抑制蛋白酶体功能对脑胶质瘤作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶质瘤是颅内常见的原发恶性脑肿瘤,呈浸润性生长,具有发病率、复发率、死亡率高和治愈率低的特点。化学治疗是胶质瘤治疗的主要方式之一,但是胶质瘤对许多化疗药物存在一定的耐药性,因此寻找新的、有效的化疗药物逐渐成为胶质瘤治疗研究的主要方向。
     泛素-蛋白酶体通路是细胞内降解蛋白质的主要通路,许多涉及细胞生长、增殖、分化、凋亡的短寿调节蛋白都是在蛋白酶体内降解。蛋白酶体抑制剂是一类能与蛋白酶体内的酶解活性位点结合,阻碍靶蛋白降解的药物。体外实验表明,蛋白酶体抑制剂能够抑制胶质瘤细胞的生长、增殖,但具体机制不是十分清楚。所以蛋白酶体抑制剂可能是一个潜在的胶质瘤治疗的新药。
     本实验中,选用了天然蛋白酶体抑制剂Lactacystin和鼠C6胶质瘤细胞。采用MTT、流式细胞仪、RT-PCR、Western Blotting、免疫组化等方法,通过体内、体外实验研究了Lactacystin对鼠C6胶质瘤细胞的增殖影响及其作用机制。结果表明:在体、内外实验中,蛋白酶体抑制剂Lactacystin皆能够抑制鼠C6胶质瘤细胞增殖和诱导鼠C6胶质瘤细胞凋亡。Lactacystin可能主要通过线粒体途径诱导鼠C6胶质瘤细胞凋亡。并且,Lactacystin可能通过上调Bax/bcl-2比值及Caspase-3的表达促进鼠C6胶质瘤细胞凋亡。Lactacystin亦可能通过阻碍NF-κB激活,发挥对鼠C6胶质瘤细胞增殖抑制及诱导凋亡作用。总之,抑制泛素蛋白酶体通路对胶质瘤细胞有增殖抑制及诱导凋亡作用,为将来临床使用蛋白酶体抑制剂治疗胶质瘤提供一定的实验和理论基础。
Glioma is the malignant tumor in central nervous system with infiltrative growth, accounting for 30% of primary brain tumor in adult. Glioblastoma, a representative type of glioma, is the most malignant one with high recurrence rate and poor prognosis. Chemotherapy is a main treatment for glioma. However glioma is resistant to many kinds of drug to some extent, it gradually becomes to be the focus to search for the new and effective drugs in treating the glioma. Ubiquitin-proteasome pathway is the main pathway of intracellular protein degradation. Many short-lifed regulative protiens involving in cell proliferation, differentiation, apoptosis and so on are degraded in proteasome. Proteasome inhibitor can bind the active sites of the proteasome, which suppress the target protien degradation. Many studies revealed that proteasome inhibitor can suppress the many kinds of tumor cells proliferation, but the mechanism is unclear. In our experiments, we investigate the effects of proteasome inhibitor Lactacystin on rat C6 glioma cell in vitro and vivo to explore the effect and mechanism on inhibiting proteasome activity of glioma.
     Lactacystin, a natural and irreversible proteasome inhibitor, can specially bind the active sites of proteasome in a covalence manner. Rat C6 glioma cells have the same pathology features with the human glioblastoma cells. And Rat C6 glioma cells infiltratively grow too.
     Our experements include two parts:the vitro experment and the vivo experiment. MTT assay, Flow cytometry (FCM), RT-PCR, Western Blotting and Immunohistochemistry were used. The cell death has three types, apoptosis, autophagy and necrosis. Apoptosis is a suicide cell death with typical morphorlogical features and is a Caspace-dependent multistep reaction process. Caspace-3 is the main effective protease in apoptosis. Upregulation of the Caspace-3 expression could promote cell apoptosis. In our experiments, RT-PCR detected Caspace-3 mRNA expression and Western Blotting detected Caspace-3 protien expression. Apoptosis have three pathways: Mitochondrial pathway, Death receptor-mediated pathway and Extrinsic pathway. Cytochrome c release from the mitochondrion into the cytoplasm and mitochondrial membrane potential collapse are the characteristics of the Mitochondrial pathway. In our experiments, we detected the mitochondrial membrane potential by FCM to identify the type of apoptosis. Bcl-2 family protiens are important regulative protiens of apoptosis, including proapoptotic protiens and antiapoptotic protiens with locating in mitochondrial membrane. Bax and bcl-2 are two key members of the family. Bax can promote the apoptosis while bcl-2 can inhibit the apoptosis. The Bax/ bcl-2 ratio control the direction of the apoptosis. In our experiments, Bax and bcl-2 mRNA expression was detected by RT-PCR and their protien expression was detected by Western Blotting. Sequently Bax/ bcl-2 mRNA ratio and ther protien ratio are calculated. Nuclear factorκB (NF-κB) lies in the cytoplasm in the inactive state in most types of cells. When the cell is triggered, NF-κB is activated and translocates to the nucleus and upregulates the transcriptions of the target genes. The target genes involve in apoptosis, cell cycle control, migation and so on. NF-κB becomes constitutively activated in many kinds of tumor cells. In our experiments. P65 protien, a NF-κB protien, was detected by Western Blotting to explore the affect of Lactacystin on NF-κB of rat C6 glioma cell.
     Methods:
     (1) In vitro experiment, according to the different concentration of Lactacystin, the cultured C6 glioma cells were divised for the control group, Lactacystin 2.5μmol.L-1Group, Lactacystin 5.0μmol.L-1 Group and Lactacystin 10.0μmol.L-1Group. Proliferation rate of C6 glioma cells in each group was detected by MTT assay. FCM detected apoptosis and mitochondrial membrane potential of C6 glioma cells in each group. RT-PCR detected Bax and bcl-2 mRNA expression in each group. Bax, bcl-2, NF-κB(P65) protein expression was also detected by Western Blotting in C6 glioma cells of each group.
     (2) In vivo experiment, the cultured C6 glioma cells in the logarithmic growth phase were selceted and inoculated subcutaneously in the back of the nude mice. Then the nude mice were administered intraperitoneally with Lactacystin for 7 days. The nude mice were divided for model group (Model), Lactacystin 0.5μg/20g group, Lactacystin 1μg/20g Group, and Lactacystin 5μg/20g group with each group including three mice. The general condition of nude mice such as food, coat color and activities was observed every day.The measurement and calculation of tumor volume at different time points was got. RT-PCR detected Bax, bcl-2 and Caspase-3 mRNA expression in the glioma cells of each group. Bax, bcl-2, And Caspase-3 protein expression was also detected by Western Blotting and immuno- histochemistry.
     Results:
     (1) The results of vitro experiment: Compared with the Con group, in Lactacystin 2.5μmol.L-1Group, Lactacystin 5.0μmol.L-1 Group and Lactacystin 10.0μmol.L-1Group, the proliferation rate of cells were decreased(P<0.05); Compared with the Con group, in Lactacystin 5μmol.L-1Group and Lactacystin 10μmol.L-1 Group, mitochondrial membrane potential and NF-κB(P65)protein expression were decreased(P<0.05), while the apoptosis rate ,Bax/bcl-2 mRNA and protein ratio were increased(P<0.05).
     (2) The results of vivo experiment: Compared with the Model group, in Lactacystin 0.5μg/20g Group, Lactacystin 1μg/20g Group and Lactacystin 5μg/20g Group,the tumor volume was significantly reduced( P<0.05), Bax/bcl-2 mRNA and protein ratio was increased (P<0.05), the Caspase-3 mRNA expression was up-regulated ( P<0.05). Compared with the Model group, in Lactacystin 5μg/20g Group , the Caspase-3 protien expression was up-regulated ( P<0.05). Immunohistochemistry revealed that the tumor cells with positive Bax, bcl-2 and Caspase-3 proteins were markedly increased.
     Conclusions:
     (1) Proteasome inhibitor Lactacystin showed the antiproliferative activity on rat C6 glioma cell in vitro and vivo.
     (2) Proteasome inhibitor Lactacystin showed the induction of the apoptosis on rat C6 glioma cell in vitro and vivo.
     (3) Proteasome inhibitor Lactacystin definitely induces the apoptosis of the rat C6 glioma cell, which may be caused through the mitochondrial pathway. Addtionally,Lactacystin perhaps upregulates the ratio of Bax/bcl-2 and Caspase-3 expression to promote the apoptosis of the C6 glioma cell.
     (4) Proteasome inhibitor Lactacystin suppresses NF-κB signal pathway, which may result in the antiproliferative activity and the induction of apoptosis on rat C6 glioma cell.
     (5) Suppressing proteasome activity can obviously inhibit the proliferation and induce the apoptosis in glioma cell.
     Both vitro and vivo experiments revealed that Suppressing proteasome activity can obviously inhibit the proliferation and induce the apoptosis in glioma cell and futheremore the mechanisms were initially analyzed. It supplied the experimental and theoretical basis for the Proteasome inhibitor in treating glioma in clinic in future.
引文
[1]倪晓光,赵平.泛素-蛋白酶体途径的组成和功能[J].生理科学进展, 2006, 37(3): 255-258.
    [2] Vijay-Kumar S, Bugg CE, Cook WJ. Structure of ubiquitin refined at 1.8 A resolution[J]. J Mol Biol 1987, 194(3):531-544.
    [3] Kuo ML, den Besten W, Bertwistle D, et al. N-terminal polyubiquitination and degradation of the Arf tumor suppressor[J]. Genes Dev, 2004; 18(15): 1862-1874.
    [4] Cadwell K, Coscoy L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase[J]. Science 2005; 309(5731): 127-130.
    [5] Madsen L, Schulze A, Seeger M, et al. Ubiquitin domain proteins in disease[J]. BMC Biochem. 2007, 8 Suppl 1:S1.
    [6]许娆,刘萱,曹诚.蛋白酶体相关翻译后修饰的研究进展[J].生物技术通讯, 2007, 18(6): 985-988.
    [7] Jentsch S, Pyrowolakis G. Ubiquitin and its kin: how close are the family ties? [J]. Trends Cell Biol, 2000, 10(8):335-342.
    [8] Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins[J]. Ann Rev Cell Dev Biol, 2006, 22: 159-180.
    [9] Ha BH, Kim EE. Structures of proteases for ubiqutin and ubiquitin-like modifiers[J]. BMB Rep, 2008,41(6):435-443.
    [10]肖兰博,李力力,曹亚.泛素在信号转导中的作用[J].生命的化学, 2007, 27(6): 527-530.
    [11] Mosesson Y, Shtiegman K, Katz M, et al. Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation[J]. J Biol Chem, 2003, 278: 21323-21326.
    [12] Kruse JP, Gu W. MSL2 promotes Mdm2-independent cytoplasmic localization of p53[J]. J Biol Chem, 2009, 284:3250-3263.
    [13] Hoege C, Pfander B, Moldovan GL, et al. RAD6-dependent DNA repair is linked tomodification of PCNA by ubiquitin and SUMO[J]. Nature, 2002,419(6903): 135-141.
    [14] Deng L, Wang C, Spencer E, et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain[J]. Cell, 2000,103(2): 351-361.
    [15] Kirkin V, McEwan DG, Novak I, et al. A role for ubiquitin in selective autophagy[J]. Mol Cell, 2009, 34:259-269.
    [16] Yang Y, Kitagaki J, Wang H, et al. Targeting the ubiquitin-proteasome system for cancer therapy[J]. Cancer Sci, 2009, 100(1):24-28.
    [17] Koegl M, Hoppe T, Schlenker S, et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly[J]. Cell,1999, 96(5): 635-644.
    [18] Hoeller D, Hecker CM, Wagner S, et al. E3-independent monoubiquitination of ubiquitin-binding proteins[J]. Mol Cell, 2007, 26(2): 891-898.
    [19] Pelzer C, Kassner I, Matentzoglu K, et al. UBE1L2, a novel E1 enzyme specific for ubiquitin[J]. J Biol Chem, 2007, 282(32): 23010-23014.
    [20] Chiu YH, Sun Q, Chen ZJ. E1–L2 activates both ubiquitin and FAT10[J]. Mol Cell, 2007, 27(6): 1014-1023.
    [21] Jin J, Li X, Gygi SP, et al. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging[J]. Nature, 2007, 447(7148): 1135-1138.
    [22] Pickart CM, Eddins MJ. Ubiquitin:structures,functions,mechanisms[J]. Biochim Biophys Acta, 2004, 1695(1-3):55-72.
    [23] Semple CA. The comparative proteomics of ubiquitination in mouse[J].Genome Res, 2003, 13(6B):1389-1394.
    [24]程翌,郑国荣.泛素连接酶E3和肿瘤关系的研究进展[J].实用医学杂志, 2009, 25(8):1341-1342.
    [25] Tasaki T, Kwon YT. The mammalian N-end rule pathway: new insights into its components and physiological roles[J]. Trends Biochem Sci, 2007, 32(11):520-528.
    [26] Mogk A, Schmidt R, Bukau B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies[J]. Trends Cell Biol, 2007, 17(4): 165-172.
    [27] Ditzel M, Wilson R, Tenev T. Degradation of DIAP1 by the N-end rule pathway isessential for regulating apoptosis[J]. Nat Cell Biol, 2003, 5(5):467-473.
    [28] Yang Y, Lorick K L, Jensen J P, et al. Expression and evaluation of RING finger proteins[J]. Methods Enzymol, 2005, 398(1): 103-112.
    [29] Swaroop M, Gosink M, Sun Y. SAG/ROC2/Rbx2/Hrt2, a component of SCF E3 ubiquitin ligase: genomic structure, a splicing variant, and two family pseudogenes[J]. DNA Cell Biol, 2001, 20(7): 425-434.
    [30] Jackson P K, Eldridge A G. The SCF ubiquitin ligase: an extended look[J]. Mol Cell, 2002, 9(5):923-925.
    [31] Hatakeyama S, Nakayama K I. U-box proteins as a new family of ubiquitin ligases[J]. Biochem Biophys Res Commun, 2003, 302(4):635-645.
    [32] Jiang J, Ballinger C A, Wu Y. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation[J]. J Biol Chem, 2001, 276(46): 42938-42944.
    [33] Hoppe T. Multiubiquitylation by E4 enzymes:‘one size’doesn’t fit all[J]. Trends Biochem Sci, 2005, 30(4): 183-187.
    [34] Lehman NL. The ubiquitin proteasome system in neuropathology[J]. Acta Neuropathol, 2009, 118(3):329-347.
    [35]丁祺,旭东.泛素化/去泛素化系统介导的蛋白质降解与肿瘤关系的研究[J].中国医药指南, 2009, 7(9):46-49.
    [36]刘媛,张志刚.泛素羧基末端水解酶-1的研究进展[J].国际病理科学与临床杂志, 2008, 28(6):544-549.
    [37]王素霞,刘媛,吴慧娟等.去泛素化酶的研究及其进展.临床与实验病理学杂志[J]. 2008, 24(6):734-737.
    [38] Baek SH, ParkK C, Lee J I, et al. A novel family of ubiquitin-specific proteases in chick skeletal muscle with distinct N- and C-terminal extensions[J]. Biolchem J, 1998, 334(Pt3): 677-684.
    [39] Johnston SC, Riddle SM, Cohen RE, et al. Structural basis for the specificity of ubiquitin C-terminal hydrolases[ J]. EMBO J, 2000, 18 (14): 3877-3887.
    [40] Evans PC, Smith TS, Lai MJ, et al. A novel type of deubiquitinating enzyme[J]. J BiolChem, 2003, 278 (25): 23180 -2318.
    [41] Scheel H, Tomiuk S, Hofmann K, et al. Elucidation of ataxin-3and ataxin-7 function by integrative bioinformatics[J]. Hum Mol Genet, 2003, 12 (21): 2845-2852.
    [42] Tran HJ, Allen MD, L?we J, et al. Structure of the Jab1 /MPN domain and its implications for proteasome function[J]. Biochemistry, 2003, 42 (39): 11460-11465.
    [43] Tanaka K. The proteasome: Overview of structure and functions[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2009, 85(1):12-36.
    [44]李明,缪泽鸿,丁健.蛋白酶体及其抑制剂的研究进展[J].中国药理学通报, 2008, 24(5):565-569.
    [45] Bochtler M, Ditzel L, Groll M, et al. The proteasome[J]. Annu Rev Biophys Biomol Struct, 1999, 28:295-317.
    [46] Marques AJ, Glanemann C, Ramos PC, et al. The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation[J]. J Biol Chem, 2007, 282(48): 34869-34876.
    [47] Liu CW, Corboy MJ, DeMartino GN, et al. Endoproteolytic activity of the proteasome [J]. Science, 2003, 299(5605):408-411.
    [48] Jung T, Grune T. The proteasome and its role in the degradation of oxidized proteins[J]. IUBMB Life, 2008, 60(11):743-752.
    [49] Glickman MH, Rubin DM, Fried VA, et al. The regulatory particle of the Sacchar- omyces cerevisiae proteasome[J]. Mol Cell Biol, 1998, 18(6):3149-3162.
    [50] Hanna J, Finley D. A proteasome for all occasions[J]. FEBS Lett, 2007, 581(15): 2854-2861.
    [51] Rosenzweig R, Osmulski PA, Gaczynska M, et al. The central unit within the 19S regulatory particle of the proteasome[J]. Nat Struct Mol Biol, 2008, 15(6): 573-580.
    [52] Deveraux Q, van Nocker S, Mahaffey D, et al. Inhibition of ubiquitin-mediated proteolysis by the Arabidopsis 26 S protease subunit S5a[J]. J Biol Chem, 1995, 270(50): 29660-29663.
    [53] Schreiner P, Chen X, Husnjak K, et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction[J]. Nature, 2008, 453(7194): 548-552.
    [54] Husnjak K, Elsasser S, Zhang N, et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor[J]. Nature, 2008, 453(7194): 481-488.
    [55] Saeki Y, Tanaka K. Cell biology: two hands for degradation[J]. Nature, 2008, 453 (7194): 460-461.
    [56] Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome[J]. Science, 2002, 298(5593): 611-615.
    [57] Hu M, Li P, Song L, et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14[J]. EMBO J, 2005, 24(21): 3747-3756.
    [58] Hamazaki J, Iemura S, Natsume T, et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes[J]. EMBO J, 2006, 25(19): 4524-4536.
    [59] Yao T, Song L, Xu W, et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1[J]. Nat Cell Biol, 2006, 8(9): 994-1002.
    [60] Hanna J, Meides A, Zhang DP, et al. A ubiquitin stress response induces altered proteasome composition. Cell, 2007, 129(4): 747-759.
    [61] Rechsteiner M, Realini C, Ustrell V. The proteasome activator 11 S REG (PA28) and class I antigen presentation[J]. Biochem J, 2000, 345( Pt 1): 1-15.
    [62] Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes[J]. Annu Rev Biochem, 1996, 65:801-847.
    [63] Tanahashi N, Yokota K, Ahn JY, et al. Molecular properties of the proteasome activator PA28 family proteins and gamma-interferon regulation[J]. Genes Cells, 1997, 2(3): 195-211.
    [64] Wójcik C, Tanaka K, Paweletz N, et al. Proteasome activator (PA28) subunits, alpha, beta and gamma (Ki antigen) in NT2 neuronal precursor cells and HeLa S3 cells[J]. Eur J Cell Biol, 1998, 77(2): 151-160.
    [65] Zhang Z, Zhang R. Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation[J]. EMBO J, 2008, 27(6): 852-864.
    [66] Li X, Amazit L, Long W, et al. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway[J]. Mol Cell, 2007, 26(6): 831-842.
    [67] Tanahashi N, Murakami Y, Minami Y, et al. Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis[J]. J Biol Chem, 2000, 275(19): 14336-14345.
    [68] Cascio P, Call M, Petre BM, et al. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes[J]. EMBO J, 2002, 21(11): 2636-2645.
    [69] Ustrell V, Hoffman L, Pratt G, et al. PA200, a nuclear proteasome activator involved in DNA repair[J]. EMBO J, 2002, 21(13):3516-3525.
    [70] Blickwedehl J, Agarwal M, Seong C, et al. Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability[J]. Proc Natl Acad Sci USA, 2008, 105(42): 16165-16170.
    [71] Mc Cutchen-Maloney SL, Matsuda K, Shimbara N, et al. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome[J]. J Biol Chem, 2000, 275(24):18557-18565.
    [72] Zaiss DM, Standera S, Kloetzel PM, et al. PI31 is a modulator of proteasome formation and antigen processing[J]. Proc Natl Acad Sci USA, 2002, 99(22): 14344-14349.
    [73] Tanaka K, Kasahara M. The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28[J]. Immunol Rev, 1998, 163: 161-176.
    [74] Kloetzel PM. Antigen processing by the proteasome[J]. Nat Rev Mol Cell Biol, 2001, 2(3): 179-187.
    [75] Rock KL, York IA, Saric T, et al. Protein degradation and the generation of MHC class I-presented peptides[J]. Adv Immunol, 2002, 80:1-70.
    [76] Murata S, Sasaki K, Kishimoto T, et al. Regulation of CD8+ T cell development by thymus-specific proteasomes[J]. Science, 2007, 316(5829):1349-1353.
    [77] Murata S, Yashiroda H, Tanaka K. Molecular mechanisms of proteasome assembly[J]. Nat Rev Mol Cell Biol, 2009, 10(2):104-115.
    [78] Hirano Y, Hendil KB, Yashiroda H, et al. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes[J]. Nature, 2005, 437(7063):1381-1385.
    [79] Shinde U, Inouye M. Intramolecular chaperones: polypeptide extensions that modulateprotein folding[J]. Semin Cell Dev Biol, 2000, 11(1):35-44.
    [80] De M, Jayarapu K, Elenich L, et al. Beta 2 subunit propeptides influence cooperative proteasome assembly[J]. J Biol Chem, 2003, 278(8):6153-6159.
    [81] Li X, Kusmierczyk AR, Wong P, et al. beta-Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint[J]. EMBO J, 2007, 26(9): 2339-2349.
    [82] Witt E, Zantopf D, Schmidt M, et al. Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20 S proteasomes[J]. J Mol Biol, 2000, 301(1): 1-9.
    [83] Griffin TA, Slack JP, McCluskey TS, et al. Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly[J]. Mol Cell Biol Res Commun, 2000,3(4):212-217.
    [84] Demartino GN, Gillette TG. Proteasomes: machines for all reasons[J]. Cell, 2007, 129(4): 659-662.
    [85] Leggett DS, Hanna J, Borodovsky A, et al. Multiple associated proteins regulate proteasome structure and function[J]. Mol Cell, 2002,10(3): 495-507.
    [86] Gorbea C, Goellner GM, Teter K, et al. Characterization of mammalian Ecm29, a 26 S proteasome-associated protein that localizes to the nucleus and membrane vesicles[J]. J Biol Chem, 2004, 279(52): 54849-54861.
    [87] Tonoki A, Kuranaga E, Tomioka T, et al. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process[J]. Mol Cell Biol, 2009, 29(4): 1095-1106.
    [88] Ferdous A, Kodadek T, Johnston SA. A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II [J]. Biochemistry, 2002, 41(42): 12798-12805.
    [89] Collins GA, Tansey WP. The proteasome: a utility tool for transcription? [J]. Curr Opin Genet Dev, 2006, 16(2): 197-202.
    [90] Russell SJ, Reed SH, Huang W, et al. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair[J]. Mol Cell, 1999,3(6): 687-695.
    [91] Reed SH, Gillette TG. Nucleotide excision repair and the ubiquitin proteasome pathway-do all roads lead to Rome? [J]. DNA Repair (Amst), 2007, 6(2): 149-156.
    [92] Wahlman J, DeMartino GN, Skach WR, et al. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system[J]. Cell, 2007, 129(5): 943-955.
    [93] Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states[J]. J Am Soc Nephrol, 2006, 17(7): 1807-1819.
    [94]袁莉刚,赵兴绪,刘英.泛素-蛋白酶体通路在神经系统中的生物学功能[J].中国兽医科学, 2007, 37(5): 444-448.
    [95]张永杰,徐雅飞,王建枝.蛋白酶体与神经纤维缠结[J].生命的化学, 2005, 25(2): 121-123.
    [96]聂利珞,郭纪锋,严新翔.泛素蛋白酶体通路与帕金森病[J].卒中与神经疾病, 2008, 15(2): 120-122.
    [97] DeSalle LM, Pagano M. Regulation of the G1 to S transition by the ubiquitin pathway[J]. FEBS Lett, 2001, 490(3): 179-189.
    [98] Yew PR. Ubiquitin-mediated proteolysis of vertebrate G1- and S-phase regulators[J]. J Cell Physiol, 2001, 187(1): 1-10.
    [99]刘萱,曹诚,刘传暄.泛素-蛋白酶体降解途径在细胞周期调控中的作用[J].生物技术通讯, 2004, 15(3): 267-271.
    [100] Morgan DO. Regulation of the APC and the exit from mitosis[J]. Nat Cell Biol, 1999, 1(2): E47-53.
    [101] Tsvetkov LM, Yeh KH, Lee SJ, et al. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27[J]. Curr Biol, 1999, 9(12): 661-664.
    [102]白勇,孙安盛,顾振纶,等.泛素-蛋白酶体通路在细胞生存和肿瘤发生中的作用[J].中国药理学通报, 2008, 24(10): 1268-1271.
    [103] Reinstein E,Ciechanover A. Narrative review: Protein degradation and human diseases: the ubiquitin connection[J]. Ann Intern Med, 2006, 145(9): 676-684.
    [104] Wallace M, Worrall E, Pettersson S, et al. Dual-site regulation of MDM2 E3-Ubiquitin ligase activity[J]. Mol Cell, 2006, 23(2): 251-263.
    [105] Colaluca IN, Tosoni D, Nuciforo P, et a.l NUMB controls p53 tumour suppressor activity[J]. Nature, 2008, 451(7174): 76-78.
    [106] Le CL, Linares LK, Paul C, et al. E4F1 is an atypical ubiquitin ligase thatmodulates p53 effector functions independently of degradation[J]. Cell, 2006, 127(4): 775-788.
    [107]周咏明,郭伟,黄士昂.蛋白酶体抑制剂的抗肿瘤作用及其临床应用[J].中国新药杂志, 2006, 15(21): 1813-1818.
    [108] Trotman LC,Wang X, Alimonti A, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression[ J]. Cell, 2007, 128 (1): 141-156.
    [109] Lian Z, Di CA. Class reunion: PTEN joins the nuclear crew[J]. Oncogene, 2005, 24(50): 7394-7400.
    [110]倪晓光,赵平.泛素-蛋白酶体途径与恶性肿瘤关系的研究进展[J].中华肿瘤防治杂志, 2007, 14(19):1512-1514.
    [111] Adams J, Behnke M, Chen S, et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids[J]. Bioorg Med Chem Lett, 1998, 8(4): 333-338.
    [112]牟科,付翌秋,徐萍.蛋白酶体抑制剂的研究进展[J].国际药学研究杂志, 2009, 36(5): 348-354.
    [113]陈茂营,徐文方.蛋白酶体与蛋白酶体抑制剂[J].中国药物化学杂志, 2007, 17(4): 249-253.
    [114]王立琳,肖若芝.蛋白酶体抑制剂-硼替佐米的临床治疗研究进展[J].国际内科学杂志, 2008, 35(11): 657-671.
    [115] Skata N, Dixon JL. Ubiquifin-proteasome-dependent degradation of apolipoprotein B100 in vitro[J]. Biochem Biophys Acta, 1999, 1437(1):71-79.
    [116] Tsukamoto S, Yokosawa H. Natural products inhibiting the ubiquitin-proteasome proteolytic pathway, a target for drug development[J]. Curr Med Chem, 2006, 13(7): 745-775.
    [117] Basse N, Piguel S, Papapostolou D, et al. Linear TMC-95-based proteasome inhibitors[J]. J Med Chem, 2007, 50(12): 2842-2850.
    [118] Groll M, Koguchi Y, Huber R, et al. Crystal structure of the 20 S proteasome: TMC-95A complex: a non-covalent proteasome inhibitor[J]. J Mol Biol, 2001, 311(3): 543-548.
    [119] Thorburn A. Apoptosis and autophagy: regulatory connections between two supposedly different processes[J]. Apoptosis, 2008, 13(1):1-9.
    [120]李国东,吴德全,李本义.细胞自噬在肿瘤中作用的研究进展[J].癌症, 2009, 28(4): 445-448.
    [121] Cuervo AM. Autophagy:in sickness and in health[J]. Trends Cell Biol, 2004, 14(2): 70-77.
    [122] Tsujimoto Y, Shimizu S. Another way to die:autophagic programmed cell death[J]. Cell Death Differ, 2005, 12(Suppl 2): 1528-1534.
    [123] Luthi AU, Martin SJ. The CASBAH:a searchable database of caspase substrates[J]. Cell Death Differ, 2007, 14(4): 641-650.
    [124]敏云馨,马忠仁.细胞程序性死亡通路的研究进展[J].生物技术通报, 2009, (11): 20-23.
    [125] Lamkanfi M, Declercq W, Kalai M, et al. Alice in caspase land. A phylogenetic analysis of caspases from worm to man [J]. Cell Death Differ, 2002, 9(4): 358-361.
    [126]李超,伏圣博,刘华玲,等.细胞凋亡研究进展[J].世界科技研究与发展, 2007, 29(3):45-53.
    [127] Fan TJ, Han LH, Cong RS,et al. Caspase family proteases and apoptosis[J]. Acta Biochim Biophys Sin (Shanghai), 2005, 37(11):719-727.
    [128] Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme [J]. J Biol Chem, 1994, 269 (49): 30761-30764.
    [129]张彦博,程功,钟国华. Caspase-3抑制剂研究进展[J].化学研究与应用, 2009, 21(6): 769-778.
    [130]周琳,王好转,古红梅,等.细胞凋亡的信号传导通路及相关因子研究进展[J].周口师范学院学报, 2009, 26(2):98-101.
    [131]任会荣,钱令嘉.线粒体通透性转换孔、细胞色素与细胞凋亡[J].生命的化学, 2002, 22(4): 316-318.
    [132] Yang E, Zha J, Jockel J, et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death[J]. Cell,1995, 80 (2):285-291.
    [133] Jia L, Srinivasula SM, Liu FT, et al. Apaf-1 protein deficiency confers resistance to cytochrome c-dependent apoptosis in human leukemic cells [J]. Blood, 2001, 98(2): 414-421.
    [134] Furukawa Y, Nishimura N, Furukawa Y, et al. Apaf-1 is a mediator of E2F-1-induced apoptosis [J]. J Biol Chem, 2002, 277(42): 39760-39768.
    [135] Belzacq AS, Vieira HL, Kroemer G, et al. The adenine nucleotide translocator in apoptosis[J]. Biochimie, 2002, 84(2-3):167-176.
    [136] Shoshan-Barmatz V, Israelson A, Brdiczka D, et al. The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death[J]. Curr Pharm Des, 2006, 12(18):2249-2270.
    [137] Borner C.The Bcl-2 protein family:sensors and checkpoints for life or death decisions[J]. Mol Immunol, 2003, 39:615-647.
    [138] Daugas E, Susin SA, Zamzami N, et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis [J]. FASEB J, 2000, 14(5): 729-739.
    [139] Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis[J]. Genes Dev, 1999, 13(15):1899-1911.
    [140] Adrain C, Creagh EM, Martin SJ. Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2 [J]. EMBO J, 2001, 20(23):6627-6636.
    [141] Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis[J]. Nature, 2001, 410(6824): 112-116.
    [142]迟万好,朱睦元,曹明富.细胞凋亡的信号传导途径的研究进展[J].哈尔滨师范大学自然科学学报, 2001, 17(6): 84-89.
    [143] Van Parijs L, Abbas AK. Role of Fas-mediated cell death in the regulation of immune responses[J]. Curr Opin Immunol, 1996, 8(3):355-361.
    [144]王虎,蔡定芳. Ca2+与内质网途径的细胞凋亡[J].国际病理科学与临床杂志, 2006,26(4):283-290.
    [145]彭洪涛,刘淑萍. bcl-2基因与细胞凋亡关系的研究进展[J].内蒙古医学杂志, 2006, 38(4):349-351.
    [146] Hsu SY, Hsueh AJ. Tissue-specific Bcl-2 protein partners in apoptosis: An ovarian paradigm[J]. Physiol Rev, 2000, 80(2):593-614.
    [147]李捷萌,陈彦青,刘荣国.线粒体凋亡途径与Bcl-2家族蛋白研究进展[J].医学综述, 2008, 14(4):489-490.
    [148]孟祥东,严云勤. BCL-2家族与线粒体对细胞凋亡的调控[J].细胞与分子免疫学杂志, 2005, 21(suppl):77-79.
    [149] Levine B, Sinha S, Kroemer G. Bcl-2 family members:Dual regulators of apoptosis and autophagy[J]. Autophagy, 2008,4(5):600-606.
    [150] Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences[J]. Cell, 1986, 46(5): 705-716.
    [151] Li Q, Verma IM. NF-kappaB regulation in the immune system [J]. Nat Rev Immunol, 2002, 2(10): 725-734.
    [152]邢飞跃,赵克森,姜勇. NF-κB的信号通路与阻断策略[J].中国病理生理杂志, 2003, 19(6): 849-855.
    [153] Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF- [kappa]B activity[J]. Annu Rev Immunol, 2000, 18: 621-663.
    [154] Dolcet X, Llobet D, Pallares J, et al. NF-kB in development and progression of human cancer[J]. Virchows Arch, 2005, 46(5): 475-482.
    [155] Caama?o JH, Perez P, Lira SA, et al. Constitutive expression of Bc1-3 in thymocytes increases the DNA binding of NF-kappaB1 (p50) homodimers in vivo[J]. Mol Cell Biol, 1996, 16(4): 1342-1348.
    [156] Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity[J]. Trends Immunol, 2004, 25(6): 280-288.
    [157] Hayden MS, Ghosh S. Signaling to NF-kappaB[J]. Genes Dev, 2004, 18(18): 2195- 2224.
    [158]曹建南,郭汉城.泛素-蛋白酶体系统在核因子κB途径中的作用[J].医学综述,2009, 15(3):398-400.
    [159] G?rlich D, Kutay U. Transport between the cell nucleus and the cytoplasm [J]. Annu Rev Cell Dev Biol, 1999, 15:607-660.
    [160]邢飞跃,赵克森,姜勇. NF-κB的信号通路与阻断策略[J].中国病理生理杂志, 2003, 19(6):849-855.
    [161] Guttridge DC, Albanese C, Reuther JY, et al. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1[J]. Mol Cell Biol, 1999, 19(8): 5785-5799.
    [162] Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation[J]. Nature, 2001, 411(6841): 1017-1021.
    [163] Deveraux QL, Roy N, Stennicke HR,et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases[J]. EMBO J, 1998,17(8): 2215-2223.
    [164] Takahashi R, Deveraux Q, Tamm I, et al. A single BIR domain of XIAP sufficient for inhibiting caspases[J]. J Biol Chem, 1998, 273(14):7787-7790.
    [165] Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation[J]. Science, 1998, 281 (5383): 1680-1683.
    [166] Lee JU, Hosotani R, Wada M, et al. Role of Bcl-2 family proteins (Bax, Bcl-2 and Bcl-X) on cellular susceptibility to radiation in pancreatic cancer cells[J]. Eur J Cancer,1999, 35(9):1374-1380.
    [167] Chen F, Wang M, O'Connor JP, et al. Phosphorylation of PPARgamma via active ERK1/2 leads to its physical association with p65 and inhibition of NF-kappabeta[J]. J Cell Biochem, 2003, 90(4):732-744.
    [168] Natsume A, Yoshida J. Gene therapy for high-grade glioma: current approaches and future directions[J]. Cell Adh Migr, 2008, 2(3): 186-191.
    [169] Vredenburgh JJ, Desjardins A, Reardon DA, et al. Experience with irinotecan for the treatment of malignant glioma[J]. Neuro Oncol, 2009, 11(1):80-91.
    [170] Kitagawa H, Tani E, Ikemoto H, et al. Proteasome inhibitors induce mitochondria-independent apoptosis in human glioma cells[J]. FEBS Lett, 1999, 443(2): 181-186.
    [171] Tani E, Kitagawa H, Ikemoto H,et al. Proteasome inhibitors induce Fas-mediated apoptosis by c-Myc accumulation and subsequent induction of FasL message in human glioma cells[J]. FEBS Lett, 2001, 504(1-2):53-58.
    [172]王鑫,杨智勇,王廷华.卡莫司汀对C6胶质瘤细胞凋亡作用机制的研究[J].
    [173]中国微侵袭神经外科杂志, 2008, 13(7): 318-320.
    [174]于天浩,葛鹏飞,罗毅男,等.蛋白酶体抑制剂MG-132对体外C6胶质瘤细胞的增殖抑制及诱导凋亡作用[J].吉林大学学报(医学版), 2008, 34(1): 69-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700