海洋半乳寡糖芯片制备及寡糖与凝集素相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以红藻来源的半乳聚糖,κ-,τ-,λ-卡拉胶、琼胶、硫琼胶以及化学处理得到的脱硫κ-,λ-卡拉胶为原料,采用弱酸降解制备各种寡糖混合物,通过低压凝胶渗透色谱(Low pressure gel permeation chromatography, LPGPC)技术获得各系列寡糖单体37个,其中9个为首次获得。通过电喷雾离子化质谱(Electrospray ionization mass chromatography, ESI-MS)方法对所得寡糖结构和序列进行了确证。以制备的半乳寡糖为原料,通过还原胺化法将其与具有氨基的磷脂(DHPE)偶联,制备了40个拟半乳寡糖脂,其中14个为首次获得。
     以制备的拟糖脂为原料,考察了四种构建糖芯片的方法,即薄层点样仪制备微型糖芯片、手动点样仪制备微型糖芯片、薄层点样仪制备min-糖芯片和全自动芯片点样仪制备高密度糖芯片的优缺点。结果表明,mini-糖芯片适合于海洋糖芯片的构建,而微型芯片适用于糖与蛋白结合实验的条件摸索。利用mini-糖芯片技术和ELISA实验方法对各半乳寡糖与RCA_(120)结合,首次研究发现RCA_(120)特异性识别非还原端为Galβ1,4anGal结构的寡糖,进一步研究还发现:(1)非还原端Gal的C-2或C-6位被硫酸基取代后,可增强其与RCA_(120)的亲和力;(2)非还原端Gal的C-4位被硫酸基取代后,会失去与RCA_(120)的亲和力,除去C-4位硫酸基后亲和力将显著升高;(3)非还原端Gal的C-3位被α-Gal取代后,对RCA_(120)亲和力无影响,但被α-L-anGal取代后,将完全失去与RCA_(120)结合能力。各半乳寡糖与RCA_(120)的亲和力顺序为:Gal6Sβ1,4anGal(L)-R > Gal2Sβ1,4Gal2S6S-R > Galβ1,4anGal(L)-R > Galβ1,4GlcNAc-R > Galβ1,4anGal(D)-R > Galβ1,4Gal-R≈Galα1,3Galβ1,4Gal-R > Gal4Sβ1,4anGal(D)-R≈Galβ1,3GlcNAc-R≈Neu5Acα2,6Galβ1,4GlcNAc-R≈anGal(L)α1,3Gal6Sβ1,4anGal(L)-R (R代表单糖或寡糖)。ECL特异性识别含有乳糖胺(Galβ1,4GlcNAc-R)结构单元,非还原端Gal羟基被任何其它基团取代后,都影响其亲和力,但非还原端为Galβ1,4anGal(L or D)结构的寡糖与ECL有微弱的结合力。
     此外,利用构建的mini-糖芯片技术还研究了30种半乳寡糖与Galectin-3的亲和力差异。结果表明:Galectin-3除了识别常规Galβ1,4GlcNAc结构外,与琼胶七糖以上寡糖(Galβ1,4anGal(L)-R)以及三至五糖的硫琼胶寡糖(Gal6Sβ1,4anGal(L)-R)有较强的亲和力。该结果为硫琼胶寡糖作为Galectin-3抑制剂,用于新型抗肿瘤药物的开发提供了基础。
In this thesis, seven series of marine galactan-derived oligosaccharides were obtained fromκ-,τ-,λ-carrageenan, agarose, sulfated agarose,desulfatedκ-,λ-carrageenan by mild acid hydrolysis and low pressure gel permeation chromatography (LPGPC). The sequence of the thirty seven oligosaccharides were determined by electrospray ionization mass chromatography (ESI-MS), in which nine oligosaccharides were firstly reported. Then, all galactan oligosaccharides were covalently linked to 1,2-dihexadecyl-sn- glycero-3-phospho-ethanolamine (DHPE) to acquire neoglycolipids by a reductive animation reaction. Forty neoglycolipids (NGLs) were prepared, and forteen NGLs were firstly reported.
     Four methods of preparing glycochip, including micro-glycochip by automatic TLC sampler, micro-glycochip by 8-pin hand-held micoarrayer, mini-glycochip by automatic TLC sampler and glycochip by high-density microarrayer were established. Mini-glycochip was fit for establishing marine glycan chip, while micro-glycochip was fit for optimizing the content of oligosaccharides probes and lectins. Specificity of RCA_(120) and galactan oligosaccharides was estimated by min-glycan chip and ELISA. We firstly found that RCA_(120) can strongly bind to the oligosaccharides who have the sturcture of Galβ1,4anGal-R, and we further confirmed that: 1) the binding ability to RCA_(120) was significantly strengthen by adding a sulfate group at the 6-O- or 2-O-position of non-reducing end galactose; 2) the binding ability to RCA_(120) was abolished by the addition of a sulfate group at the 4-O-position of non-reducing end galactose; 3) the binding ability to RCA_(120) wasn’t affected by substitution ofα-D-Gal at the 3-O-position of non-reducing end galactose, but can be interrupted by adding α-L-anGal. The binding ability of galactan oligosaccharides with RCA_(120) was as following: Gal6Sβ1,4anGal(L)-R > Gal2Sβ1,4Gal2S6S-R > Galβ1,4anGal(L)-R > Galβ1,4GlcNAc-R > Galβ1,4anGal(D)-R > Galβ1,4Gal-R≈Galα1,3Galβ1,4Gal-R > Gal4Sβ1,4anGal(D)-R≈Galβ1,3GlcNAc-R≈Neu5Acα2,6Galβ1,4GlcNAc-R≈anGal(L)α1,3Gal6Sβ1,4anGal(L)-R (R stands for monosaccharide or oligosaccharides). ECL strongly bound to Galβ1,4GlcNAc structure, but displayed weak affinity with other sulfated oligosaccharides such asκ-,ι-,λ-carrageenan oligosaccharides. ECL only showed weak affinity to Galβ1,4anGal(L or D) structure.
     Furthermore, the affinity differences of thirty marine galactan oligosaccharides to Galectin-3 was also studied by mini-glycochip technique. Galectin-3 displayed strong binding with odd-numbered agaro-pentasaccharide (Galβ1,4anGal(L)-R) and 6-O-sulfated agarose tri- and pentasaccharides (Gal6Sβ1,4anGal(L)-R), except for recognize regular Galβ1,4GlcNAc structure.The results indicated that sulfated agarose oligosaccharides could be used as Galectin-3 inhibitors, which was applied to the development of new anticancer drugs.
引文
[1] Varki, A., Cumming, R., Esko, J., et al.编著.张树政,朱正美,王克夷,等译校.糖生物学基础.北京:科学出版社, 2003, 1~2.
    [2] Varki, A. Sialic acids in human health and disease. Trends Mol Med, 2008, 14(8): 351~360.
    [3] Dube, D. H., Bertozzi, C. R. Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov, 2005, 4(6): 477~488.
    [4] Marth, J. D., Grewal, P. K. Mammalian glycosylation in immunity. Nat Rev Immunol, 2008, 8(11): 874~887.
    [5] Ohtsubo, K., Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell, 2006, 126(5): 855~867.
    [6]王镜岩,朱圣庚,徐长法主编.生物化学.高等教育出版社, 2002.1.
    [7] Foxall, C., Watson, S. R., Dowbenko, D., et al. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewisx oligosaccharide. J Cell Biol, 1992, 117(4): 895~902.
    [8] Munro, J. M., Lo, S. K., Corless, C., et al. Expression of sialyl-Lewisx, an E-selectin ligand, in inflammation, immune processes, and lymphoid tissues. Am J Pathol, 1992, 141(6): 1397~1408.
    [9] Paavonen, T., Renkonen, R. Selective expression of sialyl-Lewisx and Lewisa epitopes, putative ligands for L-selectin, on peripheral lymph-node high endothelial venules. Am J Pathol, 1992, 141(6): 1259~1264.
    [10] Skorstengaard, K., Vestergaard, E. M., Langkilde, N. C., et al. Lewis antigen mediated adhesion of freshly removed human bladder tumors to E-selectin. J Urol, 1999, 161(4): 1316~1323.
    [11] Kaczmarek, R. Alterations of Lewis histo-blood group antigen expression in cancer cells. Postepy Hig Med Dosw, 2010. 64: 87~99.
    [12] Kiyoi, T., Inoue, Y., Ohmoto, H., et al. Synthesis of sialyl Lewisx pentasaccharide analogue for high-throughput screening of selectin blockers. Bioorg Med Chem, 1998, 6(5): 587~593.
    [13] Maaheimo, H., Renkonen, R., Turunen, J. P., et al. Synthesis of a divalent sialyl Lewisx O-glycan, a potent inhibitor of lymphocyte-endothelium adhesion. Evidence that multivalency enhances the saccharide binding to L-selectin. Eur J Biochem, 1995, 234(2): 616~625.
    [14] Seppo, A., Turunen, J. P., Penttila, L., et al. Synthesis of a tetravalent sialyl Lewisx glycan, a high-affinity inhibitor of L-selectin-mediated lymphocyte binding to endothelium. Glycobiology, 1996, 6(1): 65~71.
    [15] Pudelko, M., Bull, J., Kunz, H. Chemical and chemoenzymatic synthesis of glycopeptide selectin ligands containing sialyl Lewisx structures. Chembiochem, 2010, 11(7): 904~930.
    [16] Li, J., Richards, J.C. Functional glycomics and glycobiology: an overview. Methods Mol Biol, 2010, 600: 1~8.
    [17] Williams, T.I., Saggese, D.A., Muddiman, D.C. Studying O-linked protein glycosylations in human plasma. J Proteome Res, 2008, 7(6): 2562~2568.
    [18] Williams, T. I., Saggese, D. A., Toups, K. L., et al. Investigations with O-linked protein glycosylations by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. J Mass Spectrom, 2008, 43(9): 1215~1223.
    [19] Wu, Y., Mechref, Y., Klouckova, I., et al. Mapping site-specific protein N-glycosylations through liquid chromatography/mass spectrometry and targeted tandem mass spectrometry. Rapid Commun Mass Spectrom, 2010, 24(7): 965~972.
    [20] Furukawa, K., Okuda, T., Furukawa, K. Roles of glycolipids in the development and maintenance of nervous tissues. Methods Enzymol, 2006, 417: 37~52.
    [21] Kanter, J. L., Narayana, S., Ho, P. P., et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat Med, 2006, 12(1): 138~143.
    [22] Bishop, J.R., Schuksz, M., Esko, J.D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature, 2007, 446(7139): 1030~1037.
    [23]王川.糖组学:破解生命信息的第3种途径.生物学通报, 2005, 40(5): 8~9.
    [24] Zaia, J. Mass spectrometry and the emerging field of glycomics. Chem. Biol, 2008, 15: 881~892.
    [25] Varki, A. P., Baum, L. G., Bellis, S. L., et al. Working group report: the roles of glycans in hemostasis, inflammation and vascular biology. Glycobiology, 2008, 18(10): 747~749.
    [26] Packer, N. H., von der Lieth, C. W., Aoki-Kinoshita, K. F., et al. Frontiers in glycomics: bioinformatics and biomarkers in disease. An NIH white paper prepared from discussions by the focus groups at a workshop on the NIH campus, Bethesda MD. Proteomics, 2008, 8(1): 8~20.
    [27] Seeberger, P.H.,Werz, D.B. Synthesis and medical applications of oligosaccharides. Nature, 2007, 446(7139): 1046~1051.
    [28] Dell, A., Morris, H. R. Glycoprotein structure determination by mass spectrometry. Science, 2001, 291: 2351~2356.
    [29] Wuhrer, M., de Boer, A.R., Deelder, A.M. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev, 2009, 28(2): 192~206.
    [30] Duverger, E., Frison, N., Roche, A. C., et al. Carbohydrate-lectin interactions assessed by surface plasmon resonance. Biochimie, 2003, 85(1-2): 167~179.
    [31] de Boer, A. R., Hokke, C. H., Deelder, A. M., et al. Serum antibody screening by surface plasmon resonance using a natural glycan microarray. Glycoconj J, 2008, 25(1): 75~84.
    [32] Hirabayashi, J., Hashidate, T., Arata, Y., et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta, 2002, 1572(2-3): 232~254.
    [33] Hirabayashi, J. Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj J, 2004, 21(1-2): 35~40.
    [34] Bryan, M. C., Plettenburg, O., Sears, P., et al. Saccharide display on microtiter plates. Chem Biol, 2002, 9(6): 713~720.
    [35] Wu, C.Y., Liang, P.H., Wong, C.H. New development of glycan arrays. Org Biomol Chem, 2009, 7(11): 2247~2254.
    [36] Oyelaran, O., Gildersleeve, J.C. Glycan arrays: recent advances and future challenges. Curr Opin Chem Biol, 2009, 13(4): 406~413.
    [37] Liang, C.H., Wu, C.Y. Glycan array: a powerful tool for glycomics studies. Expert Rev Proteomics, 2009, 6(6): 631~645.
    [38] Turnbull, J.E., Field, R.A. Emerging glycomics technologies. Nat Chem Biol, 2007, 3(2): 74~77.
    [39] Liu, Y., Palma, A.S., Feizi, T. Carbohydrate microarrays: key developments in glycobiology. Biol Chem, 2009, 390(7): 647~656.
    [40]徐颖茜,庞昕.糖芯片研究进展.中国生物工程杂志, 2009, 29(5): 99~103.
    [41] Tang, P. W., Gool, H. C., Hardy, M., et al. Novel approach to the study of the antigenicities and receptor functions of carbohydrate chains of glycoproteins. Biochem Biophys Res Commun, 1985, 132(2): 474~480.
    [42] Wang, D., Liu, S., Trummer, B. J., et al. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat Biotechnol, 2002, 20(3): 275~281.
    [43]甘甜甜,黄河,贾红英,等.糖芯片合成中的固定化策略.化学进展, 2009, 21(4): 747~754.
    [44] Feizi, T., Chai, W. Oligosaccharide microarrays to decipher the glyco code. Nat Rev Mol Cell Biol, 2004, 5(7): 582~588.
    [45] Feizi, T., Fazio, F., Chai, W., et al. Carbohydrate microarrays - a new set of technologies at the frontiers of glycomics. Curr Opin Struct Biol, 2003, 13(5): 637~645.
    [46] Fukui, S., Feizi, T., Galustian, C., et al. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol, 2002, 20(10): 1011~1017.
    [47] Ratner, D. M., Adams, E. W., Su, J., et al. Probing protein-carbohydrate interactions with microarrays of synthetic oligosaccharides. Chembiochem, 2004, 5(3): 379~382.
    [48] Palma, A. S., Liu, Y., Muhle-Goll, C., et al. Multifaceted approaches including neoglycolipid oligosaccharide microarrays to ligand discovery for malectin. Methods Enzymol, 2010, 478: 265~286.
    [49] Alvarez, R.A., Blixt, O. Identification of ligand specificities for glycan-binding proteins using glycan arrays. Methods Enzymol, 2006, 415: 292~310.
    [50] de Paz, J.L., Noti, C., Seeberger, P.H. Microarrays of synthetic heparin oligosaccharides. J Am Chem Soc, 2006, 128(9): 2766~2767.
    [51] Tully, S.E., Rawat, M., Hsieh-Wilson, L.C. Discovery of a TNF-alpha antagonist using chondroitin sulfate microarrays. J Am Chem Soc, 2006, 128(24): 7740~7741.
    [52] Yamaguchi, K., Tamaki, H., Fukui, S. Detection of oligosaccharide ligands for hepatocytegrowth factor/scatter factor (HGF/SF), keratinocyte growth factor (KGF/FGF-7), RANTES and heparin cofactor II by neoglycolipid microarrays of glycosaminoglycan-derived oligosaccharide fragments. Glycoconj J, 2006, 23(7-8): 513~523.
    [53] Zhou, X., Zhou, J. Oligosaccharide microarrays fabricated on aminooxyacetyl functionalized glass surface for characterization of carbohydrate-protein interaction. Biosens Bioelectron, 2006, 21(8): 1451~1458.
    [54] Shipp, E.L., Hsieh-Wilson, L.C. Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays. Chem Biol, 2007, 14(2): 195~208
    [55] Nimrichter, L., Gargir, A., Gortler, M., et al. Intact cell adhesion to glycan microarrays. Glycobiology, 2004, 14(2): 197~203.
    [56] Chandrasekaran, A., Srinivasan, A., Raman, R., et al. Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol, 2008, 26(1): 107~113.
    [57] Kamena, F., Tamborrini, M., Liu, X., et al. Synthetic GPI array to study antitoxic malaria response. Nat Chem Biol, 2008, 4(4): 238~240.
    [58]薛彦峰,王秀奎,侯信,等.糖芯片研究.化学进展, 2008, 20(1): 148~154.
    [59] Larsen, K., Thygesen, M. B., Guillaumie, F., et al. Solid-phase chemical tools for glycobiology. Carbohydr Res, 2006, 341(10): 1209~1234.
    [60] Mamidyala, S K., KS Ko., Jaipuri, FA., et al. Noncovalent fluorous interactions for the synthesis of carbohydrate microarrays. J Fluor Chem, 2006. 127(415): 571~579.
    [61] Houseman, B.T., Mrksich, M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem Biol, 2002, 9(4): 443~454.
    [62] Bryan, M.C., Lee, L.V., C.H, Wong. High-throughput identification of fucosyltransferase inhibitors using carbohydrate microarrays. Bioorg Med Chem Lett, 2004, 14(12): 3185~3188.
    [63] Ratner, D. M., Adams, E. W., Disney, M. D., et al. Tools for glycomics: mapping interactions of carbohydrates in biological systems. Chembiochem, 2004, 5(10): 1375~1383.
    [64] Park, S., Lee, M. R., Pyo, S. J., et al. Carbohydrate chips for studying high-throughputcarbohydrate-protein interactions. J Am Chem Soc, 2004, 126(15): 4812~4819.
    [65] Blixt, O., Hoffmann, J., Svenson, S., et al. Pathogen specific carbohydrate antigen microarrays: a chip for detection of Salmonella O-antigen specific antibodies. Glycoconj J, 2008, 25(1): 27~36.
    [66] Xia, B., Kawar, Z. S., Ju, T., et al. Versatile fluorescent derivatization of glycans for glycomic analysis. Nat Methods, 2005, 2(11): 845~850.
    [67] Lee, M.R., Shin, I. Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org Lett, 2005, 7(19): 4269~4272.
    [68] Zhi, Z.L., Powell, A.K., Turnbull, J.E. Fabrication of carbohydrate microarrays on gold surfaces: direct attachment of nonderivatized oligosaccharides to hydrazide-modified self-assembled monolayers. Anal Chem, 2006, 78(14): 4786~4793.
    [69] Zhou, X., Zhou, J. Oligosaccharide microarrays fabricated on aminooxyacetyl functionalized glass surface for characterization of carbohydrate-protein interaction. Biosens Bioelectron, 2006, 21(8): 1451~1458.
    [70] Bochner, B. S., Alvarez, R. A., Mehta, P., Bovin, et al. Glycan array screening reveals a candidate ligand for Siglec-8. J Biol Chem, 2005, 280(6): 4307~4312.
    [71] Guo, Y., Feinberg, H., Conroy, E., et al. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol, 2004, 11(7): 591~598.
    [72] Chai, W., Stoll, M. S., Galustian, C., et al. Neoglycolipid technology: deciphering information content of glycome. Methods Enzymol, 2003, 362: 160~195.
    [73] Stoll, M. S., Mizuochi, T., Childs, R. A., et al. Improved procedure for the construction of neoglycolipids having antigenic and lectin-binding activities, from reducing oligosaccharides. Biochem J, 1988, 256(2): 661~664.
    [74]王玉峰,于广利,韩章润,等.糖芯片技术研究琼胶寡糖与凝集素RCA120相互作用.化学学报, 2011, 69(8): 955~959.
    [75]杨波,于广利,王玉峰,等.κ-卡拉胶寡糖脂的合成及其结构鉴定.化学学报, 2009, 67(11): 1217~1222.
    [76] Stoll, M. S., Feizi, T., Loveless, R. W., et al. Fluorescent neoglycolipids. Improved probesfor oligosaccharide ligand discovery. Eur J Biochem, 2000, 267(6): 1795~1804.
    [77] Liu, Y., Feizi, T., Campanero-Rhodes, M. A., et al. Neoglycolipid probes prepared via oxime ligation for microarray analysis of oligosaccharide-protein interactions. Chem Biol, 2007, 14(7): 847~859.
    [78] Liu, Y., Chai, W., Childs, R. A., et al. Preparation of neoglycolipids with ring-closed cores via chemoselective oxime-ligation for microarray analysis of carbohydrate-protein interactions. Methods Enzymol, 2006, 415: 326~340.
    [79] Leteux, C., Chai, W., Nagai, K., et al. 10E4 antigen of Scrapie lesions contains an unusual nonsulfated heparan motif. J Biol Chem, 2001, 276(16): 12539~12545.
    [80] Otto, D. M., Campanero-Rhodes, M. A., Karamanska, R., et al. An expression system for screening of proteins for glycan and protein interactions. Anal Biochem, 2011, 411(2): 261~270.
    [81] Palma, A. S., Liu, Y., Muhle-Goll, C., et al. Multifaceted approaches including neoglycolipid oligosaccharide microarrays to ligand discovery for malectin. Methods Enzymol, 2010, 478: 265~286.
    [82] Neu, U., Maginnis, M. S., Palma, A. S., et al. Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe, 2010, 8(4): 309~319.
    [83] Friedrich, N., Santos, J. M., Liu, Y., et al. Members of a novel protein family containing microneme adhesive repeat domains act as sialic acid-binding lectins during host cell invasion by apicomplexan parasites. J Biol Chem, 2010, 285(3): 2064~2076.
    [84] Garnett, J. A., Liu, Y., Leon, E., et al. Detailed insights from microarray and crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of Toxoplasma gondii. Protein Sci, 2009, 18(9): 1935~1947.
    [85] Dunlop, D. C., Bonomelli, C., Mansab, F., et al. Polysaccharide mimicry of the epitope of the broadly neutralizing anti-HIV antibody, 2G12, induces enhanced antibody responses to self oligomannose glycans. Glycobiology, 2010, 20(7): 812~823.
    [86] Childs, R. A., Palma, A. S., Wharton, S., et al. Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat Biotechnol, 2009, 27(9): 797~799.
    [87] Palma, A. S., Feizi, T., Zhang, Y., et al. Ligands for the beta-glucan receptor, Dectin-1, assigned using "designer" microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem, 2006, 281(9): 5771~5779.
    [88] Campanero-Rhodes, M. A., Childs, R. A., Kiso, M., et al. Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. Biochem Biophys Res Commun, 2006, 344(4): 1141~1146.
    [89] Pomin, V.P., Mour?o, P.A. Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology, 2008, 18: 1016~1027.
    [90] Pomin, V.P. An overview about the structure-function relationship of marine sulfated homopolysaccharides with regular chemical structures. Biopolymers, 2009, 91: 601~609.
    [91] Pereira, M. G., Benevides, N. M., Melo, M. R., et al. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydr Res, 2005, 340(12): 2015~2023.
    [92]纪明侯,海藻化学.第一版.北京:科学出版社, 1997, 1: 5~120.
    [93]杨波.海洋硫酸半乳聚糖特异性降解、寡糖和糖脂的制备与序列分析及其寡糖芯片构建:中国海洋大学,[博士学位论文].2009.
    [94]胡艳南.海萝藻(Gloiopeltis furcata)多糖的提取分离及其结构研究:中国海洋大学,[硕士学位论文] .2010.
    [95] Duarte, M. E., Noseda, D. G., Noseda, M. D., et al. Inhibitory effect of sulfated galactans from the marine alga Bostrychia montagnei on herpes simplex virus replication in vitro. Phytomedicine, 2001, 8(1): 53~58.
    [96] Duarte, M. E., Cauduro, J. P., Noseda, D. G., et al. The structure of the agaran sulfate from Acanthophora spicifera (Rhodomelaceae, Ceramiales) and its antiviral activity. Relation between structure and antiviral activity in agarans. Carbohydr Res, 2004, 339(2): 335~347.
    [97] Matsuhiro, B., Conte, A. F., Damonte, E. B., et al. Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta). Carbohydr Res, 2005, 340(15): 2392~2402.
    [98] Talarico, L. B., Zibetti, R. G., Faria, P. C., et al. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemiacrenulata. Int J Biol Macromol, 2004, 34(1-2): 63~71.
    [99] Mazumder, S., Ghosal, P. K., Pujol, C. A., et al. Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). Int J Biol Macromol, 2002, 31(1-3): 87~95.
    [100] Chattopadhyay, K., Ghosh, T., Pujol, C. A., et al. Polysaccharides from Gracilaria corticata: sulfation, chemical characterization and anti-HSV activities. Int. J. Biol Macromol, 2008, 43(4): 346~351.
    [101] Caceres, P. J., Carlucci, M. J., Damonte, E. B., et al. Carrageenans from chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry, 2000, 53(1): 81~86.
    [102] Talarico, L. B., Pujol, C. A., Zibetti, R. G., et al. The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res, 2005, 66(2-3): 103~110.
    [103] Zhou, G., Sun, Y., Xin, H., et al. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacol Res, 2004, 50(1): 47~53.
    [104] Zhou, G., Xin, H., Sheng, W., et al. In vivo growth-inhibition of S180 tumor by mixture of 5-Fu and low molecular lambda-carrageenan from Chondrus ocellatus. Pharmacol Res, 2005, 51(2): 153~157.
    [105] Zhou, G., Sheng, W., Yao, W., et al. Effect of low molecular lambda-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacol Res, 2006, 53(2): 129~134.
    [106] Yuan, H., Song, J., Li, X., et al. Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides. Cancer Lett, 2006, 243(2): 228~234.
    [107] Chen, H., Yan, X., Lin, J., et al. Depolymerized products of lambda-carrageenan as a potent angiogenesis inhibitor. J Agric Food Chem, 2007, 55(17): 6910~6917.
    [108] Chen, H. M., Yan, X. J., Mai, T. Y., et al. Lambda-carrageenan oligosaccharides elicit reactive oxygen species production resulting in mitochondrial-dependent apoptosis in human umbilical vein endothelial cells. Int J Mol Med, 2009, 24(6): 801~806.
    [109] Guerrini, M., Beccati, D., Shriver, Z., et al. Oversulfated chondroitin sulfate is acontaminant in heparin associated with adverse clinical events. Nat Biotechnol, 2008, 26(6): 669~675.
    [110] Kishimoto, T. K., Viswanathan, K., Ganguly, T., et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med, 2008, 358(23): 2457~2467.
    [111] Matsubara, K., Matsuura, Y., Bacic, A., et al. Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum. Int J Biol Macromol, 2001, 28(5): 395~399.
    [112] Pomin, V.H., Mourao, P.A. Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology, 2008, 18(12): 1016~1027.
    [113] Vitor H. Pomin. Structural and functional insights into sulfated galactans: a systematic review. Glycoconj J, 2010, 27: 1~12.
    [114] Castro, M. O., Pomin, V. H., Santos, L. L., et al. A unique 2-sulfated beta-galactan from the egg jelly of the sea urchin Glyptocidaris crenularis: conformation flexibility versus induction of the sperm acrosome reaction. J Biol Chem, 2009, 284(28): 18790~18800.
    [115] Fonseca, R. J., Oliveira, S. N., Melo, F. R., et al. Slight differences in sulfation of algal galactans account for differences in their anticoagulant and venous antithrombotic activities. Thromb Haemost, 2008, 99(3): 539~545.
    [116] Yang, R. Y., Rabinovich, G. A., Liu, F. T. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med, 2008, 10: e17.
    [117] Sun, Z. L., Ma, C. J., Jin, H., et al. Effects of advanced glycosylation end products and rosiglitazone on the expression and secretion of galectin-3 in human renal mesangial cells. Chin Med J (Engl), 2009, 122(9): 1067~1071.
    [118] Filer, A., Bik, M., Parsonage, G. N., et al. Galectin-3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum, 2009, 60(6): 1604~1614.
    [119] de Boer, R. A., Voors, A. A., Muntendam, P., et al. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail, 2009, 11(9): 811~817.
    [120] Nangia-Makker, P., Balan, V., Raz, A. Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron, 2008, 1(1): 43~51.
    [121]白卉,刘莉,李宇华.肿瘤相关糖基结合蛋白Galectin-3及其治疗性配体.生理科学进展, 2008, 39(2): 129~134.
    [122]李晓明,曹诚,马清钧. Galectin- 3与肿瘤形成和转移的关系研究进展.生物技术通讯, 2007, 18(6): 1003~1005.
    [123] Fukumori, T., Kanayama, H.O., Raz, A. The role of galectin-3 in cancer drug resistance. Drug Resist Updat, 2007, 10(3): 101~108.
    [124] Dumic, J., Dabelic, S., Flogel, M. Galectin-3: an open-ended story. Biochim Biophys Acta, 2006, 1760(4): 616~635.
    [125] Liu, F.T. , Rabinovich, G.A.Galectins as modulators of tumour progression. Nat Rev Cancer, 2005, 5(1): 29~41.
    [126] Hsu, D.K. , Liu, F.T. Regulation of cellular homeostasis by galectins. Glycoconj J, 2004, 19(7-9): 507~515.
    [127] Danguy, A., Camby, I., Kiss, R. Galectins and cancer. Biochim Biophys Acta, 2002, 1572(2-3): 285~293.
    [128] Hirabayashi, J., Hashidate, T., Arata, Y., et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta, 2002, 1572(2-3): 232~254.
    [129] Liu, F. T., Patterson, R. J., Wang, J. L. Intracellular functions of galectins. Biochim Biophys Acta, 2002, 1572(2-3): 263~273.
    [130] Birdsall, B., Feeney, J., Burdett, I. D., et al. NMR solution studies of hamster galectin-3 and electron microscopic visualization of surface-adsorbed complexes: evidence for interactions between the N- and C-terminal domains. Biochemistry, 2001, 40(15): 4859~4866.
    [131] Gong, H. C., Honjo, Y., Nangia-Makker, P., et al. The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res, 1999, 59(24): 6239~6245.
    [132] Takenaka, Y., Fukumori, T., Yoshii, T., et al. Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol, 2004, 24(10): 4395~4406.
    [133] Barboni, E. A., Bawumia, S., Henrick, K., et al. Molecular modeling and mutagenesisstudies of the N-terminal domains of galectin-3: evidence for participation with the C-terminal carbohydrate recognition domain in oligosaccharide binding. Glycobiology, 2000, 10(11): 1201~1208.
    [134] Fry, S. A., Van den Steen, P. E., Royle, L., et al. Cancer-associated glycoforms of gelatinase B exhibit a decreased level of binding to galectin-3. Biochemistry, 2006, 45(51): 15249~15258.
    [135] Shekhar, M. P., Nangia-Makker, P., Tait, L., et al. Alterations in galectin-3 expression and distribution correlate with breast cancer progression: functional analysis of galectin-3 in breast epithelial-endothelial interactions. Am J Pathol, 2004, 165(6): 1931~1941.
    [136] Ahmad, N., Gabius, H. J., Andre, S., et al. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem, 2004, 279(12): 10841~10847.
    [137] Fred Brewer, C., Binding and cross-linking properties of galectins. Biochim Biophys Acta, 2002, 1572(2-3): 255~262.
    [138] Seetharaman, J., Kanigsberg, A., Slaaby, R., et al. X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution. J Biol Chem, 1998, 273(21): 13047~13052.
    [139] Henrick, K., Bawumia, S., Barboni, E. A., et al. Evidence for subsites in the galectins involved in sugar binding at the nonreducing end of the central galactose of oligosaccharide ligands: sequence analysis, homology modeling and mutagenesis studies of hamster galectin-3. Glycobiology, 1998, 8(1): 45~57.
    [140] Hughes, R.C. Galectins as modulators of cell adhesion. Biochimie, 2001. 83(7): 667~676.
    [141] Demetriou, M., Granovsky, M., Quaggin, S., et al.. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature, 2001, 409(6821): 733~739.
    [142] Wang, J. L., Gray, R. M., Haudek, K. C., et al. Nucleocytoplasmic lectins. Biochim Biophys Acta, 2004, 1673(1-2): 75~93.
    [143] Liu, L., Sakai, T., Sano, N., et al. Nucling mediates apoptosis by inhibiting expression ofgalectin-3 through interference with nuclear factor kappaB signalling. Biochem J, 2004, 380(Pt 1): 31~41.
    [144] Yu, F., Finley, R. L., Jr., Raz, A., et al. Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem, 2002, 277(18): 15819~15827.
    [145] Fukumori, T., Takenaka, Y., Oka, N., et al. Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res, 2004, 64(10): 3376~3379.
    [146] Shalom-Feuerstein, R., Plowman, S. J., Rotblat, B., et al. K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res, 2008, 68(16): 6608~6616.
    [147] Elad-Sfadia, G., Haklai, R., Balan, E., et al. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem, 2004, 279(33): 34922~34930.
    [148] Saegusa, J., Hsu, D. K., Liu, W., et al. Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation. J Invest Dermatol, 2008, 128(10): 2403~2411.
    [149] Haudek, K. C., Voss, P. G., Locascio, L. E., et al. A mechanism for incorporation of galectin-3 into the spliceosome through its association with U1 snRNP. Biochemistry, 2009, 48(32): 7705~7712.
    [150] Shimura, T., Takenaka, Y., Fukumori, T., et al. Implication of galectin-3 in Wnt signaling. Cancer Res, 2005, 65(9): 3535~3537.
    [151] Nakahara, S.,Raz, A. Regulation of cancer-related gene expression by galectin-3 and the molecular mechanism of its nuclear import pathway. Cancer Metastasis Rev, 2007, 26(3-4): 605~610.
    [152] Paron, I., Scaloni, A., Pines, A., et al. Nuclear localization of Galectin-3 in transformed thyroid cells: a role in transcriptional regulation. Biochem Biophys Res Commun, 2003, 302(3): 545~553.
    [153] Chen, H. Y., Sharma, B. B., Yu, L., et al. Role of galectin-3 in mast cell functions: galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression. J Immunol, 2006, 177(8): 4991~4997.
    [154] Zhuo, Y., Chammas, R., Bellis, S.L. Sialylation of beta1 integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. J Biol Chem, 2008, 283(32): 22177~22185.
    [155] Glinsky, V.V. , Raz, A. Modified citrus pectin anti-metastatic properties: one bullet, multiple targets. Carbohydr Res, 2009, 344(14): 1788~1791.
    [156] Ferrazzo, K. L., Neto, M. M., dos Santos, E., et al. Differential expression of galectin-3, beta-catenin, and cyclin D1 in adenoid cystic carcinoma and polymorphous low-grade adenocarcinoma of salivary glands. J Oral Pathol Med, 2009, 38(9): 701~707.
    [157] Kim, H. R., Lin, H. M., Biliran, H., et al. Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Res, 1999, 59(16): 4148~4154.
    [158] Fukumori, T., Oka, N., Takenaka, Y., et al. Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer. Cancer Res, 2006, 66(6): 3114~3119.
    [159] Wongkham, S., Junking, M., Wongkham, C., et al. Suppression of galectin-3 expression enhances apoptosis and chemosensitivity in liver fluke-associated cholangiocarcinoma. Cancer Sci, 2009, 100(11): 2077~2084.
    [160] Cheong, T. C., Shin, J. Y., Chun, K. H. Silencing of galectin-3 changes the gene expression and augments the sensitivity of gastric cancer cells to chemotherapeutic agents. Cancer Sci, 2010, 101: 94~102.
    [161] Lin, C. I., Whang, E. E., Abramson, M. A., et al. Galectin-3 regulates apoptosis and doxorubicin chemoresistance in papillary thyroid cancer cells. Biochem Biophys Res Commun, 2009, 379(2): 626~631.
    [162] Lin, C. I., Whang, E. E., Donner, D. B., et al. Galectin-3 targeted therapy with a small molecule inhibitor activates apoptosis and enhances both chemosensitivity and radiosensitivity in papillary thyroid cancer. Mol Cancer Res, 2009, 7(10): 1655~1662.
    [163] Yang, R.Y., Hsu, D.K., Liu, F.T. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A, 1996, 93(13): 6737~6742.
    [164] Suzuki, O., Abe, M. Cell surface N-glycosylation and sialylation regulate galectin-3-induced apoptosis in human diffuse large B cell lymphoma. Oncol Rep, 2008, 19(3): 743~748.
    [165] Suzuki, Y., Inoue, T., Yoshimaru, T., et al. Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochim Biophys Acta, 2008, 1783(5): 924~934.
    [166] Peng, W., Wang, H. Y., Miyahara, Y., et al. Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Res, 2008, 68(17): 7228~7236.
    [167] Saravanan, C., Liu, F. T., Gipson, I. K., et al. Galectin-3 promotes lamellipodia formation in epithelial cells by interacting with complex N-glycans on alpha3beta1 integrin. J Cell Sci, 2009, 122(Pt 20): 3684~3693.
    [168] Lei, C. X., Zhang, W., Zhou, J. P., et al. Interactions between galectin-3 and integrinbeta3 in regulating endometrial cell proliferation and adhesion. Hum Reprod, 2009, 24(11): 2879~2889.
    [169] Zhao, Q., Guo, X., Nash, G. B., et al. Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res, 2009, 69(17): 6799~6806.
    [170] Kim, S. J., Choi, I. J., Cheong, T. C., et al. Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology, 2009, 138(3): 1035-1045 e1031~1032.
    [171] Srinivasan, N., Bane, S. M., Ahire, S. D., et al. Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3. Glycoconj J, 2009, 26(4): 445~456.
    [172] Nangia-Makker, P., Honjo, Y., Sarvis, R., et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol, 2000, 156(3): 899~909.
    [173] Oberg, C. T., Leffler, H., Nilsson, U. J. Arginine binding motifs: design and synthesis of galactose-derived arginine tweezers as galectin-3 inhibitors. J Med Chem, 2008, 51(7): 2297~2301.
    [174] Salameh, B. A., Leffler, H., Nilsson, U. J. 3-(1,2,3-Triazol-1-yl)-1-thio-galactosides as small, efficient, and hydrolytically stable inhibitors of galectin-3. Bioorg Med Chem Lett, 2005, 15(14): 3344~3346.
    [175] Aplander, K., Tejler, J., Toftered, J., et al. Synthesis of a 3'-naphthamido-LacNAc fluorescein conjugate with high selectivity and affinity for galectin-3. Carbohydr Res,2006, 341(10): 1363~1369.
    [176] Tejler, J., Leffler, H., Nilsson, U. J. Synthesis of O-galactosyl aldoximes as potent LacNAc-mimetic galectin-3 inhibitors. Bioorg Med Chem Lett, 2005, 15(9): 2343~2345.
    [177] Sorme, P., Arnoux, P., Kahl-Knutsson, B., et al. Structural and thermodynamic studies on cation-Pi interactions in lectin-ligand complexes: high-affinity galectin-3 inhibitors through fine-tuning of an arginine-arene interaction. J Am Chem Soc, 2005, 127(6): 1737~1743.
    [178] Iurisci, I., Cumashi, A., Sherman, A. A., et al. Synthetic inhibitors of galectin-1 and -3 selectively modulate homotypic cell aggregation and tumor cell apoptosis. Anticancer Res, 2009, 29(1): 403~410.
    [179] Nangia-Makker, P., Hogan, V., Honjo, Y., et al. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst, 2002, 94(24): 1854~1862.
    [1] Ma, C., Lu, X., Shi, C., et al. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J Biol Chem, 2007, 282(6): 3747~3754.
    [2] McLean, M. W., Williamson, F. B. Neocarratetraose 4-O-monosulphate beta-hydrolase from Pseudomonas carrageenovora. Eur J Biochem, 1981, 113(3): 447~456.
    [3] Jouanneau, D., Boulenguer, P., Mazoyer, J., et al. Complete assignment of (1)H and (13)C NMR spectra of standard neo-iota-carrabiose oligosaccharides. Carbohydr Res, 2010, 345(4): 547~551.
    [4] Antonopoulos, A., Favetta, P., Lafosse, M., et al. Characterisation of iota-carrageenans oligosaccharides with high-performance liquid chromatography coupled with evaporative light scattering detection. J Chromatogr A, 2004, 1059(1-2): 83~87.
    [5] Guibet, M., Colin, S., Barbeyron, T., et al. Degradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases. Biochem J, 2007, 404(1): 105~114.
    [6] Kazlowski, B., Pan, C. L., Ko, Y. T. Separation and quantification of neoagaro- and agaro-oligosaccharide products generated from agarose digestion by beta-agarase and HCl in liquid chromatography systems. Carbohydr Res, 2008, 343(14): 2443~2450.
    [7] Chen, H. M., Zheng, L., Lin, W., et al. Product monitoring and quantitation of oligosaccharides composition in agar hydrolysates by precolumn labeling HPLC. Talanta, 2004, 64(3): 773~777.
    [8] Caram-Lelham N. Preparative sepatarion of oligosaccharides fromκ-carrageenan, sodium hyaluronate and dextran by Superdex30 prep.grade,. Carbohydr Res, 1995, 273:71~76.
    [9]毛文君.琼胶的分子修饰及其结构研究: [博士学位论文].中国海洋大学, 2000.
    [10] Yu, G., Guan, H., Ioanoviciu, A. S., et al. Structural studies on kappa-carrageenan derived oligosaccharides. Carbohydr Res, 2002, 337(5): 433~440.
    [11]于广利.系列硫酸寡糖的制备及其结构与系列分析: [博士学位论文].中国海洋大学, 2004.
    [12]杨波.海洋硫酸半乳聚糖特异性降解、寡糖和糖脂的制备与序列分析及其寡糖芯片的构建: [博士学位论文].中国海洋大学, 2009.
    [13] Yang, B., Yu, G., Zhao, X., Jiao, G., et al. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. Febs J, 2009, 276(7): 2125~2137.
    [14] Geresh, S., Arad, S. M., Levy-Ontman, et al. Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp. Carbohydr Res, 2009, 344(3): 343~349.
    [15] Miller, I. J. Desulfation of algal galactans. Carbohydrate Research, 1998, 309(1): 39~43.
    [16]杨波,于广利,郝翠,等.系列ι-卡拉胶寡糖制备及其电喷雾串联质谱序列分析.高等学学化学学报, 2010, 31(2): 303~308.
    [17] Yu, G., Zhao, X., Yang, B., et al. Sequence determination of sulfated carrageenan-derived oligosaccharides by high-sensitivity negative-ion electrospray tandem mass spectrometry. Anal Chem, 2006, 78(24): 8499~8505.
    [18]胡艳南.海萝藻多糖的提取分离及其结构研究:[硕士学位论文].中国海洋大学, 2010.
    [19] Kariya, Y., Watabe, S., Kyogashima, et al. Structure of fucose branches in the glycosaminoglycan from the body wall of the sea cucumber Stichopus japonicus. Carbohydr Res, 1997, 297(3): 273~279.
    [20] Kolender, A. A. Desulfation of sulfated galactans with chlorotrimethylsilane. Characterization of b-carrageenan by 1H NMR spectroscopy. Carbohydrate Research, 2004, 339: 1619~1629.
    [21] Fransen, C. T., Van Laere, K. M., van Wijk, A. A., et al. alpha-D-Glcp-(1?1)-beta-D-Galp-containing oligosaccharides, novel products from lactose by the action of beta-galactosidase. Carbohydr Res, 1998, 314(1-2): 101~114.
    [1] Tang, P. W., Gool, H. C., Hardy, M. et al. Novel approach to the study of the antigenicities and receptor functions of carbohydrate chains of glycoproteins. Biochem Biophys Res Commun, 1985, 132(2): 474~480.
    [2] Mizuochi, T., Loveless, R. W., Lawson, A. M. et al. A library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins reveals that conglutinin binds to certain complex-type as well as high mannose-type oligosaccharide chains. J. Biol. Chem., 1989, 264(23): 13834~13839.
    [3] Feizi, T., Stoll, M. S., Yuen, C. T. et al. Neoglycolipids: probes of oligosaccharide structure, antigenicity, and function. Methods Enzymol, 1994, 230: 484~519.
    [4] Stoll, M. S., Feizi, T., Loveless, R. W. et al. Fluorescent neoglycolipids. Improved probes for oligosaccharide ligand discovery. Eur. J. Biochem., 2000, 267(6): 1795~1804.
    [5] Chai, W., Stoll, M. S., Galustian, C. et al. Neoglycolipid technology: deciphering information content of glycome. Methods Enzymol, 2003, 362: 160~195.
    [6] Liu, Y., Chai, W., Childs, R. A. et al. Preparation of neoglycolipids with ring-closed cores via chemoselective oxime-ligation for microarray analysis of carbohydrate-protein interactions. Methods Enzymol, 2006, 415: 326~340.
    [7] Childs, R. A., Drickamer, K., Kawasaki, T. et al. Neoglycolipids as probes of oligosaccharide recognition by recombinant and natural mannose-binding proteins of the rat and man. Biochem. J., 1989, 262(1): 131~138.
    [8] Yuen, C. T., Lawson, A. M., Chai, W. et al. Novel sulfated ligands for the cell adhesion molecule E-selectin revealed by the neoglycolipid technology among O-linked oligosaccharides on an ovarian cystadenoma glycoprotein. Biochemistry, 1992, 31(38): 9126~9131.
    [9] Fukui, S., Feizi, T., Galustian, C. et al. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol., 2002, 20(10): 1011~1017.
    [10] Martin, M. J., Feizi, T.,Leteux, C. et al. An investigation of the interactions of E-selectin with fuco-oligosaccharides of the blood group family. Glycobiology, 2002, 12(12):829~835.
    [11] Feizi, T.,Chai, W. Oligosaccharide microarrays to decipher the glyco code. Nat Rev Mol Cell Biol, 2004, 5(7): 582~588.
    [12] Galustian, C., Park, C. G., Chai, W. et al. High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin. Int. Immunol., 2004, 16(6): 853~866.
    [13] Reddy, S. T., Chai, W., Childs, R. A. et al. Identification of a low affinity mannose 6-phosphate-binding site in domain 5 of the cation-independent mannose 6-phosphate receptor. J. Biol. Chem., 2004, 279(37): 38658~38667.
    [14] Palma, A. S., Feizi, T., Zhang, Y. et al. Ligands for the beta-glucan receptor, Dectin-1, assigned using "designer" microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J. Biol. Chem., 2006, 281(9): 5771~5779.
    [15] Blumenschein, T. M., Friedrich, N., Childs, R. A. et al. Atomic resolution insight into host cell recognition by Toxoplasma gondii. Embo J., 2007, 26(11): 2808~2820.
    [16] Campanero-Rhodes, M. A., Smith, A., Chai, W. et al. N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J. Virol., 2007, 81(23): 12846~12858.
    [17]杨波.海洋硫酸半乳聚糖特异性降解、寡糖和糖脂的制备与序列分析及其寡糖芯片的构建: [博士学位论文].中国海洋大学, 2009.
    [18]胡艳南.海螺藻多糖的提取分离及其结构研究:硕士学位论文].中国海洋大学, 2010.
    [19]王玉峰,于广利,韩章润,等.糖芯片技术研究琼胶寡糖与凝集素RCA120相互作用.化学学报, 2011, 69(8): 955~959.
    [1] Wu, C.Y., Liang, P.H., Wong, C.H. New development of glycan arrays. Org Biomol Chem, 2009, 7(11): 2247~2254.
    [2] Oyelaran, O., Gildersleeve, J.C. Glycan arrays: recent advances and future challenges. Curr Opin Chem Biol, 2009, 13(4): 406~413.
    [3] Liang, C.H., Wu, C.Y. Glycan array: a powerful tool for glycomics studies. Expert Rev Proteomics, 2009, 6(6): 631~645.
    [4] Turnbull, J.E., Field, R.A. Emerging glycomics technologies. Nat Chem Biol, 2007, 3(2): 74~77.
    [5] Liu, Y., Palma, A.S., Feizi, T. Carbohydrate microarrays: key developments in glycobiology. Biol Chem, 2009, 390(7): 647~656.
    [6] Zhou, X., Turchi, C., Wang, D. Carbohydrate cluster microarrays fabricated on three-dimensional dendrimeric platforms for functional glycomics exploration. J Proteome Res, 2009, 8(11): 5031~5040.
    [7] Zhou, X., Zhou, J. Oligosaccharide microarrays fabricated on aminooxyacetyl functionalized glass surface for characterization of carbohydrate-protein interaction. Biosens Bioelectron, 2006, 21(8): 1451~1458.
    [8] Taylor, M.E., Drickamer, K. Structural insights into what glycan arrays tell us about how glycan-binding proteins interact with their ligands. Glycobiology, 2009, 19(11): 1155~1162.
    [9] Liu, Y., Angelina S. Palma, Ten Feizi. Neoglycolipid probes prepared via oxime ligation for microarray analysis of oligosaccharide-protein interactions. Chem Biol, 2007, 14(7): 847~859.
    [10] Stowell, S R., Arthur, C M., Mehta, P., et al. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem, 2008, 283(15): 10109~10123.
    [11] Shipp, E.L., L.C. Hsieh-Wilson. Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays. Chem Biol, 2007, 14(2): 195~208.
    [12] Iurisci, I., Cumashi, A., Sherman, A A., et al. Synthetic inhibitors of galectin-1 and -3 selectively modulate homotypic cell aggregation and tumor cell apoptosis. Anticancer Res, 2009, 29(1): 403~410.
    [13] Song, X., Xia, B., Stowell, S R., et al. Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem Biol, 2009, 16(1): 36~47.
    [14] Salomonsson, E., Carlsson, M C., Osla, V., et al. Mutational tuning of galectin-3 specificity and biological function. J Biol Chem, 2010, 285(45): 35079~35091.
    [15] Srinivasan, N., Bane, S M., Ahire, S D., et al. Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3. Glycoconj J, 2009, 26(4): 445~456.
    [16] Childs, R A., Palma, A S., Wharton, S., et al. Receptor-binding specificity of pandemic influenza A(H1N1)2009 virus determined by carbohydrate microarray. Nat Biotechnol, 2009, 27(9): 797~799.
    [17] Hecht, M L., Rosental, B., Horlacher, T., et al. Natural cytotoxicity receptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences. J Proteome Res, 2009, 8(2): 712~720.
    [18] Park, T J., Lee, M Y., Dordick, J S., et al. Signal amplification of target protein on heparin glycan microarray. Anal Biochem, 2008, 383(1): 116~1121.
    [19] Ito, Y., Hikino, M., Yajima, Y., et al. Structural characterization of the epitopes of the monoclonal antibodies 473HD, CS-56, and MO-225 specific for chondroitin sulfate D-type using the oligosaccharide library. Glycobiology, 2005, 15(6): 593~603.
    [20] Palma, A S., Feizi, T., Zhang, Y., et al. Ligands for the beta-glucan receptor, Dectin-1, assigned using "designer" microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem, 2006, 281(9): 5771~5779.
    [21] Buck, C B., Thompson, C D., Roberts, J N., et al. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog, 2006, 2(7): e69.
    [22] Toyama, M H., Toyama, D O., Torres, V M., et al. Effects of low molecular weight sulfated galactan fragments from Botryocladia occidentalis on the pharmacological and enzymatic activity of sPLA2 from Crotalus durissus cascavella. Protein J, 2010, 29(8): 567~571.
    [23] Melo, F R., Pereira, M S., Monteiro, R Q., et al. Sulfated galactan is a catalyst of antithrombin-mediated inactivation of alpha-thrombin. Biochim Biophys Acta, 2008, 1780(9): 1047~1053.
    [24] Ortiz-Rodríguez, T., de la Fuente-Salcido N., Bideshi DK., et al. Generation of chitin-derived oligosaccharides toxic to pathogenic bacteria using ChiA74, an endochitinase native to Bacillus thuringiensis. Lett Appl Microbiol, 2010, 51(2): 184~190.
    [25] Itakura, Y., Nakamura-Tsuruta, S., Kominami, J., et al. Systematic comparison of oligosaccharide specificity of Ricinus communis agglutinin I and Erythrina lectins: a search by frontal affinity chromatography. J Biochem, 2007, 142, 459~469.
    [26] Wu, A.M., Wu J.H., Tanuja Singh., et al. Recognition factors of Ricinus communis agglutinin I (RCA120). Mol Immunol, 2006, 43, 1700~1715.
    [27] Wu, A.M., Wu J.H., Tsai, M.S., et al. Differential affinities of Erythrina cristagalli lectin (ECL) toward monosaccharides and polyvalent mammalian structural units. Glycoconj J, 2007, 24, 591~604.
    [28] Moni, L., Pourceau, G., Zhang, J., et al. Design of triazole-tethered glycoclusters exhibiting three different spatial arrangements and comparative study of their affinities towards PA-IL and RCA120 by using a dna-based glycoarray. Chembiochem, 2009, 10, 1369~1378.
    [29] Schofield, C.L., Balaram Mukhopadhyay., Sinéad M. Hardy., et al. Colorimetric detection of Ricinus communis Agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles. Analyst, 2008, 133, 626~634.
    [30] Graem, N. Ricinus communis agglutinin I binding to the cell membrane in benign, premalignant and malignant epidermal lesions. Acta Pathol Microbiol Immunol Scand A, 1982, 90, 455~462.
    [31] Cabezas-Herrera, J., Moral-Naranjo, M T., Campoy, F J., et al. G4 forms of acetylcholinesterase and butyrylcholinesterase in normal and dystrophic mouse muscle differ in their interaction with Ricinus communis agglutinin. Biochim Biophys Acta, 1994, 1225, 283~288.
    [32] Tsao, D., Kim, Y.S. Separation of cell surface glycoproteins from glycolipids by Ricinuscommunis agglutinin-Sepharose. J Biol Chem,1981, 256, 4947~4950.
    [33] Green, E.D., Brodbeck, R.M., Baenziger, J.U. Lectin affinity high-performance liquid chromatography. Interactions of N-glycanase-released oligosaccharides with Ricinus communis agglutinin I and Ricinus communis agglutinin II. J Biol Chem, 1987, 262, 12030~12039.
    [34] Bhattacharyya, L., Haraldsson, M., Sharon, N., et al. Binding and precipitating activities of Erythrina lectins with complex type carbohydrates and synthetic cluster glycosides. A comparative study of the lectins from E. corallodendron, E. cristagalli, E. flabelliformis, and E. indica. Glycoconj J, 1989, 6, 141~150.
    [35] Fukui, S., Feizi, T., Galustian, C., et al. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol, 2002, 20(10): 1011~1017.
    [36]王玉峰,于广利,韩章润,等.糖芯片技术研究琼胶寡糖与凝集素RCA120相互作用.化学学报, 2011, 69(8): 955~959.
    [37] Tateno, H., Mori, A., Uchiyama, N., et al. Glycoconjugate microarray based on an evanescent-field fluorescence-assisted detection principle for investigation of glycan-binding proteins. Glycobiology, 2008, 18(10): 789~798.
    [38] Fang, Y. Ganglioside Microarrays for Toxin Detection. Langmuir, 2003. 19: 1500~1505.
    [39] Chai, W., Stoll, M S., Galustian, C., et al. Neoglycolipid technology: deciphering information content of glycome. Methods Enzymol, 2003, 362: 160~195.
    [1] Yang, R. Y., Rabinovich, G. A., & Liu, F. T. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med, 2008, 10: e17.
    [2] Birdsall, B., Feeney, J., Burdett, I. D., et al. NMR solution studies of hamster galectin-3 and electron microscopic visualization of surface-adsorbed complexes: evidence for interactions between the N- and C-terminal domains. Biochemistry, 2001, 40(15): 4859~4866.
    [3] Stowell, S. R., Arthur, C. M., Mehta, P., et al. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem, 2008, 283(15): 10109~10123.
    [4] Song, X., Xia, B., Stowell, S. R., et al. Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem Biol, 2009, 16(1): 36~47.
    [5] Horlacher, T., Oberli, M. A., Werz, D. B., et al. Determination of carbohydrate-binding preferences of human galectins with carbohydrate microarrays. Chembiochem, 2010, 11(11): 1563~1573.
    [6] Wang, J. L., Gray, R. M., Haudek, K. C., et al. Nucleocytoplasmic lectins. Biochim Biophys Acta, 2004, 1673(1-2): 75~93.
    [7]白卉,刘莉,李宇华.肿瘤相关糖基结合蛋白Galectin-3及其治疗性配体.生理科学进展, 2008. 39(2): 129~134.
    [8] Suzuki, O., Abe, M. Cell surface N-glycosylation and sialylation regulate galectin-3-induced apoptosis in human diffuse large B cell lymphoma. Oncol Rep, 2008, 19(3): 743~748.
    [9] Suzuki, Y., Inoue, T., Yoshimaru, T., et al. Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochim Biophys Acta, 2008, 1783(5): 924~934.
    [10] Peng, W., Wang, H. Y., Miyahara, Y., et al. Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Res, 2008, 68(17): 7228~7236.
    [11] Nangia-Makker, P., Balan, V., Raz, A. Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron, 2008, 1(1): 43~51.
    [12] Glinsky, V. V., & Raz, A. Modified citrus pectin anti-metastatic properties: one bullet, multiple targets. Carbohydr Res, 2009, 344(14): 1788~1791.
    [13] Nangia-Makker, P., Honjo, Y., Sarvis, R., et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol, 2000, 156(3): 899~909.
    [14] Zhao, Q., Guo, X., Nash, G. B., et al. Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res, 2009, 69(17): 6799~6806.
    [15] Saravanan, C., Liu, F. T., Gipson, I. K., et al. Galectin-3 promotes lamellipodia formation in epithelial cells by interacting with complex N-glycans on alpha3beta1 integrin. J Cell Sci, 2009, 122(Pt 20): 3684~3693.
    [16] Lei, C. X., Zhang, W., Zhou, J. P., et al. Interactions between galectin-3 and integrinbeta3 in regulating endometrial cell proliferation and adhesion. Hum Reprod, 2009, 24(11): 2879~2889.
    [17] Kim, S. J., Choi, I. J., Cheong, T. C., et al. Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology, 2009, 138(3): 1035~1045.
    [18] Srinivasan, N., Bane, S. M., Ahire, S. D., et al. Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3. Glycoconj J, 2009, 26(4): 445~456.
    [19] Oberg, C. T., Leffler, H., Nilsson, U. J. Arginine binding motifs: design and synthesis of galactose-derived arginine tweezers as galectin-3 inhibitors. J Med Chem, 2008, 51(7): 2297~2301.
    [20] Tejler, J., Skogman, F., Leffler, H., et al. Synthesis of galactose-mimicking 1H-(1,2,3-triazol-1-yl)-mannosides as selective galectin-3 and 9N inhibitors. Carbohydr Res, 2007, 342(12-13): 1869~1875.
    [21] Rabinovich, G. A., Cumashi, A., Bianco, G. A., et al. Synthetic lactulose amines: novel class of anticancer agents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation and endothelial cell morphogenesis. Glycobiology, 2006, 16(3): 210~220.
    [22] Fort, S., Kim, H. S., Hindsgaul, O. Screening for galectin-3 inhibitors from synthetic lacto-N-biose libraries using microscale affinity chromatography coupled to massspectrometry. J Org Chem, 2006, 71(19): 7146~7154.
    [23] Aplander, K., Tejler, J., Toftered, J., et al. Synthesis of a 3'-naphthamido-LacNAc fluorescein conjugate with high selectivity and affinity for galectin-3. Carbohydr Res, 2006, 341(10): 1363~1369.
    [24] Tejler, J., Leffler, H., Nilsson, U. J. Synthesis of O-galactosyl aldoximes as potent LacNAc-mimetic galectin-3 inhibitors. Bioorg Med Chem Lett, 2005, 15(9): 2343~2345.
    [25] Sorme, P., Arnoux, P., Kahl-Knutsson, B., et al. Structural and thermodynamic studies on cation-Pi interactions in lectin-ligand complexes: high-affinity galectin-3 inhibitors through fine-tuning of an arginine-arene interaction. J Am Chem Soc, 2005, 127(6): 1737~1743.
    [26] Salameh, B. A., Leffler, H., Nilsson, U. J. 3-(1,2,3-Triazol-1-yl)-1-thio-galactosides as small, efficient, and hydrolytically stable inhibitors of galectin-3. Bioorg Med Chem Lett, 2005, 15(14): 3344~3346.
    [27] Cumpstey, I., Sundin, A., Leffler, H., et al. C2-symmetrical thiodigalactoside bis-benzamido derivatives as high-affinity inhibitors of galectin-3: efficient lectin inhibition through double arginine-arene interactions. Angew Chem Int Ed Engl, 2005, 44(32): 5110~5112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700