loss of activity and leaching of tungsten species in the reaction mixture. The good stability can be attributed to the strong interaction between the -NH_2 groups in the silanes moieties and HPW molecules.
     4.The study of the selective oxidation of other olefins over the immobilized catalysts and the low cost exploring of the catalysts
     The HPW-NH_2-MCF is highly efficient in the selective oxidation of cyclopentene(CPE) to glutaraldehyde(GA) with a CPE conversion up to 100%and GA selectivity up to 71.8%.CPE conversion keeps up to 99%and GA selectivity keeps up to 60%,when the 24%HPW-NH_2-MCF was reused for eight times. Heterogeneous experiment indicates that the 24%HPW-NH_2-MCF catalyst is actually a heterogeneous one.The HPW-NH_2-SBA-15 is highly efficient in the selective oxidation of dicyclopentadiene(DCPD) to dicyclopentadiene dioxide with a DCPD conversion up to 100%and dicyclopentadiene dioxide selectivity up to 97%.DCPD conversion keeps up to 100%and Dicyclopentadiene dioxide selectivity keeps up to 96%,when the HPW-NH_2-SBA-15 was reused for six times.The recycling experiment results indicate that the immobilized catalyst shows much stability than the impregnated one.Heterogeneous experiment indicates that the 16% HPW-NH_2-SBA-15 catalyst is actually a heterogeneous one.The HPW-NH_2-SiO_2 is highly efficient in the O-heterocyclization of COD to 1 and 2 with a COD conversion up to 100%and(1+2) selectivity up to 95.2%.Heterogeneous experiment indicates that the 16%HPW-NH_2-SiO_2 catalyst is actually a heterogeneous one.The recycling experiment results indicate that the immobilized catalyst shows far better stability than the impregnated one.The HPW-NH_2-SiO_2 could be used for more than seven times without any significant loss of activity and leaching of tungsten species in the reaction mixture.The HPW-NH_2-SiO_2(commercial) is highly efficient in the O-heterocyclization of COD to 1 and 2 with a COD conversion up to 100%and(1+2) selectivity up to 95.7%.The HPW-NH_2-SiO_2(commercial) could be used for more than six times without any significant loss of activity and leaching of tungsten species in the reaction mixture.Heterogeneous experiment indicates that the 16% HPW-NH_2-SiO_2 catalyst is actually a heterogeneous one.
引文
[1]Wachs I.E.,Kim T.,Ross E.I.Catalysis science of the solid acidity of model supported tungsten oxide catalysts[J].Catalysis Today,2006,116(2):162-168.
    [2]Szymanska-Kolasa A.,Lewandowski M.,Sayag C.,et al Comparison of molybdenum carbide and tungsten carbide for the hydrodesulfurization of dibenzothiophene[J].Catalysis Today,2007,119(1-4):7-12.
    [3]Zhang W.P.Some new progresses of research on the industrial catalysts containing tungsten[J].China Tungstell Industry 2004,19(02):26-29.
    [4]Du Z.X.Application and research on the industry catalysis in petroleum proeessing and petrochemicals[J].China Tungsteel Industry,2003,18(1):35-39.
    [5]Sarish S.,Devassy B.M.,B(o|¨)hringer W.Liquid-phase alkylation of phenol with long-chain olefins over WOx/ZrO_2 solid acid catalysts[J].Journal of Molecular Catalysis A:Chemieal,2005,240(1-2):123-131.
    [6]Okuhara T.,Mizuno N.,Misono M.Catalysis by heteropoly compounds-recent developments[J].Applied Catalysis A:General,2001,222(1-2):63-77.
    [7]Misono M.Acidic and catalytic properties of heteropoly compounds[J].Materials Chemistry and Physics,1987,17(1-2):103-120.
    [8]Venturello C.,Alneri E.,Ricci M.A new effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions[J].J Org Chem,1983,48:3831-3833.
    [9]Sato K,Aoki M,Noyori R.A"green"route to adipic acid:Direct oxidation of cyclohexenes with 30 percent hydrogen peroxide[J].Science,1998,281:1646-1647.
    [10]Antonelli E.D.,Aloisio R.,Gambaro M.,et al.Efficient oxidative cleavage of olefins to carboxylic acids with hydrogen peroxide catalyzed by methyltrioctylammonium terakis(oxodiperoxotungsto) phosphate(3) under two phase Conditions[J].J.Org.Chem.,1998,63(21):7190-7206.
    [11]马祖福,邓友全,王坤等.清洁催化氧化合成己二酸[J].化学通报,2001,64(2):116-118.
    [12]张科良,乔小安,屈撑囤,王新强,张宁生.季膦盐和钨酸钠催化下双氧水溶液清洁氧化醇和烯烃的研究[J].西安石油大学学报,2008,23(1):77-80.
    [13]宫红,姜恒,吕振波.己二酸绿色合成新途径[J].高等学校化学学报,2000,21(7):1121-1123.
    [14]Usui Y.,Sato K.A green method of adipic acid synthesis:Organic solvent and halide free oxidation of cycloalkanones with 30%hydrogen peroxide[J].Green Chemistry,2003,5(4):373-375.
    [15]Zhang S.G.,Jiang H.,Gong H.,et al.Green catalytic oxidation of cyclohexanone to adipic acid[J].Petroleum Science and Technology,2003,21(1-2):275-282.
    [16]王艳丹,姜恒,宫红等.清洁催化氧化环己醇合成己二酸[J].化学世界,2002,43(9):484-486.
    [17]曹发斌,姜恒,宫红.钨酸催化氧化环己烯合成己二酸[J].有机化学2005,25(1):96-100.
    [18]Sato K.,Aoki M.,Noyori R.,et al.Organic solvent,and Halide-free oxidation of alcohols with aqueous hydrogen peroxide[J].J Am Chem Soc,1997,119:12386-12387.
    [19]Lang X.J.,Li Z.,Xia C.G.Environmentally Friendly Oxidation of Alcohols with Hydrogen Peroxide Catalyzed by Sodium Tungstate and Acidic Ionic Liquids[J].Journal of molecular catalysis(China)2008,22(3):271-275.
    [20]Wei J.F.,Shi X.Y.,He D.P.,et al.Organic solvent and phase transfer catalyst-free oxidation of Cyclohexanol to cyclohexanone with dilute H_2O_2[J].Chinese Science Bulletin,2002,47(24):2060-2062.
    [21]薛晓茜,岳莉,赖仕全,赵雪飞,高丽娟.钨酸催化环戊烯氧化合成戊二醛条件的考察[J].辽宁科技大学学报,2008,31(5):452-459.
    [22]占昌朝,彭游,陶春元,李继红.钨酸钠催化过氧化氢合成4,6-二甲氧基-2-甲磺酰基嘧啶[J].中国钨业,2008,23(4):38-41.
    [23]杨敏,李敏,郑宏杰,李贤均,钨酸钠催化芳香腈高选择性氧化制备芳香酰胺[J].催化学报,2005,26(3):175-177.
    [24]Shiba F.,Yokoyama M.,Mita Y.,et al.Hydrothermal synthesis of monodisperse WO_3·H_2O square Platelet Partieles[J].Materials Letters,2007,61(8-9):1778-1780.
    [25]Lassner E.,Schubert W.D.Tungsten Blue oxide[J].Inter J Refractory Metals and Hard Materials,1995,13:111-117.
    [26]Naoaki K.,Nobuko K.,Yoshio U.,etal.Synthesis of hexagonal form of tungsten trioxideand electroehemical lithium insertion into the trioxide[J].Solid State Ionics,1996,(86-88):1443-1449.
    [27]Sik L.D.,Do H.S.,Soo H.J.,etal.Nitrogen oxides-sensing characteristics of WO_3-based nanocrystalline thin films gas sensor[J].Sensors and Actuators B,1999,60:57-63.
    [28]何天平,彭子飞.微乳液法制备纳米级WO_3粉体[J].合成化学1997,5(1):4-6.
    [29]Galatsis K,Li Y X,Wlodarski W,etal.Sol-gel Prepared MoO_3-WO_3 thin-films for O_2 gas sensing[J].J Sensors and Actuators B,2001,77:478-483.
    [30]Sun M.,Xu N.,Cao Y.W.,etal.Preparation,microstructure and Photochromism of a new nanocrystallineWO_3 films[J].J Mater.Seience lett,2000,19:1407-1409.
    [31]Gotic M.,Ivanda M.,Popovic S.,etal.Synthesis of tungsten trioxide hydrate and there structure properties[J].Materials Seience and Engineering B,2000,77:193-201.
    [32]Li X.C,Cao X.H,Wang W.J.et al.Preparation and Characterization of WO_3 from Ammonium Paratungstate via Hydrothermal Method[J].Frontiers of chemistry in China,2006,(3):392-395.
    [33]Giulio M.D.,Manno D.,Micocci G.,et al.Sputter deposition of tungsten trioxide gas sensing applications[J].J.Mater.Science:materials in electronics,1998,9:317-322.
    [34]Huang S.J.,Chen F.C,Liu S.L,et al.The influence of preparation procedures and tungsten loading on the metathesis activity of ethene and 2-butene over supported WO_3 catalysts[J].Joumal of Molecular Catalysis A:Chemical,2007,267(1-2):224-233.
    [35]Kimia T.,Burrowsb A.,Kielyb C.J.,et al.Molecular/electronic structure-surface acidity relationships of model-supported tungsten oxide catalysts[J].Journal of Catalysis,2007,246(2):370-381.
    [36]Brei V.V,Prudius S.V.,Melezyhk O.V.,Vapour-phase nitration of benzene over superacid catalysts[J].Applied catalysis A:General,2003,239:11-16.
    [37]扬水金,白爱民,余协卿等.固体超强酸催化剂的制备及其催化性能研究[J].有机化学,2004,24(10):1262-1266.
    [38]Perez-Cadenas A.F.,Moreno-Castilla C.,Maldonado-Hodar F.J.and Fierro.J.L.G.Tungsten oxide catalysts supported on activated carbons:effect of tungsten precursor and pretreatment on dispersion,distribution,and surface acidity of catalysts[J].Journal of Catalysis,2003,217,30-37.
    [39]黎源.WO_3-TiO_2-SO_4~(2-)固体超强酸的制备及应用研究[J].精细化工,2002 19(1):36-38.
    [40]杨水金,罗义,自爱民等.SO_4~2/TiO_2-WO_3催化合成苹果酯的研究[J].化学试剂,2004,26(5):305-307.
    [41]Reddy B.M.,Sreekanth RM.,Yamada Y.,et al.Surface characterization and catalytic activity of sulfate-,molybdate-and tungstate-promoted A_2O_3-ZrO_2 solid acidic catalysts[J].Journal of Molecular Catalysis A:Chemical,2005,227:81-89.
    [42]Reddy B.M.,Sreekanth P.M.,Yamada Y.,Xu Q.,Kobayashi T.Surface characterization of sulfate,molybdate,and tungstate promoted TiO_2-ZrO_2 solid acid catalysts by XPS and other techniques[J].Applied catalysis A:General,2002,228(1-2):269-278.
    [43]Arata K.,Nakamura H.,Souji M.Friedel-Crafts acylation of toluene catalyzed by solid superacids[J].Applied catalysis A:General,2000,197:213-219.
    [44]孙闻东,赵振波,楚文玲等.WO_3/ZrO_2固体酸催化剂上丁烷-丁烯烷基化反应研究(1)-钨负载量和焙烧温度的影响[J].高等学校化学学报,2003,21(3):448-452.
    [45]时连.改性WO_3/ZrO_2上苯和长链烯烃烷基化反应研究[D].南京工业大学,2005.
    [46]刘炳麟,潘声云,高钨含量WO_3/SiO_2烯烃歧化催化剂的特性[J].浙江大学学报(自然科学版),1990,24(002):189-198.
    [47]Ushikubo T.H.,Kurashige M.,Koyanagi T.,etc.Hydration of ethene over W-P mixed metal oxide catalysts[J].Catalysis Letters,2000,69(1/2):83-87.
    [48]王燕,黎先财,曹小华.水热改性SO_4~(2-)/TiO_2-WO_3催化环己醇脱水合成环己烯[J].南昌大学学报(理科版),2007,31(4):361-364.
    [49]宋杰,陈滇宝,钨系齐格勒—纳塔催化剂引发丁二烯-苯乙烯共聚合:Ⅱ.烷基铝氯含[J].合成橡胶工业,1995,18(004):233-234.
    [50]Maksimov G.M,Fedotov M.A.,Bogdanov S.V.,et al.Synthesis and study of acid catalyst 30%WO_3/SnO_2[J].J.Mol.Catal.A,2000,158:435.
    [51]Hino M.,Kurashige M.,Matsuhashi H.,Arata K.A solid acid of tungsta-niobia more active than aluminosilicates for decompositions of cumene,ethylbenzene,and toluene[J].Applied Catalysis A,General,2006,310:190-193.
    [52]Khder A.S.Ahmed A.I.Selective nitration of phenol over nanosized tungsten oxide supported on sulfated SnO_2 as a solid acid catalyst[J].Applied Catalysis A,General,2009,354(1-2):153-160.
    [53]Lokhat D.,Starzak M.,Stelmachowski M.Gas-phase metathesis of 1-hexene over a WO_3/SiO_2 catalyst:Search for optimal reaction conditions[J].Applied Catalysis A,General,2008,351(1):137-147.
    [54]Erdohelyi A.,Nemeth R.,Hancz A.,et al.Partial oxidation of methane on potassium promoted WO_3/SiO_2 and on K_2WO_4/SiO_2 catalysts[J].Appl.Catal.2001,211:109-121.
    [55]Wu J.,Zhang H.,Qin S.,Hu C.La-promoted Na_2WO_4/Mn/SiO_2 catalysts for the oxidative conversion of methane simultaneously to ethylene and carbon monoxide[J].Applied Catalysis A,General,2007,323:126-134.
    [56]Ji S.,Xiao T.,Li S.,Chou L.,Zhang B.,Xu C.,Hou R.,York A.P.E.,Green M.L.H.Surface WO4 tetrahedron:the essence of the oxidative coupling of methane over M-W-Mn/SiO2 catalysts[J].Journal of Catalysis,2003,220(1):47-56.
    [57]Martin C.,Solana G.,Malet P.,et al.Nb_2O_5-supported WO_3:a comparative study with WO_3/Al_2O_3[J].Catal.Today,2003,78:365-376.
    [58]阎松,姜恒,宫红,王锐三氧化钨催化氧化环己烯合成己二酸[J].中国钨业,2005,20(2):33-43.
    [59]Koo D.H.,Kim M.,Chang S.S.,WO_3 nanoparticles on MCM-48 as a highly selective and versatile heterogeneous catalysts for the oxidation of olefins,sulfides,and cyclic ketones[J].Organic letters,2005,22:5015-5018.
    [60]Hulea V.,Maciuca A.L.,Fajula F.,Dumitriu E.Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides[J].Applied Catalysis A,General,2006,313(2):200-207.
    [61]Maciuca A.L.,Dumitriu E,Fajula F.,Hulea V.Mild oxidation of tetrahydrothiophene to sulfolane over V-,Mo- and W-containing layered double hydroxides[J].Applied Catalysis A,General,2008,338(1):1-8.
    [62]李芳柏,古国榜,李新军等.WO_3/TiO_2纳米材料的制备及光催化性能[J].物理化学报,2000,16(11):997-1002.
    [63]Martin C.,Martin I.,Rives V.,Solana G.Physicochemical characterization of WO_3/ZrO_2 and WO_3/Nb_2O_5 catalysts and their photoactivity for 4-nitrophenol photooxidation in aqueous dispersion[J].J.Mater.Science,1997,32:6039-6047.
    [64]王恩波,胡长文,许林多酸化学导论[J].化学工业出版社,1998,14,16.
    [65]Misono M.Nojiri N.Recent progress in catalytic technology in Japan[J].Applied catalysis,1990,64(1-2):1-30.
    [66] Harrup M. K. Hill C. L. Polyoxometalate Catalysis of the Aerobic Oxidation of Hydrogen Sulfide to Sulfur [J]. Inorg. Chem, 1994, 33(24): 5448-5455.
    
    [67] Smegal J. A. Hill C. L. Hydrocarbon functionalization by the (iodosylbenzene) manganese (Ⅳ) porphyrin complexes from the (tetraphenylporphinato)manganese (Ⅲ)-iodosylbenzene catalytic hydrocarbon oxidation system. Mechanism and reaction chemistry [J]. J. Am. Chem. Soc, 1983, 105(11): 3515-3521.
    
    [68] Schardt B. C., Smegal J. A., Hollander F. J., Hill C. L. Isolation, purification, and characterization of high-valent complexes from a manganese porphyrin based catalytic hydrocarbon activation system. Crystal and molecular structure of. mu.-oxo-bis [azido (tetraphenylporphinato) manganese (Ⅳ)] [J]. J. Am. Chem.Soc, 1982, 104(14): 3964-3972.
    
    [69] Camenzind M. J., Hollander F. J., Hill C. L. Syntheses, ground electronic state, and crystal and molecular structure of the monomeric manganese (Ⅵ) porphyrin complex dimethoxy (5, 10, 15, 20-tetraphenylporphinato) manganese (Ⅳ) [J]. Inorg. Chem, 1982, 21(12): 4301-4308.
    
    [70] Hill C. L. Hollander F. J. Structural characterization of a complex of Manganese (Ⅴ) nitrido [tetrakis (p-methoxyphenyl) porphinato] manganese (Ⅴ) [J]. J. Am. Chem. Soc, 1982, 104(25): 7318-7319.
    
    [71] Smegal J. A., Schardt B. C., Hill C. L. Isolation, purification, and characterization of intermediate (iodosylbenzene) metalloporphyrin complexes from the (tetraphenylporphinato) manganese (Ⅲ)-iodosylbenzene catalytic hydrocarbon functionalization system [J]. J. Am. Chem. Soc, 1983, 105(11): 3510-3515.
    
    [72] Smegal J. A. Hill C. L. Synthesis, characterization, and reaction chemistry of a bis (iodosylbenzene) metalloporphyrin complex, [PhI(OAc)O]_2MnIVTPP. A complex possessing a five-electron oxidation capability [J]. J. Am. Chem. Soc, 1983, 105(9): 2920-2922.
    
    [73] Hill C. L., Smegal J. A., Henly T. J. Catalytic replacement of unactivated alkane carbon-hydrogen bonds with carbon-X bonds (X= nitrogen, oxygen, chlorine, bromine, or iodine). Coupling of intermolecular hydrocarbon activation by MnIIITPPX complexes with phase-transfer catalysis [J]. J. Org. Chem, 1983, 48(19): 3277-3281.
    
    [74] Hill C. L. Williamson M. W. Electronic and structural properties of a reactive metalloporphyrin with N-oxide axial ligands.Crystal and molecular structure of bis(2,6-lutidine N-oxide)(tetraphenylporphinato) manganese(Ⅲ) perchlorate[J].Inorg.Chem,1985,24(19):3024-3030.
    [75]Lyons J.E.Ellis P.E.Selective low temperature hydroxylation of isobutane by molecular oxygen catalyzed by an iron perhaloporphyrin complex[J].Catalysis Letters,1991,8(1):45-51.
    [76]Bressan M.,Morvillo A.,Romanello G.Ruthenium-catalyzed oxygenation of saturated hydrocarbons by t-butylhydroperoxide[J].Journal of molecular catalysis,1992,77(3):283-288.
    [77]Mizuno N.,Hirose T.,Tateishi M.,Iwamoto M.A Pronounced Catalytic Activity of PW_(11)CoO_(39)~(5-) for epoxidation of Alkenes by Molecular Oxygen in the Presence of Aldehyde[J].Chemistry Letters,1993,22(11):1839-1842.
    [78]Hill C.L.Prosser-McCartha C.M.Homogeneous catalysis by transition metal oxygen anion clusters[J].Coordination Chemistry Reviews,1995,143(407-455.
    [79]Mizuno N.Misono M.Heteropolyanions in catalysis[J].Journal of molecular catalysis,1994,86(1-3):319-342.
    [80]Venturello C.,D'Aloisio R.,Bart J.C.J.,Ricci M.A new peroxotungsten heteropoly anion with special oxidizing properties:synthesis and structure of tetrahexylammonium tetra(dipewroxotungsto) phosphate~(3-)[J].Journal of molecular catalysis,1985,32(1):107-110.
    [81]Schwegler M.,Floor M.,Van Bekkum H.Heteropolyanions as oxidation catalysts in a 2-phase system[J].Tetrahedron letters,1988,29(7):823-826.
    [82]Furukawa H.,Nakamura T.,Inagaki H.,Nishikawa E.,Imai C.,Misono M.Oxidation of cyclopentene with hydrogen peroxide catalyzed by 12-heteropoly acids[J].Chemistry Letters,1988,17(5):877-880.
    [83]Venturello C.,Alneri E.,Ricci M.A new,effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions[J].J.Org.Chem,1983,48(21):3831-3833.
    [84]Venturello C.D'Aloisio R.Quaternary ammonium tetrakis(diperoxotungsto)phosphates~(3-) as a new class of catalysts for efficient alkene epoxidation with hydrogen peroxide[J].J.Org.Chem,1988,53(7):1553-1557.
    [85]石先莹,魏俊发,何地平,吴亚钼,钨过氧配合物催化过氧化氢氧化烯烃和醇类反应的研究进展[J].有机化学,2003,23(011):1230-1235.
    [86]Tani M.,Sakamoto T.,Mita S.,Sakaguchi S.,Ishii Y.Hydroxylation of benzene to phenol under air and carbon monoxide catalyzed by molybdovanadophosphoric acid [J]. Angew. Chem. Int. Ed., 2005, 44(17):2586-2588.
    [87] Sakata Y. Ishii Y. A versatile transformation of vic-diols into, a-hydroxy ketones with hydrogen peroxide catalyzed by peroxorungstophosphates [J]. J. Org. Chem, 1991, 56(21): 6233-6235.
    [88] Ishii Y. Sakata Y. A novel oxidation of internal alkynes with hydrogen peroxide catalyzed by peroxotungsten compounds [J]. J. Org. Chem, 1990, 55(21): 5545-5547.
    [89] Sakaue S., Tsubakino T., Nishiyama Y, Ishii Y. Oxidation of aromatic amines with hydrogen peroxide catalyzed by cetylpyridinium heteropolyoxometalates [J]. J. Org. Chem, 1993, 58(14): 3633-3638.
    [90]Ishii Y, Yamawaki K., Ura T., Yamada H., Yoshida T., Ogawa M. Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1, 2-diols and olefins [J]. J. Org. Chem, 1988,53(15): 3587-3593.
    [91] Oguchi T., Sakata Y., Takeuchi N., Kaneda K., Ishii Y, Ogawa M. Epoxidation of a,(3-unsaturated carboxylic acids with hydrogen peroxide by heteropoly acids [J]. Chemistry Letters, 1989, 18(11): 2053-2056.
    [92] Sakaue S., Sakata Y, Nishiyama Y, Ishii Y. Oxidation of aliphatic and aromatic amines with hydrogen peroxide catalyzed by peroxoheteropoly oxometalates [J]. Chemistry Letters, 1992, 21(2): 289-292.
    [93] Sakaguchi S., Watase S., Katayama Y., Sakata Y., Nishiyama Y., Ishii Y. Oxidation of allenes and alkynes with hydrogen peroxide catalyzed by cetylpyridinium peroxotungstophosphate (PCWP) [J]. J. Org. Chem, 1994, 59(19):5681-5686.
    [94] Ishii Y., Tanaka H., Nishiyama Y. Selectivity in Oxidation of Sulfides with Hydrogen Peroxide by [π-C_5H_5N~+(CH_2)_(15CH_3]_3PM_(12)O_(40)~(3-) and [π-C_5H_5N~+(CH_2)_(15)CH_3]_3{PO_4[M(O)(O_2)_2]_4}~(3-)(M= Mo or W) [J]. Chemistry Letters, 1994,23(1): 1-4.
    [95] Csanyi L. JaKy K. Some features of epoxidation of cyclohexene catalyzed by oxoperoxometllates under phase-transfer conditions [J]. Journal of Catalysis, 1991, 127(1): 42-50.
    [96] Csanyi L. J. Jaky K. Peroxo-oxometallate formation under phase transfer conditions [J]. Journal of molecular catalysis, 1990, 61(1): 75-84.
    
    [97] Salles L., Aubry C., Thouvenot R., Robert F., Doremieux-Morin C., Chottard G., Ledon H., Jeannin Y., P and W NMR spectroscopic evidence for novel peroxo species in the _H3[PW_(12)O_(40)]·yH_2O system. Synthesis and X-ray structure of tetrabutylammonium (μ-hydrogen phosphate)bis(μ-peroxo)bis(oxoperoxotungsten): a catalyst of olefins epoxidation in a biphase medium [J]. Inorg. Chem., 1994, 33(5):871-878.
    
    [98] Salles L., Piquemal J. Y., Thouvenot R., Minot C., Bregeault J. M. Catalytic epoxidation by heteropolyoxoperoxo complexes: from novel precursors or catalysts to a mechanistic approach [J]. Journal of Molecular Catalysis. A,Chemical, 1997, 117(1-3): 375-387.
    
    [99] Ballistreri F. P., Bazzo A., Tomaselli G. A., Toscano R. M. Reactivity of peroxopolyoxo complexes. Oxidation of thioethers, alkenes, and sulfoxides by tetrahexylammonium tetrakis (diperoxomolybdo) phosphate [J]. J. Org. Chem,1992, 57(26): 7074-7077.
    
    [100] Duncan D. C., Chambers R. C., Hecht E., Hill C. L. Mechanism and dynamics in the H_3[PW_(12)O_(40)]-catalyzed selective epoxidation of terminal olefins by H_2O_2.Formation, reactivity, and stability of {PO_4[WO(O_2)_2]_4}~(3-) [J]. J. Am. Chem. Soc,1995, 117(2): 681-691.
    
    [101] Tourne C. M., Tourne G. F., Zonnevijlle F. Chiral polytungstometalates [WM_3(H_2O)_2(XW_9O_(34))_2]~(12-) (X=M=Zn or Co II) and their M-substituted derivatives. Syntheses, chemical, structural and spectroscopic study of some D, L sodium and potassium salts [J]. Journal of the Chemical Society, Dalton Transactions, 1991, 1991(1): 143-155.
    
    [102] Khenkin A. M. Hill C. L. Selective homogeneous catalytic epoxidation of alkenes by hydrogen peroxide catalysed by oxidatively- and Solvolytically-resistant polyoxometalate complexes [J]. Mendeleev Communications, 1993, 3(4): 140-141.
    
    [103] Neumann R. Gara M. Highly Active manganese-containing polyoxometalate as catalyst for epoxidation of alkenes with hydrogen peroxide [J]. J. Am. Chem. Soc,1994, 116(12): 5509-5510.
    
    [104] Neumann R. Juwiler D. Oxidations with hydrogen peroxide catalysed by the [WZnMn(II)_2(ZnW_9O_(34))_2]~(12-) polyoxometalate [J]. Tetrahedron, 1996, 52(26): 8781-8788.
    [105] Neumann R. Khenkin A. M. A new dinuclear rhodium (Ⅲ)'sandwich' polyoxometalate,[(WZnRli~Ⅲ_2)(ZnW_9O_(34))_2]~(10-). Synthesis, characterization and catalytic activity [J]. Journal of molecular catalysis. A, Chemical, 1996, 114(1-3): 169-180.
    [106] Neumann R., Khenkin A. M., Juwiler D., Miller H., Gara M. Catalytic oxidation with hydrogen peroxide catalyzed by 'sandwich'type transition metal substituted polyoxometalates [J]. Journal of Molecular Catalysis. A, Chemical, 1997, 117(1-3): 169-183.
    [107] Moffat J. B. Implicit and explicit microporosity in heteropoly oxometalates [J]. Journal of molecular catalysis, 1989, 52(1): 169-191.
    [108] Okuhara T., Nishimura T., Watanabe H., Na K., Misono M. Novel catalysis of cesium salt of heteropolyacid and its characterization by solid-state NMR [J]. Studies in Surface Science and Catalysis, 1994, 90(419-428.
    [109] Okuhara T., Nishimura T., Misono M. Microporous heteropoly compound as a shape selective catalyst: Cs_(2.2)H_(0.8)PW_(12)O_(40) [J]. Chemistry Letters, 1995, 155-155.
    
    [110] Izumi Y., Ono M., Ogawa M., Urabe K. Acidic cesium salts of Keggin-type heteropolytungstic acids as insoluble solid acid catalysts for esterfication and hydrolysis reactions [J]. Chemistry Letters, 1993, 22(5): 825-828.
    [111] Izumi Y., Ono M., Kitagawa M., Yoshida M., Urabe K. Silica-included heteropoly compounds as solid acid catalysts [J]. Microporous Materials, 1995, 5(4): 255-262.
    [112] Izumi Y., Urabe K., Onaka M. Development of catalyst materials for acid-catalyzed reactions in the liquid phase [J]. Catalysis Today, 1997, 35(1-2): 183-188.
    [113] Izumi Y. Hydration/hydrolysis by solid acids [J]. Catalysis Today, 1997, 33(4): 371-409.
    [114] Bruckman K., Haber J., Serwicka E. M., Yurchenko E. N., Lazarenko T. P. Laser Raman and DTA/TGA study of H_(3+n)PV_nMo_(12-n)O_(40) heteropolyacids pure and supported on K_3PMo_(12)O_(40) [J]. Catalysis Letters, 1990, 4(2): 181-189.
    [115] Serwicka E. M., Bruckman K., Haber J., Paukshtis E. A., Yurchenko E. N. Acid-base properties of H_(3+n)PV_nMo_(12-n_O_(40) heteropolyaacids, pure and supported on K_3PMo_(12)O_(40) [J]. Applied catalysis, 1991, 73(2): 153-163.
    
    [116] Bonardet J. L., Fraissard J., McGarvey G. B., Moffat J. B. A Comparative-Study of the Microporosity of the Ammonium and Cesium Salts of 12-Tungstophosphoric, 12-Molybdophosphoric, and 12-Tungstosilicic Acids by Xe~(129)NMR [J]. Journal of Catalysis, 1995, 151(1): 147-154.
    [117] Tatibouet J. M., Montalescot C., Bruckman K. A new method to prepare silica supported heteropolyanion catalysts formation on the silica surface of calcium and magnesium salts of phosphomolybdic acid, H_3PMo_(12)O_(40) [J]. Applied Catalysis A General, 1996, 138(1): 1-6.
    
    [118] Kozhevnikov I. V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions [J]. Chem. Rev, 1998, 98(1): 171-198.
    [119] Gall R. D., Hill C. L., Walker J. E. Carbon Powder and Fiber-Supported Polyoxometalate Catalytic Materials. Preparation, characterization, and catalytic oxidation of dialkyl sulfides as mustard (HD) analogues [J]. Chem. Mater, 1996, 8(10): 2523-2527.
    [120] Izumi Y., Hasebe R., Urabe K. Catalysis by heterogeneous supported heteropoly acid [J]. Journal of catalysis, 1983, 84(2): 402-409.
    [121] Izumi Y. Urabe K. Catalysis of heteropoly acids entrapped in activated carbon [J]. Chemistry Letters, 1981, 10(5): 663-666.
    [122] Schwegler M. A., Van Bekkum H., De Munck N. A. Heteropolyacids as catalysts for the production of phthalate diesters [J]. Applied catalysis, 1991, 74(2): 191-204.
    [123] Baba T. Ono Y. Heteropolyacids and their salts supported on acidic ion-exchange resin as highly active solid-acid catalysts [J]. Applied catalysis, 1986, 22(2): 321-324.
    [124] Kozhevnikov I. V., Kloetstra K. R., Sinnema A., Zandbergen H. W., Van Bekkum H. Study of catalysts comprising heteropoly acid H_3PW_(12)O_(40) supported on MCM-41 molecular sieve and amorphous silica [J]. Journal of molecular catalysis. A Chemical, 1996, 114(1-3): 287-298.
    [125] Kozhevnikov I. V., Sinnema A., Jansen R. J. J., Pamin K., Bekkum H. New acid catalyst comprising heteropoly acid on a mesoporous molecular sieve MCM-41 [J]. Catalysis Letters, 1994, 30(1): 241-252.
    [126] Chu W., Yang X., Shan Y., Ye X., Wu Y. Immobilization of the heteropoly acid (HPA) H_3SiW_(12)O_(40) (SiW_(12)) on mesoporous molecular sieves (HMS and MCM-41) and their catalytic behavior [J]. Catalysis Letters, 1996, 42(201-208.
    [127] Verhoef M. J., Kooyman P. J., Peters J. A., van Bekkum H. A study on the stability of MCM-41-supported heteropoly acids under liquid-and gas-phase esterification conditions [J]. Microporous and Mesoporous Materials, 1999, 27(2-3): 365-371.
    [128] Ghanbari-Siahkali A., Philippou A., Dwyer J., Anderson M. W. The acidity and catalytic activity of heteropoly acid on MCM-41 investigated by MAS NMR, FTIR and catalytic tests [J]. Applied Catalysis A, General, 2000, 192(1): 57-69.
    [129] Zhu K., He H., Xie S., Zhang X., Zhou W., Jin S., Yue B. Crystalline WO3 nanowires synthesized by templating method [J]. Chemical Physics Letters, 2003, 377(3-4): 317-321.
    [130] Zhu K. K., Yue B., Xie S. H., Zhang S. Y., Zhang B., Jin S. L., He H. Y. Preparation and characterization of divanadium pentoxide nanowires inside SBA-15 channels [J]. Chinese Journal of Chemistry, 2004, 22(1): 33-37.
    [131] Tarlani A., Abedini M., Nemati A., Khabaz M., Amini M. M. Immobilization of Keggin and Preyssler tungsten heteropolyacids on various functionalized silica [J]. Journal of Colloid and Interface Science, 2006, 303(1): 32-38.
    [132] Li H., Perkas N., Li Q., Gofer Y., Koltypin Y., Gedanken A. Improved silanization modification of a silica surface and its application to the preparation of a silica-supported polyoxometalate catalyst [J]. Langmuir, 2003, 19(24): 10409-10413.
    [133] Inumaru K., Ishihara T., Kamiya Y., Okuhara T., Yamanaka S. Water-tolerant, highly active solid acid catalysts composed of the Keggin-type polyoxometalate H_3PW_(12)O_(40) immobilized in hydrophobic nanospaces of organomodified mesoporous silica [J]. Angew. Chem. Int. Ed., 2007, 46, 7625-7628.
    [134] Hoffmann H. M. R., Rabe J. Synthesis and biological activity of α-methylene-γ-butyrolactones. Angew. Chem., 1985, 97(2): 96-112.
    [135] Kupchan S. M., Eakin M. A., Thomas A. M. Tumor inhibitors. 69. Structure-cytotoxicity relations among the sesquiterpene lactones. J. Med. Chem., 1971, 14(12): 1147-1152.
    [136] Lee K. H., Furukawa H. Antitumor agents. 3. Synthesis and cytotoxic activity of helenalin amine adducts and related derivatives. J. Med. Chem., 1972, 15(6): 609-611.
    [137] Rieser M. J., Kozlowski J. F., Wood K. V., McLaughlin J. L. Muricatacin: a simple biologically active acetogenin derivative from the seeds of Annona muricata (Annonaceae). Tetrahedron Lett., 1991, 32(9): 1137-1140.
    [138]Behr S.,Hegemann K.,Schimanski H.,Froehlich R.,Haufe G.Synthesis of -lactones from cycloocta-1,5-diene-starting materials for natural-product synthesis.Eur.J.Org.Chem.,2004,2004(18):3884-3892.
    [139]Hegemann K.,Froehlich R.,Haufe G.Synthesis of enantiopure 9-oxabicyclononanediol derivatives by lipase-catalyzed transformations and determination of their absolute configuration.Eur.J.Org.Chem.,2004,2004(10):2181-2192.
    [140]Wang M.L.,Huang T.H.Phase-transfer catalystic epoxidation of olefins under liquid-liquid biphasic conditions.React.Kinet.Catal.Lett.2003,78(2):275-280
    [141]Larsen E.,J(?)gensen K.A.Transition—Metal Phthalocyanins as catalysts for alkene epoxidation.Acta Chemica Scandinavica,1989,43:250-263.
    [142]Legemaat G.,Drenth W.Epoxidation of alkenes by hydrogen perxoide catalysed by oxo(5,10,15,20-tetraphenylporphyrinato)-molybdenum(V) complexes.J.Mol.Catal.,1990,62(2):119-133.
    [143]Pillai R.U.,Demessie S.E.,Namboodiri V.V.,Varma R.S.An efficient and ecofriendly oxidation of alkenes using iron nitrate and molecular oxygen.Green Chem.,2002,4(5):495-497.
    [144]Pillai R.U.,Demessie S.E.,Varma S.R.Microwave-expedited olefin epoxidation over hydrotalcites using hydrogen peroxide and acetonitrile Tetrahedron lett.,2002,43(16):2909-2911.
    [145]Brule E.,Miguel R.d.Y.and Hii K.K.Chemoselective epoxidation of dienes using polymer—supported manganese porphyrin catalysts.Tetrahedron,2004,60(28):5913-5918.
    [146]Bhattacharjee S.,Anderson J.A.Comparison of the epoxidation of cyclohexene,dicyclopentadiene and 1,5-cyclooctdiene over LDH hosted Fe and Mn sulfonato-salen complexes.J.Mol.Catal.A:Chem.,2006,249(1-2):103-110.
    [147]金荣华.环戊烯催化氧化制备戊二醛的非均相催化剂的研究[D].上海:复旦大学,1999.
    [148]陈浩.环戊烯选择氧化制戊二醛的新型非均相催化剂的研究[D].上海:复旦大学,2002.
    [149]郭昌文.环戊烯合成戊二醛催化新材料的研究[D].上海:复旦大学,2003.
    [150]杨新丽.新型含钨纳米材料的合成及其在环戊烯选择氧化反应中的应用研究[D].上海:复旦大学,2006.
    [1]Brunauer S.,Emmett P.H.Teller E.Adsorption of Gases in Multimolecular Layers [J].J.Am.Chem.Soc.,1938,60:309-319.
    [2]Robertson S.D.,Anderson R.B.Structure of Raney nickel.Ⅳ.X-ray diffraction studies[J].J.Catal.1971,23(2):286-294.
    [1] Hoffmann H. M. R., Rabe J. Synthesis and biological activity of a-methylene- γ-butyrolactones [J]. Angewandte Chemie, 1985, 97(2): 96-112.
    
    [2] Kupchan S. M., Eakin M. A., Thomas A. M. Tumor inhibitors. 69. Structure- cytotoxicity relationships among the sesquiterpene lactones [J]. Journal of medicinal chemistry, 1971, 14(12): 1147-52.
    
    [3] Lee K. H., Furukawa H. Antitumor agents. 3. Synthesis and cytotoxic activity of helenalin amine adducts and related derivatives [J]. Journal of medicinal chemistry, 1972, 15(6): 609-611.
    
    [4] Rieser M. J., Kozlowski J. F., Wood K. V., McLaughlin J. L. Muricatacin: a simple biologically active acetogenin derivative from the seeds of Annona muricata (Annonaceae) [J]. Tetrahedron Letters, 1991, 32(9): 1137-1140.
    
    [5] Behr S., Hegemann K., Schimanski H., Froehlich R., Haufe G. Synthesis of y-lactones from cycloocta-1,5-diene - starting materials for natural-product synthesis [J]. European Journal of Organic Chemistry, 2004, (18): 3884-3892.
    
    [6] Hegemann K., Froehlich R., Haufe G. Synthesis of enantiopure 9-oxabicyclononanediol derivatives by lipase-catalyzed transformations and determination of their absolute configuration [J]. European Journal of Organic Chemistry, 2004, (10): 2181-2192.
    
    [7] Capel-Sanchez M. C., Campos-Martin J. M., Fierro J. L. G. Influence of the textural properties of supports on the behaviour of titanium-supported amorphous silica epoxidation catalysts [J]. Journal of Catalysis, 2005, 234(2): 488-495.
    
    [8] Somma F., Canton P.,Strukul G. Effect of the matrix in niobium-based aerogel catalysts for the selective oxidation of olefins with hydrogen peroxide [J]. Journal of Catalysis, 2005, 229(2): 490-498.
    
    [9] Somma F., Strukul G. Oxidation of geraniol and other substituted olefins with hydrogen peroxide using mesoporous, sol-gel-made tungsten oxide-silica mixed oxide catalysts [J]. Journal of Catalysis, 2004, 227(2): 344-351.
    
    [10] Chen H., Dai W.L., Yang X.L., Gao R.H., Cao Y., Li H.X., Fan K.N. Studies on the structural change of a reaction-controlled phase-transfer [π-C_5H_5NC_(16)H_(33)]_3{PO_4[WO_3]_4} catalyst during the selective oxidation of cyclopentene to glutaric acid with aqueous H_2O_2 [J]. Applied Catalysis, A: General, 2006, 309(1): 62-69.
    [11] Sato K., Hyodo M., Aoki M., Zheng X. Q., Noyori R. Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent- and halogen-free conditions [J]. Tetrahedron, 2001, 57(13): 2469-2476.
    [12] Deng J.F., Xu X.H., Chen H.Y., Jiang A.R. "A new process for preparing dialdehydes by catalytic oxidation of cyclic olefins with aqueous hydrogen peroxide" [J]. Tetrahedron, 1992, 48 (17): 3503-3514.
    [13] Xu X.H., Chen H.Y., Deng J.F., Jiang A.R., "Preparation of glutaraldehyde by catalytic oxidation of cyclopentene with aqueous solution of hydrogen peroxide" [J], Acta Chim. Sinica, 1993, 51 (4): 399-403.
    [14] Dai W.L., Yu H.K., Deng J.F., Jiang A.R. Studies on the mechanism of catalytic oxidation of cyclopentene to prepare glutaraldehyde with aqueous hydrogen peroxide [J]. Huaxue Xuebao, 1995, 53(2): 188-92.
    [15] Dai W.L., Huang X.J., Chen H.Y., Deng J.F. "Kinetics and mechanism of the catalytic oxidation of cyclopentene to glutaraldehyde with aqueous hydrogen peroxide" [J]. Indian J. Chem. 1997, 36B: 583-589.
    [16] Yang X.L.; Dai W.L., Chen H., Cao Y., Li H.X., He H.Y., Fan K.N. Novel efficient and green approach to the synthesis of glutaraldehyde over highly active W-doped SBA-15 catalyst [J]. Journal of Catalysis, 2005, 229(1): 259-263.
    [17] Tsigdinos G.A., Hallada C. Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparartion and characterization [J]. J. Inorg. Chem.,1968, 7(3): 437-441
    [18] Noyori R., Aoki M., Sato K. Green oxidation with aqueous hydrogen peroxide [J]. Chemical communications, 2003, (16):1977-1986.
    [19] Maheswari P. U., de Hoog P.,Hage R., Gamez P., Reedijk J. A Na_2WO_4/H_2WO_4 -based highly efficient biphasic catalyst towards alkene epoxidation, using dihydrogen peroxide as oxidant [J]. Advanced Synthesis & Catalysis, 2005, 347(14): 1759-1764.
    [20] Lin H.Q., Li H.M., Yu X.Y., Zhai H.S., Yuan Y.Z., Wan H.L. Raman study of transformation behavior of tungsten-containing peroxo species affected by different precursors and solution acidities [J]. Huaxue Xuebao, 2004, 62(18): 1780-1784.
    [1] Gao R.H., Dai W. L., Le Y.Y., Yang X.L., Cao Y., Li H.X., Fan K.N. A green process for O-heterocyclization of cycloocta-1,5-diene by peroxotungstic species with aqueous H_2O_2 [J]. Green Chemistry, 2007, 9(8): 878-881.
    [2] Herrera J. E., Kwak J. H., Hu J. Z., Wang Y., Peden C. H. F., Macht J., Iglesia E. Synthesis, characterization, and catalytic function of novel highly dispersed tungsten oxide catalysts on mesoporous silica [J]. Journal of Catalysis, 2006, 239(1): 200-211.
    [3] Yang X. L., Dai W. L., Chen H., Cao Y., Li H., He H., Fan K. Novel efficient and green approach to the synthesis of glutaraldehyde over highly active W-doped SBA-15 catalyst [J]. Journal of Catalysis, 2005, 229(1): 259-263.
    [4] Zhang Z., Suo J., Zhang X., Li S. Synthesis, characterization, and catalytic testing of W-MCM-41 mesoporous molecular sieves [J]. Applied Catalysis A, General, 1999, 179(1-2): 11-19.
    [5] Briot E., Piquemal J. Y., Vennat M., Bregeault J. M., Chottard G., Manoli J. M. Aqueous acidic hydrogen peroxide as an efficient medium for tungsten insertion into MCM-41 mesoporous molecular sieves with high metal dispersion [J].Journal of Materials Chemistry, 2000, 10(4): 953-958.
    [6] Schmidt-Winkel P., Lukens W.W., Yang P.D., Margolese D.I., Lettow J.S., Ying J.Y., Stucky G.D. Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores, Chem. Mater. 2000, 12: 686-696.
    [7] Sing K S W, Everett D H, Haul R V W, Siemieniewska T, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1985, 57: 603-619.
    [8] Gregg, S. J.; Sing, K. S. W. In Adsorption, Surface Area and Porosity; Academic Press: New York, 1982.
    [9] Lukens W.W., Jr., Schmidt-Winkel P., Zhao D.Y., Feng J.L., and Stucky G.D., Evaluating pore sizes in mesoporous materials: A simplified standard adsorption method and a simplified Broekhoff-de Boer method, Langmuir, 1999, 15(16), 5403-5409.
    [10] Vermaire D.C.,Vanberge P.C., The preparation of tungsten trioxide/titania and tungsten trioxide/alumina and characterization by temperature-programmed reduction, J.Catal.[J],1989,116(2):309-317.
    [11] Graselli J.G., Bullkin B.J., Chemical Analysis, Vol. 114: Analytical Raman Spectroscopy [M]. New York: John Wiley and Sons, 1991: 352-404.
    [12] Stein A., Fendorf M., Jarvie T.P., Mueller K.T., Benesi A.J., Mallouk T.E., Salt-Gel Synthesis of Porous Transition-Metal Oxides, Chem. Mater. 1995, 7(2):304-313.
    [13] Wand Y., Zhang O.H., Ohishi Y., Shishido T., Takehira K., Synthesis of V-MCM-41 by template-ion exchange method and its catalytic properties in propane oxidative dehydrogenation, Catal. Lett. 2001, 72(3-4): 215-219.
    [14] Pistorius C.W.F.T., Phase diagrams of sodium tungstate and sodium molybdate to 45 bar, J. Chem. Phys. 1966,44(12):4532-4537.
    [15] Klepel O., Bohlmann W., Ivanov E.B., Riede V., Papp H., Incorporation of tungsten into MCM-41 framework, Micropor.Mesopor.Mater. 2004, 76(1-3):105-112.
    [16] Weber R.S., Effect of local-structure on the Uv-Visible absorption edges of molybdenum bride clusters and supported molybdenum oxides, J.Catal. 1995, 151(2):470-474.
    [17] Iglesia E., Barton D.G., Soled S.L., Miseo S., Baumgartner J.E., Gates W.E., Fuentes G.A. and Meitzner G.D., Selective isomerization of alkanes on supported tungsten oxide acids, Stud. Surf. Sci. Catal. 101(Pt. A, 11th International Congress on Catalysis-40th Anniversary, 1996, Pt. A), Publisher: Elsevier, 1996, 101:533-542.
    [18] Briot E., Piquemat J.-Y., Vennat M., Bregeault J.-M., Chottard G. and Manoli J.-M., Aqueous acidic hydrogen peroxide as an efficient medium for tungsten insertion into MCM-41 mesoporous molecular sieves with high metal dispersion, J. Mater. Chem. 2000, 10(4):953-958.
    [19] Vermaire D.C.,Vanberge P.C., The preparation of tungsten trioxide/titania and tungsten trioxide/alumina and characterization by temperature-programmed reduction, J.Catal.[J],1989,116(2):309-317.
    [20] Karakonstantis L., Matralis H., Kordulis Ch. Lycourghiotis A., Tungsten-oxo-species deposited on alumina .2. Characterization and catalytic activity of unpromoted W-(VI)/gamma-Al_2O_3 catalysts prepared by equilibrium deposition filtration (EDF) at various pH's and non-dry impregnation (NDI), J.Catal.[J],1996,162(2):306-319
    [21] Horsley J. A., Wachs I. E., Brown J. M., Via G H., and Hardcastle F. D., Structure of surface tungsten oxide species in the tungsten trioxide/alumina supported oxide system from x-ray absorption near-edge spectroscopy and Raman spectroscopy, J. Phys. Chem., 1987,91(15):4014-4020.
    
    [22] De Lucas A., Valverde J. L., Canizares P., Rodriguez L. Partial oxidation of methane to formaldehyde over W/SiO_2 catalysts [J]. Applied Catalysis A, General, 1999,184(1): 143-15
    [1] Zhong Z.Y., Ying Y.D., Gates B., Xia Y.N. Preparation of mesoscale hollow spheres of TiO_2 and SnO_2 by templating against crystalline arrays of polystyrene beads [J]. Adv. Mater., 2000, 12(3): 206-209.
    
    [2] Somma F., Strukul G. Oxidation of geraniol and other substituted olefins with hydrogen peroxide using mesoporous, sol-gel-made tungsten oxide-silica mixed oxide catalysts [J]. J. Catal., 2004, 227(2): 344-351.
    [3] Strukul G. Catalytic Oxidations with Hydrogen Peroxide as Oxidant [M]. Netherlands: Kluwer Academic, 1992.
    [4] Sels B.F., De Vos D.E., Jacobs P.A. Bromide-assisted oxidation of substituted phenols with hydrogen peroxide to the corresponding p-quinol and p-quinol ethers over WO_(42)-exchanged layered double hydroxides [J]. Angew. Chem. Int. Ed., 2005, 44(2): 310-313.
    [5] Wilson R.D., Barton D.G., Baertsch C.D., Iglesia E. Reaction and Deactivation Pathways in Xylene Isomerization on Zirconia Modified by Tungsten Oxide [J]. J. Catal., 2000, 194(2): 175-187.
    [6] Horsley J.A., Wachs I.E., Brown J.M., Via GH., Hardcastle F.D. Structure of surface tungsten oxide species in the tungsten trioxide/alumina supported oxide system from x-ray absorption near-edge spectroscopy and Raman spectroscopy [J]. J. Phys. Chem., 1987, 91(15): 4014-4020.
    [7] Engweiler J., Harf J., Baiker A. WOx/TiO_2 catalysts prepared by grafting of tungsten alkoxides: morphological properties and catalytic behavior in the selective reduction of NO by NH_3 [J]. J. Catal., 1996, 159(2): 259-269.
    [8] Hilbrig F., Gobel H.E., Knozinger H., Schmelz H., Lengeler B. X-ray absorption spectroscopy study of the titania- and alumina-supported tungsten oxide system [J]. J. Phys. Chem., 1991, 95(18): 6973-6978.
    [9] Colque S., Payen E., Grange P. Novel preparation of highly dispersed tungsten oxide on silica [J]. J. Mater. Chem., 1994,4(8): 1343-1348.
    [10] Kim D.S., Ostromecki M., Wachs I.E. Surface structures of supported tungsten oxide catalysts under dehydrated conditions [J]. J. Mol. Catal. A: Chem., 1996, 106(1-2): 93-102.
    
    [11] Kim D.S., Ostromecki M., Wachs I.E., Kohler S.D., Ekerdt J.G. Preparation and characterization of WO_3/SiO_2 catalysts [J]. Catal. Lett., 1995, 33(3-4): 209-215.
    [12] Perez-Cadenas A.F., Moreno-Castilla C., Maldonado-Hodar F.J., Fierro J.L.G.Tungsten oxide catalysts supported on activated carbons: effect of tungsten precursor and pretreatment on dispersion, distribution, and surface acidity of catalysts [J]. J. Catal., 2003, 217(1): 30-37.
    
    [13] Iglesia E., Barton D.G., Soled S.L., Miseo S., Baumgartner J.E., Gates W.E., Fuentes G.A., Meitzner G.D. Selective isomerization of alkanes on supported tungsten oxide acids [J]. Stud. Surf. Sci. Catal., 1996, 101: 533-542.
    
    [14] Larsen G., Lotero E., Parra R.D., Hightower J.W., Delgass W.N., Iglesia E., Bell A.T. Proceedings of the 11th International Congress on Catalysis-40 Anniversary, Studies in Surface and Catalysis, Vol. 101, 1996, Elsevier, p. 543.
    
    [15] Di Gregorio F., Keller V. Activation and isomerization of hydrocarbons over WO_3/ZrO_2 catalysts: I. Preparation, characterization, and X-ray photoelectron spectroscopy studies [J]. J. Catal., 2004, 225(1): 45-55.
    
    [16] Valigi M., Gazzoli D., Pettiti I., Mattei G., Colonna S., De Rossi S., Ferraris G., WOx/ZrO_2 catalysts. Part 1. Preparation, bulk and surface characterization [J]. Appl. Catal. A: General, 2002, 231(1-2): 159-172.
    
    [17] Figueras F., Palomeque J., Loridant S., Feche C., Essayem N., Gelbard G. Influence of the coordination on the catalytic properties of supported W catalysts [J]. J. Catal., 2004, 226(1): 25-31.
    
    [18] Briot E., Piquemat J.-Y., Vennat M., Bregeault J.-M., Chottard G., Manoli J.-M. Aqueous acidic hydrogen peroxide as an efficient medium for tungsten insertion into MCM-41 mesoporous molecular sieves with high metal dispersion [J]. J. Mater. Chem., 2000, 10(4): 953-958.
    
    [19] Klepel O., Bohlmann W., Ivanov E.B., Riede V., Papp H. Incorporation of tungsten into MCM-41 framework [J]. Micropor.Mesopor.Mater., 2004, 76(1-3): 105-112.
    
    [20] Berndt H., Martin A., Bruckner A., Schreier E., Muller D., Kosslick H., Wolf G. U., Lucke B. Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde [J]. Journal of Catalysis, 2000,191(2): 384-400.
    
    [21] Rybarczyk P., Berndt H., Radnik J., Pohl M. M., Buyevskaya O., Baerns M., Bruckner A. The Structure of Active Sites in Me-V-O Catalysts (Me= Mg, Zn, Pb) and Its Influence on the Catalytic Performance in the Oxidative Dehydrogenation (ODH) of Propane [J]. Journal of Catalysis, 2001, 202(1): 45-58.
    [22] Kumar M. S., Schwidder M., Grunert W., Bruckner A. On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: new insights by a combined EPR and UV/VIS spectroscopic approach [J]. Journal of Catalysis, 2004, 227(2): 384-397.
    [23] Groen J. C., Bruckner A., Berrier E., Maldonado L., Moulijn J. A., Perez-Ramirez J. Iron site modification upon alkaline treatment of Fe-ZSM-5 zeolites-Opportunities for improved N2O decomposition activity [J]. Journal of Catalysis, 2006, 243(1): 212-216.
    [24] Santhosh Kumar M., Schwidder M., Gruenert W., Bentrup U., Brueckner A. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: Part II. Assessing the function of different Fe sites by spectroscopic in situ studies [J]. Journal of Catalysis, 2006, 239(1): 173-186.
    [25] Wang M.L., Huang T.H. Phase-transfer catalytic epoxidation of olefins under liquid-liquid biphasic conditions [J]. Reaction Kinetics and Catalysis Letters, 2003, 78(2): 275-280.
    [26] Larsen E., Joergensen K. A. Transition-metal phthalocyanins as catalysts for alkene epoxidation [J]. Acta Chemica Scandinavica, 1989, 43(3): 259-263.
    [27]Legemaat G., Drenth W., Schmidt M., Prescher G., Goor G. Epoxidation of alkenes by hydrogen peroxide catalyzed by oxo(5,10,15,20-tetraphenylporphyrinato)molybdenurn(V) complexes. Journal of Molecular Catalysis, 1990, 62(2): 119-133.
    [28] Pillai U. R., Sahle-Demessie E., Namboodiri V. V., Varma R. S. An efficient and ecofriendly oxidation of alkenes using iron nitrate and molecular oxygen [J].Green Chemistry, 2002, 4(5): 495-497.
    [29]Brule E., de Miguel Y. R., Hii K. K. Chemoselective epoxidation of dienes using polymer-supported manganese porphyrin catalysts [J]. Tetrahedron, 2004, 60(28): 5913-5918.
    [30] Pillai U. R., Sahle-Demessie E., Varma R. S. Microwave-expedited olefin epoxidation over hydrotalcites using hydrogen peroxide and acetonitrile [J]. Tetrahedron Letters, 2002, 43(16): 2909-2911.
    [31] Gao R.H., Dai W. L., Yang X.L., Li H.X., Fan K.N. Highly efficient tungsten trioxide containing mesocellular silica foam catalyst in the O-heterocyclization of cycloocta-1, 5-diene with aqueous H_2O_2 [J]. Applied Catalysis A, General, 2007, 332(1): 138-145.
    [32] Cheng C. Y., Lin K. J., Prasad M. R., Fu S. J., Chang S. Y., Shyu S. G., Sheu H. S., Chen C. H., Chuang C. H., Lin M. T. Synthesis of a reusable oxotungsten-containing SBA-15 mesoporous catalyst for the organic solvent-free conversion of cyclohexene to adipic acid [J]. Catalysis Communications, 2007, 8(7): 1060-1064.
    [33] Zhao D.Y., HUO Q.S., Feng J.L., Chmelka B.F., Stucky GD. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures [J]. J. Am. Chem. Soc., 1998, 120(24): 6024-6036.
    [34] Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E. W. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. Journal of the American Chemical Society, 1992, 114(27): 10834-10843.
    [35] Schmidt-Winkel P., Lukens W.W., Yang P.D., Margolese D.I., Lettow J.S., Ying J.Y., Stucky G.D. Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores, Chem. Mater. 2000, 12: 686-696.
    
    [36] Pistorius C.W.F.T. Phase diagrams of sodium tungstate and sodium molybdate to 45 bar [J]. J. Chem. Phys., 1966, 44(12): 4532-4537.
    [37]Chao K. J., Wu C. N., Chang H., Lee L. J., Hu S. f. Incorporation of Vanadium in Mesoporous MCM-41 and Microporous AFI Zeolites [J]. Journal of Physical Chemistry B, 1997, 101(33): 6341-6349.
    [38] Wu J.G., Li S.B. The Role of Distorted WO_4 in the Oxidative Coupling of Methane on Supported Tungsten Oxide Catalysts [J]. The Journal of Physical Chemistry, 1995, 99(13): 4566-4568
    [39] Doniach S., Sunjic M. Many-electron singularity in x-ray photoemission and x-ray line spectra from metals [J]. J. Phys. C: Solid State Phys., 1970, 3(2): 285-291.
    [40] Valigi M., Gazzoli D., Pettiti I., Mattei G., Colonna S., De Rossi S., Ferraris G., WOx/ZrO_2 catalysts. Part 1. Preparation, bulk and surface characterization [J]. Appl. Catal. A: General, 2002, 231(1-2): 159-172.
    [41] Sun M.Y., Burgi T., Cattaneo R., Prins R. TPS, XPS, and QEXAFS Investigation of the Sulfidation Behavior of Tungsten on Fluorine-Promoted Alumina [J]. J. Catal., 2001, 197(1): 172-181
    [1]Hill C.L.Stable,self-assembling,equilibrating catalysts for green chemistry[J].Angew.Chem.,Int.Ed.,2004,43(4):402-404.
    [2]Firouzabadi H.,IranPoor N.,AmaniK.Heteropoly acid cesium salt/cetyltrimethylammonium bromide a catalytic heterogeneous system which highly controls regioselective bromination of aromatic compounds with bromine[J].J.Mol.Catal.A,2003,195(1-2):289-294.
    [3]Fortunato R,Reller A.,OWald H.R.Generation of mixed metal oxides by use of anultrasonic aerosol thermal decomposition Process[J].Solid State Ionics,1997,101:85-89.
    [4]Komiya N.,Naota T.,Oda Y,Murahashi S.I.Aerebic oxidation of alkanes and alkenes in the presence of aldehydes catalyzed by copper salts and copper-crown ether[J].J.Mol.Catal.A,1997,117(1-3):21-37.
    [5]Okuhara T.,Mizuno N.,Misono M.Catalysis by heteropoly compound-recent developments[J].Appl.Catal.A,2001,222(1-2):63-77.
    [6]Hill C.L.,Prosser-MeCartha C.M.Homogeneous catalysis by transition-mental oxygen anion clusters[J].Coord.Chem.Rev.1995,143:407-455.
    [7]Mizuno N.,Misono M.Heterogenous catalysis[J].Chem.Rev.,1998,98(1):199-217.
    [8]Kozhevnikov I.V.Catalysis by heteropolyacids and multicomponent Polyoxometalates in liquid-Phase reactions[J].Chem.Rev.,1998,98(1):171-198.
    [9]Corma A.Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J].Chem.Rev.,1995,95(3):559-614.
    [10]Johnson B.J.S.,Stein A.Surface modification of mesoporous,macroporous,and amorphous silica with catalytically active Polyoxometalate clusters[J].Inorg.Chem.,2001,40(4):801-808.
    [11]Das D.P.,Parida K.M.Liquid Phase bromination of Phenol Π.Over hete ropoly acid(HPA)-impregnated zirconium Phosphate(ZrP)[J].Appl.Catal.A,305(1):32-38.
    [12]Nowinska K.,Formaniak R.,Kaleta W.,Waclaw A.Heteropoly compounds incorporated into mesoporous material structure[J].Appl.Catal.A,256(1-2):115-123.
    [13] Collins F.M., Lucy A.R., Sharp C., Oxidative desulphurization of oils via hydrogen Peroxide and heteropolyanion catalysis [J]. J. Mol. Catal. A, 117(1-3):397-403.
    [14] Te M., Fairbridge C., Ring Z. Oxidation reactivities of dibenzothiophenes polyoxometalate/H_2O_2 and formic acid/H_2O: systems [J]. Appl. Catal. A, 219(1-2): 267-280.
    [15] Aubry C., Chottard G., Platzer N., Bregeault J.M., Thowenot R., Chauveau F.,Huet C., Ledon H. Reinvestigation of epoxidation using tungsten-based precursors and hydrogen peroxide in abiphase medium [J]. Inog. Chem., 30(23):4409-4415.
    [16] Ding Y., Gao Q., Li G.X., Zhang H., wang J., Yan L., Suo J., Selective epoxidation of cyclohexene to cyclohexene oxide catalyzed by Keggin-type heteropoly compounds using anhydrous urea-hydrogen Peroxide as oxidizing reagent and acetonitrile as the solvent [J]. J. Mol. Catal. A, 2004, 218(2): 161-170.
    [17] Ghanbari-Siallkali A., Philippou A., Dwyer J., Anderson M.W. The acidity and catalytic activity of heteropoly acid on MCM-41 investigated by MAS NMR, FTIR and catalytic tests [J]. Appl. Catal. A, 2000, 192(1): 57-69.
    [18] Verhoef M.J., Kooyman PJ., Peters J.A., Belucum H.V. A study on the stability of MCM-41-supported heteropolyacids under liquid- and gas-Phase esterification conditions [J]. Micropor. Mesopor. Mater. 1999, 27(2-3): 365-371.
    [19] Kozhevnikov I.V, Sinnema A., Jansen R.J.J., Pamin K., van Bekkum H. New acid catalyst comprising heteropoly acid on a mesoporous molecular-sieve MCM-41 [J]. Catal. Lett., 1995, 30(1-4): 241-252.
    [20] Kamata K., Yonehara K., Sumida Y., Yamaguchi K., Hikiehi S., Mizuno N. Efficient epoxidation of olefins with ≥99% selectivity and use of hydrogen peroxide [J]. Science, 2003, 300(5621): 964-966.
    [21] Vasylyev M.V., Neuxnann R. New heterogeneous Polyoxometalate based mesoporous catalysts for hydrogen peroxide mediated oxidation reactions [J] J. Am. Chem. Soc., 2004, 126(3): 884-890.
    [22] Bregeault J.M., Vennat M., Salles L., Piquemal J.Y., Mahha Y., Briot E., Bakala P.C., Atlamsani A., Thouvenot R. From Polyoxometalates to polyoxoperoxometalates and back again; potential applications [J]. J. Mol. Catal.A, 2006, 250(1-2): 177-189.
    [23] Yamaguchi K., Yoshida C., Uchida S., Mizuno N. Peroxotungstate immobilizedon ionic liquid-modified silica as a heterogeneous epoxidation catalyst with hydrogen peroxide [J]. J. Am. Chem. Soe., 2005, 127(2): 530-531.
    [24] Yamada Y.M.A., Ichinohe M., Takahashi H., Ikegami S. Development of a new triphase catalyst and its application to the epoxidation of allylic alcohols [J]. Org. Lett., 2001, 3(12):1837-1840.
    [25] Xi Z.W., Zhou N., Sun Y., Li K.L. Reaction-controlled Phase-transfer catalysis for Propylene epoxidation tea propylene oxide [J]. Science, 2001, 292(5519): 1139-1141.
    [26] Yadav G.D., Manyar H.G. Novelties of synthesis of acetoveratrone using heteropoly acids supported on hexagonal mesoporous silica [J]. Mieropor. Mesopor. Mater., 2003, 63(1-3):85-86.
    [27] Kozhevnikov I.V., Kloetstra K.R., Sinnema A., Zandbergen H.W., van Bekkum H. Study of catalysts comprising heteropolyacid H_3PW_(12)O_(40) supported on MCM-41 molecular sieve and amorphous silica [J]. J. Mol. Catal. A, 114(1-3): 287-298.
    [28] Blasco T., Corma A., Martinez A., Martinez-Escolano P. Supported heteropolyacid (HPW) catalysts for the continuous alkylation of isobutene with 2-butene: The benefit of using MCM-41with larger pore diameters [J]. J. Catal., 1998, 177(2): 306-313.
    [29] Marme F., Coudurier G., Vedrine J.C. Acid-type catalytic properties of Heteropoly acid H_3PW_(12)O_(40) supported on various porous silica-based materials [J]. Mieropor. Mesopor. Mater., 1998, 22(1-3): 151-163.
    [30] Zhu K.K., Yue B., Zhou W.Z., He H.Y. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15 [J]. Chem. Comm., 2003,(1): 98-99.
    [31] Zhu K.K., He H.Y., Xie S.H., Zhang X., Zhou W.Z., Jin S.L., Yue B. Crystalline WO_3 nanowires synthesized by templating method [J]. Chem. Phys. Lett., 2003, 377(3-4): 317-321.
    [32] Zhu K.K., Yue B., Xie S.H., Zhang S.Y., Zhang B., Jin S.L., He H.Y. Preparation and characterization of divanadium Pentoxide nanowires inside SBA-15 channels [J]. Chin. J. Chem., 2004, 22(1): 33-37.
    [33] Shylesh S., Singh A.P. Heterogenized vanadyl cations over modified silica surfaces: A comprehensive understanding toward the structural property and catalytic activity difference over mesoporous and amorphous silica supports [J]. Journal of Catalysis, 2006, 244: 52-64.
    [34] Schmidt-Winkel P., Lukens W.W., Yang P.D., Margolese D.I., Lettow J.S., Ying J.Y., Stucky G.D. Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores [J], Chem. Mater. 2000, 12: 686-696.
    [35] Chong A. S.M., Zhao X. S. Functionalization of SBA-15 with APTES and characterization of Functionalized Materials [J]. Journal of Physical Chemistry B, 2003, 107(46): 12650-12657.
    [36] Liu A. M., Hidajat K., Kawi S., Zhao D. Y. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chemical Communications, 2000, (13): 1145-1146.
    [37] Yiu H. H. P., Wright P. A., Botting N. P. Enzyme immobilization using SBA-15 mesoporous molecular sieves with functionalized surfaces [J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 15(1-3): 81-92.
    [38] Liu N.G., Assink R. A., Smarsly B., Brinker C. J. Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable -NH_2 groups [J]. Chemical Communications, 2003, (10): 1146-1147.
    [39] Wang X.G, Lin K. S. K., Chan Jerry C. C., Cheng S. Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-Functionalized SBA-15 Mesoporous Materials [J]. Journal of Physical Chemistry B, 2005, 109(5): 1763-1769.
    [40] Kim H., Kim P., Lee K.Y., Yeom S. H., Yi J.H., Song I. K. Preparation and characterization of heteropolyacid/mesoporous carbon catalyst for the vapor-phase 2-propanol conversion reaction [J]. Catalysis Today, 2006, 111(3-4):361-365.
    [41] Li H.L., Perkas N., Li Q.L., Gofer Y., Koltypin Y., Gedanken A. Improved Silanization Modification of a Silica Surface and its Application to the Preparation of a Silica-Supported Polyoxometalate Catalyst [J]. Langmuir, 2003, 19(24): 10409-10413.
    [1]McGucken P.V.,Woodside W.Studies on the mode of action of glutaraldehyde on Escherichia coli[J].J.Appl.Bacteriol.,1973,36(3):419-426.
    [2]Chiritag,et al.Dialdehyde combination with the reactive groups of collagen[J].J.Amer.Leather Commun.,1971,66(8):389-392.
    [3]Boivin J.Oil industry biocides[J].Mater.Perfor.,1995,34(2):65-68.
    [4]许新华,陈海鹰,邓景发,将安仁.过氧化氢水溶液催化氧化环戊烯制备戊二醛[J].化学学报,1993,51(4):399-403.
    [5]Furukawa H.,Nishikawa E.,Koyama T.Aldehydes[P].JP:61-289051,1986-12-16.
    [6]陈浩,邓景发,蒋安仁,戴维林,范康年.过氧铌酸催化下双氧水选择氧化环戊烯制备戊二醛[J].复旦学报(自然科学版),2002,41(3):318-321.
    [7]Xia X.,Jin R.H.,He Y.G.,Deng J.F.,Li H.X.Surface properties and catalytic behaviors of WO_3/SiO_2 in selective oxidation of cyclopentene to glutaraldehyde [J].Appl.Surf.Sci.,2000,165(4):255-259.
    [8]Chen H.,Dai W.L.,Deng J.F.,Fan K.N.Novel Heterogeneous W-Doped MCM-41Catalyst for Highly Selective Oxidation of Cyclopentene to Glutaraldehyde by Aqueous H_2O_2[J].Catal.Lett.,2002,81(1-2):131-136.
    [9]郭昌文,戴维林,曹勇,谢颂海,范康年.规整中孔TiP_2微球的均相沉淀合成及其在环戊烯氧化反应中的应用[J].高等学校化学学报,2003,24(6):1097-1099.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700