基于蓄满超渗产流模式的分布式模型构建及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洪水灾害是一种发生概率高,范围广,破坏力强的自然灾害。洪水预报为科学地进行洪水调度和防汛抢险提供了决策支持。水文模型作为预报洪水的一个重要方法,一直是水文科学研究的重要分支。分布式流域水文模型不仅可以反映流域下垫面的空间分布,而且易于与气候气象数据进行耦合,至今一直是研究的热点和难点之一。
     本文在国家自然科学基金项目“流域水文过程对极端气候事件敏感性研究"(51079131)和中国气象局气候变化专项“河南省不同流域水文过程对极端降水事件的响应”(编号CCSF201312)支持下展开,论文构建适用于半干旱半湿润地区特点的松散型分布式水文模型,模型以蓄满-超渗产流方式、单位线及马斯京根法为理论基础,并以陆浑水库控制流域为例对模型进行了验证。在对流域内降雨和径流的时空分布特点及其洪水等级进行分析的基础上,对该流域的洪水风险管理提出了相关建议和措施。
     (1)利用ArcGIS软件对搜集到的陆浑水库控制流域的DEM数据进行了处理,提取出该流域的河网水系,将研究区域划分为13个子流域,并提取出了流域地形、土地利用、土壤和植被分布等流域特征。
     (2)考虑蓄满-超渗兼容的产流模式,以DEM为基础,构建适用于半干旱半湿润地区的松散耦合型分布式流域水文模型,并以陆浑水库控制流域为例,应用该模型对洪水过程进行了模拟,并与陆浑水库管理局的经验模型模拟结果进行了对比,结果表明,分布式模型模拟精度较高,而经验模型精度稍差,分布式模型模拟结果可以为水库的防洪调度提供指导依据,经验模型模拟结果可以作为参考。
     (3)对陆浑水库流域的降雨、径流空间分布及历史洪水特性进行了分析,并将洪水划分为五个等级,统计结果表明,东湾站洪峰为1609m3/s以上的洪水产生灾害的风险较大,1609m3/s以下的洪水产生灾害较小。流域内降雨中心在上游的大等级降雨场次较多,而下游的场次较少。并结合陆浑水库流域特征,对该流域的洪水风险管理进行分析,提出了相关建议和措施。
Flood disasters is a frequentily, widely and destructive natural disaster. Flood forecasting provides decision-making scientifically for flood regulation and control. Hydrological model as an important method of flood forecasting, has been an important branch of the hydrological science. Distributed hydrological model as an important hydrological model, not only can reflect the spatial distribution of the basin underlying surface, but also can be coupled with climate and meteorological data easily, and therefore it has been one of the hotspot issues.
     This research is founded on National Natural Science Foundation of China (51079131)"The sensibility research on the hydrologic processes to extreme weather events" and The China Meteorological Administration Special Climate Change "The response of the Hydrological processes to extreme precipitation events in henan province", in this paper. A distributed hydrological model is build, which is a loosely coupled distributed hydrological model for the semiarid subhumid features, based on the infiltration excess and saturation excess runoff mechanisms, unit lines and Muskingum method. The watershed of Luhun reservoir is taken as an example to validate the model. Statistics and analysis on every sub-basin outflow and precipitation has been carried on. The region flood level has been divided, some related suggestions and measures to flood risk management in the region are made.
     (1) The river network is extracted from DEM data using of ArcGIS software. The area is divided into13sub-basins based on characteristics of watershed topography, land use, soil and vegetation distribution.
     (2) A loosely coupled distributed-hydrological model, which is taken into account the infiltration excess and saturation excess runoff mode, is built base on the DEM. The model was applied in the watershed of Luhun reservoir, and compared with the empirical model simulation. The results show that the simulation accuracy of distributed-hydrological model is higher than that of the empirical model. Therefore, the simulation results of the distributed-hydrological model can provide guidance on the reservoir for flood control, and the empirical model simulation can be used as a reference.
     (3) Spatial distribution of rainfall, runoff and flood characteristics of the Luhun reservoir are analyzed, and the flood is divided into five levels. The results show that the flood peak, which is more than1609m3/s, has a big risk, but the flood peak, which is less than1609m3/s, has a little risk. The rainfall center in the upstream of the watershed happen frequently, the others is few. The flood risk management is analyzed, and a few proposals and measures are taken, which is taken into account the characteristics of Luhun reservoir basin.
引文
[1]胡彩虹,王金星.流域产汇流模型及水文模型[M].郑州:黄河水利出版社,2010,2.
    [2]http://baike.baidu.com/view/38579.htm
    [3]徐宗学,等.水文模型[M].北京:科学出版社,2009,10.
    [4]石教智,陈晓宏.流域水文模型研究进展[J].水文,2006,21(1):18~23.
    [5]吴贤忠.流域水文模型研究进展综述[J].农业科技与信息,201 1(2):40~41.
    [6]金鑫,郝振纯,张金良.水文模型研究进展及发展方向[J].水土保持研究,2006,13(4):197~199.
    [7]王文志,罗艳云,段利民.分布式水文模型研究进展综述[J].水利科技与经济,2010,16(4):381~382.
    [8]陈洋波.流溪河模型[M].北京:科学出版社,2009,9.
    [9]夏积德,吴发启,郭江涛,孙茂存.分布式水文模型建模过程研究[J].西安文理学院学报:自然科学版,2008,1 1(4):1~7.
    [10]黄沛.基于空间信息技术的流域分布式水文模型构建方法研究[D].华中科技大学,2007,3.
    [11]芮孝芳,朱庆平.分布式流域水文模型研究中的几个问题[J].水利水电科技进展,2002,22(3):56~59.
    [12]刘丽娜.气候变化对中小流域径流过程的影响研究[D].郑州大学硕士学位论文,2010,5.
    [13]詹道江,叶守泽.工程水文学[M].北京:中国水利水电出版社,2006,8.
    [14]包为民.水文预报(第三版)[M].北京:中国水利水电出版社,2007,10.
    [15]马玉林.基于ArcGIS Engine的洪水预报系统研究[D].郑州大学,2011.
    [16]胡彩虹,郭生练,彭定志,等.半干旱半湿润地区流域水文模型比较研究[J].武汉大学学报(工学版),2003,36(50):38-42.
    [17]Caihong Hu, Shenglian Guo, Lihua Xiong, Dingzhi Peng, A modified Xinanjiang model and its application in Northern China[J]. Nordic Hydrology, No.36(3),2005.
    [18]Keith Beven.Infiltration excess at the Horton Hydrology Laboratory (or not?)[J]. Journal of Hydrology 2004, (293):219-234.
    [19]M.R. Khaleghi, V. Gholami, J. Ghodusi, H. Hosseini. Efficiency of the geomorphologic instantaneous unit hydrograph method in floodhydrograph simulation [J].Catena 2011, (87):163-171.
    [20]V.M. Ponce, A.K. Lohani, C. Scheyhing Analytical verification of Muskingum-Cunge routing [J]. Journal of Hydrology 1996,(174):235-241.
    [21]L. Tatard, O. Planchon, J. Wainwright, G.Nord, D. Favis-Mortlock, N. Silvera, O. Ribolzi, M. Esteves, Chi Hua Huang. Measurement and modelling of high-resolution flow-velocity data under simulated rainfall on alow-slope sandy soil [J]. Journal of Hydrology 2008, (348):1-12.
    [22]刘青娥.分布式流域水文模型参数不确定性研究——时空变异规律与可移植性[D].中山大学博士学位论文,2009,6.
    [23]晋华.双超式产流模型的理论及应用研究[D].中国地质大学(北京)博士学位论文,2006,6.
    [24]Beven, KJ,Kirkby, MJ.A Physically Based Variable Contributing Area Model of Basin Hydrology [J]..Hydrological Sciences Bulletin,1979,24(1):43-69.
    [25]Kairong Lin, Qiang Zhang, Xiaohong Chen.An evaluation of impacts of DEM resolution and parameter correlationon TOPMODEL modeling uncertainty[J]. Journal of Hydrology 2010, (394):370-383.
    [26]王中根,刘昌明,吴险峰.基于DEM的分布式水文模型研究综述[J].自然资源学报,2003,18(02):168-173.
    [27]Abbott, MBBathurst, JC, Cunge, JA, et al.Introduction to the European Hydrological System-Systeme Hydrologique European, SHE,2.Structure of a Physically-based, Distributed Modelling System[J]. Journal of Hydrology JHYDA 7,1986,87(1/2):61-67.
    [28]Bathurst, JC, Wicks, JM, O'Connell, PE.The SHE/SHESED basin scale water flow and sediment transport modelling system[A].in:V P Singh.Chapter 16 in Computer Models of Watershed Hydrology[C].Water Resource Publications, Littleton, Co,1995.
    [29]W.L. Wood. A note on how to avoid spurious oscillation in thefinite-element solution of the unsaturated flow equation [J].Journal of Hydrology 1996,(176):205-218.
    [30]Samira Akhavana, Jahangir Abedi-Koupaia, Sayed-Farhad Mousavia,Majid Afyunib, Sayed-Saeid Eslamiana, Karim C. Abbaspourc, Application of SWAT model to investigate nitrate leaching inHamadan-Bahar Watershed, Iran[J]. Agriculture, Ecosystems and Environment 2010 (139):675-688.
    [31]罗文兵,洪林,时元智.国内外分布式水文模型研究和应用综述[J].中国科技论文在线.
    [32]Bandaragoda, C., Tarboton, D. G., and Woods, R. Application of TOPNET in the distributed model intercomparison project[J]. Journal of Hydrology,2004:178-201.
    [33]Roger Moussa, Nane'e Chahinian, Claude Bocquillon. Distributed hydrological modelling of a Mediterranean mountainous catchment-Model construction and multi-site validation[J]. Journal of hydrology,2007:35-51.
    [34]Luz Adriana Cuartas, Javier Tomasellaa, Antonio Donato Nobrea, b, Carlos Afonso Nobrea, Martin G Hodnettc, Maarten J. Waterlooc, Sylvia Mota de Oliveirab, Rita de Cassia von Randowa, Ralph Trancosob, Monica Ferreiraa. Distributed hydrological modeling of a micro-scale rainforest watershed in Amazonia:Model evaluation and advances in calibration using the new HAND terrain model[J]. Journal of Hydrology Volumes,,2012,462-463(10): 15-27
    [35]葛守西.蓄满产流模型的卡尔曼滤波算法[J].成都科技大学学报,1984,9:69-78
    [36]包为民,王从良.垂向混合产流模型及应用[J].水文,1997.
    [37]陶新.黄河小花区间洪水预报模型研究及软件系统开发[D].河海大学硕士学位论文,2007,5.
    [38]陶新,刘志雨,颜亦琪,史玉品.TOPKAPI模型在伊河流域的应用研究[J].人民黄河,2009,31(3):105-108.
    [39]华士乾,文康.论流域汇流的数学模型——第二部分非线性模型[J].水利学报,1980,(6): 1-13.
    [40]宋星原,管怀民,苏志诚,王驰.半湿润地区洪水预报模型研究及应用[J].水文,2005,25(2):24-28.
    [41]李晓,李致家,董佳瑞.SWAT模型在伊河上游径流模拟中的应用[J].河海大学学报(自然科学版),2009,37(1):23-26
    [42]陈闻晨.泾河流域DEM流域信息提取[J].水资源与水工程学报,2010,21(3):111-114.
    [43]黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展望[J].水文,1997,17(5):5-10.
    [44]任立良,刘新仁.基于DEM的水文物理过程模拟[J].地理研究,2000,19(4):369-376.
    [45]李兰,郭生练等.流域水文数学物理耦合模型[A].中国水利学会优秀论文集[C].北京:中国三峡出版社,2000:322-329.
    [46]胡连伍,王学军,罗定贵,蒋颖.不同子流域划分对流域径流、泥沙、营养物模拟的影响——丰乐河流域个例研究[J].水科学进展,2007,18(2):235-240.
    [47]王燕,李建清,仝黎熙.三水源模型在滦河流域的应用分析[J].水利信息化,201 1(5):11-15.
    [48]郭生练,熊立华,杨井等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    [49]郭生练,熊立华,杨井等.分布式流域水文物理模型的应用和检验[J].武汉大学学报(工学版),2001,34(1):1-5.
    [50]夏军,王纲胜,谈戈等.水文非线性系统与分布式时变增益模型[J].中国科学(D辑:地球科学),2004,34(11):1062-1071.
    [51]熊立华,郭生练,田向荣.基于DEM的分布式流域水文模型及应用[J].水科学进展,2002,15(4):517-520.
    [52]卢选伟.干旱与半干旱地区洪水预报研究[J].水利水电技术,2006,37(1):92-97.
    [53]许珂艳,姚僳宝,狄艳艳,陶新.陆浑水库入库降雨径流模型研究与应用[J].人民黄河,2010,32(12):81-83.
    [54]黄善和,陈洋波,蒋华波.基于流溪河模型的武江流域洪水预报方案初探[J].中国水利协会第四届青年科技论坛论文集[C].255-260.
    [55]陈洋波,任启伟,徐会军,黄锋华.流溪河模型Ⅰ:原理与方法[J].中山大学学报(自然科学版),2010,49(1):107-112.
    [56]陈洋波,黄锋华,徐会军,任启伟.流溪河模型:参数推求[J].中山大学学报(自然科学版),2010,49(2):105-112.
    [57]李析男.基于地表-地下水动态变化的水文耦合模型应用研究[D].郑州大学硕士学位论 文,2011,6.
    [58]沈冰,黄红虎,薛焱森.水文学原理[M].北京:中国水利水电出版社.2008,9.
    [59]郝振纯,李丽,王加虎,罗健.分布式水文模型理论与方法[M].北京:科学出版社.2010,5.
    [60]芮孝芳.水文学原理[M].北京:中国水利水电出版社.2010,8.
    [61]王书功.水文模型参数估计方法及参数估计不确定性研究[M].郑州:黄河水利出版社.2010,9.
    [62]谭炳卿,水文模型参数自动优选方法的比较分析[J].水文,1 996.5
    [63]赵云.流域洪水过程对极端降水事件的响应分析[D].郑州大学.2012,5.
    [64]中华人民共和国水利部.水文情报预报规范(GB/T 22482—2008)[S].北京:中国标准出版社,2008.
    [65]http://baike.baidu.com/view/125881.htm
    [66]姚成.基于栅格的分布式新安江模型构建与分析[D].河海大学,2007,1.
    [67]汤国安,杨昕.ARCGIS地理信息系统空间分析实验教程[M].北京:科学出版社.2010,4.
    [68]洪宁.基于DEM的燕山水库控制流域降雨径流模拟及可视化研究[D].郑州大学,2008,5.
    [69]凌峰.基于空间信息技术的流域分布式水文模型研究[D].华中科技大学,2006.
    [70]李玉华.基于SWAT模型的三峡库区径流模拟研究[D].西南大学.2010,5.
    [71]张淑兰.土地利用和气候变化对流域水文过程影响的定量评价[D].北京:中国林业科学研究院,2011.
    [72]胡彩虹,石志民,陶新,张鹏旋,赵恒.小花间洪水预报模型和经验方法在陆浑水库的应用对比[J].水电能源科学,2013,3.
    [73]闻瑶.洪水灾害风险分析与评价研究[D].河海大学.2007,3.
    [74]胡辉军.国外有关洪水保险的实践及对我国的启示[J].中国水利.2005,19:49-51.
    [75]郭燕波.堤防保护区洪灾风险区划与管理对策研究[D].大连理工大学.2012,6.
    [76]W. Dodds, J.A.G. Cooper, J. McKenna. Flood and coastal erosion risk management policy evolution in Northern Ireland:"Incremental or leapfrogging?"[J].Ocean & Coastal Management.2010 (53):779-786.
    [77]李莎莎,翟国方,吴云清.英国城市洪水风险管理的基本经验[J]-国际城市规划.2011,26(4):32-36.
    [78]水利部水文局.流域性洪水定义及量化指标研究[R].北京:水利部水文局,2009.
    [79]夏清泉,郭玉人,宋显东.城市防洪标准及对策探讨[J].灾害学.1993,8(1):46-50.
    [80]李英博.大凌河河床淤积导致防洪能力降低[J].东北水利水电.2000,18(1):45-45.
    [81]胡学玉,颜立,汤建军等.东鱼河泥沙淤积对防洪能力影响的分析[J].中国农村水利水电.2002,(2):30-3 1.
    [82]郭跃.自然灾害的风险特征及风险管理模型的探讨[J].水土保持研究.2006,13(4):15-18.
    [83]Zoe Nivolianitou*, Barbara Synodinou.Towards emergency management of natural disastersand critical accidents:The Greek experience[J]. Journal of Environmental Management.2011 (92):2657-2665.
    [84]Lucia Ceccato a,b, Valentina Giannini a,c, Carlo Giupponi. Participatory assessment of adaptation strategies to floodrisk in the Upper Brahmaputra and Danube river basins[J]. downenvironmental science & policy.2011 (14):1163-1174.
    [85]夏海霞.我国洪水风险管理研究[D].中国农业大学.2005,9.
    [86]Selina Begum, Marcel J.F. Stive, Jim W. Hall,叶阳等译.欧洲洪水风险管理—政策创新与实践创新[M].郑州:黄河水利出版社.2011,7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700