双环铂对人主动脉平滑肌细胞和人主动脉内皮细胞增殖影响的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Effect of Dicycloplatin on the Proliferation of Human Aortic Smooth Muscle Cells and Human Aortic Endothelial Cells:in Vitro Study
  • 作者:许连军
  • 论文级别:博士
  • 学科专业名称:内科学
  • 学位年度:2010
  • 导师:高润霖
  • 学科代码:100201
  • 学位授予单位:北京协和医学院
  • 论文提交日期:2010-11-01
摘要
药物洗脱支架(DES)是介入心脏病学的重要进展,DES使支架内再狭窄率由裸金属支架时代的20-30%下降到10%左右,然而DES轻度但有统计学意义地增加了极晚期血栓形成的发生率。其原因可能与不能降解的多聚物涂层引起的炎症或过敏反应有关;也可能与DES携载的抗细胞增殖药物有关,这些药物有效地抑制了支架置入术后血管平滑肌细胞过度增生,但同时也抑制了血管内皮细胞再生,延迟内皮愈合,从而增加支架内血栓的风险。人们期待研发出既能有效抑制平滑肌细胞增生,又对内皮细胞再生无明显影响的药物作为DES携载的药物。
     双环铂是继卡铂、顺铂后应用于临床抗肿瘤治疗的第三代铂类制剂,由北京兴大科学系统公司开发,是我国具有完全自主知识产权的化学Ⅰ类抗癌新药,双环铂的研究目前尚处于实验室研究和Ⅲ期临床研究阶段,现有资料表明,其抗癌疗效好,毒性低。我们拟研究其对平滑肌细胞及内皮细胞增生的影响,探讨作为支架携载药物的可能性。目前尚无双环铂对正常或良性增生的组织、细胞影响研究的文献报道。
     目的
     本研究通过体外实验,培养人主动脉平滑肌细胞(HASMC)和人主动脉内皮细胞(HAEC),MTS法检测不同浓度的双环铂对HASMC和HAEC增殖的影响,通过流式细胞仪检测不同浓度双环铂对HASMC和HAEC细胞周期的影响,探讨其可能的作用机制,旨在评价新药双环铂在防治支架置入术后再狭窄方面的潜在价值。在分子水平上,通过检测双环铂干预后HASMC和]HAEC细胞增殖核抗原PCNA,促凋亡蛋白Bax,抗凋亡蛋白Bcl-2,探讨双环铂在增殖和凋亡方面对HASMC和HAEC的影响。
     方法
     一、MTS法检测双环铂对HASMC和]HAEC增殖的影响
     通过体外扩增、培养HASMC和HAEC细胞株。10μg/ml,1μg/ml,100ng/ml双环铂干预培养HASMC,10μg/ml,1μg/ml双环铂干预培养HAEC,药物干预24小时、48小时、72小时,MTS法检测细胞增殖活性,计算细胞增殖抑制率,探讨双环铂的对HASMC和HAEC抑制增殖作用与时间、浓度的关系。
     双环铂100μg/ml起倍比稀释到0.39μg/ml共9个浓度组,干预培养HASMC72小时,双环铂200μg/ml起倍比稀释到1.56μg/ml共8个浓度组,干预培养HAEC72小时,MTS法检测细胞增殖活性,以log(双环铂浓度)与细胞生长率为变量作图,得出双环铂对HASMC和HAEC的半数抑制率IC50。
     双环铂浓度分别为10μg/ml,1μg/ml,100ng/ml,10ng/ml,1ng/ml,干预培养HASMC和HAEC72小时,使用雷帕霉素作为阳性对照药物,MTS法检测细胞增殖活性。使用SPSS10.0软件,单因素方差分析法进行统计分析,探求双环铂对HASMC和HAEC抑制增殖的最小有效浓度。
     二、流式细胞仪检测双环铂对HASMC和HAEC细胞周期的影响
     HASMC和HAEC接种24小时后,无血清培养24小时进行细胞周期同步化,HASMC分为6组,分别为正常对照组,雷帕霉素1ng/ml阳性对照组,双环铂1μg/ml组,100g/ml组,10ng/ml组,1ng/ml组。HAEC分为6组,分别为正常对照组,雷帕霉素10ng/ml组,双环铂10μg/ml组,1μg/ml组,100ng/ml组,10ng/ml组。药物干预培养48小时后,收集细胞,低温固定,碘化丙啶(PI)单染,通过流式细胞仪检测细胞周期变化。
     三、免疫印迹法(Western Blot)检测双环铂对细胞增殖蛋白PCNA和凋亡蛋白Bax, Bcl-2表达的影响
     HASMC和HAEC接种培养24小时后,改用无血清培养基培养24小时,HASMC分为6组,分别加入双环铂1μg/ml,100ng/ml,10ng/ml,1ng/ml,阳性对照组加入1ng/ml雷帕霉素,正常对照组予含2%血清的SMCM培养。HAEC分为6组,分别加入双环铂10μg/ml,1μg/ml,100ng/ml,10ng/ml,阳性对照组加入lOng/ml雷帕霉素,正常对照组予含有5%血清的ECM培养。药物干预48小时,提取细胞总蛋白。Western Blot法分别检测HASMC和HAEC的细胞增殖核抗原PCNA,促凋亡蛋白Bax和抗凋亡蛋白Bcl-2的表达情况。
     结果
     一、双环铂对HASMC和HAEC增殖的影响
     对于HASMC,双环铂10μg/ml组干预1天,2天,3天的增殖抑制率分别为16%,39%,75%,1μg/ml组增殖抑制率分别为13%,13%,27%,100ng/ml组增殖抑制率分别为11%,9%,20%。对于HAEC,双环铂10μng/ml干预1天,2天,3天的增殖抑制率分别为6.41%,11.05%,14.83%,1μg/ml组干预HAEC增殖抑制率分别为1.35%,0.60%,1.3%。
     双环铂对HASMC和HAEC的半数抑制浓度(IC50)分别为3.47μg/ml,72.44μg/ml,两者相差20.88倍。
     双环铂浓度分别为10μg/ml,1μg/ml,100ng/ml,10g/ml,1ng/ml时,干预培养HASMC和HAEC3天,10ng/ml以上浓度HASMC增殖受到明显抑制(P<0.05), lng/ml时双环铂对HASMC无明显增殖抑制(P=0.83);在10μg/ml以上浓度时HAEC增殖受到明显抑制(P<0.001),双环铂浓度在1ng/ml-1μg/ml时,对HAEC无明显增殖抑制作用(P>0.05),双环铂对HAEC的最小有效抑制浓度较对HASMC的最小有效抑制浓度高1000倍。阳性对照药物雷帕霉素在1ng/ml时,即表现出对HASMC和HAEC的抑制增殖作用,相同浓度下,对HAEC抑制作用稍弱。
     二、双环铂对HASMC和HAEC细胞周期的影响
     双环铂干预HASMC生长48小时后以流式细胞仪检测细胞周期,试验重复4次,1μg/ml双环铂对HASMC作用48小时,G2/M期细胞百分比增加,细胞周期阻滞在G2/M期,10ng/ml-100ng/ml双环铂对HASMC作用48小时,S期细胞百分比增加,细胞周期阻滞于S期。阳性对照药物雷帕霉素对细胞周期的阻滞在Go/G1期。
     双环铂干预HAEC生长48小时后检测细胞周期,实验重复5次,在10μg/ml以上浓度时HAEC S期数目明显增加,双环铂对HAEC周期的阻滞处于S期。在10μg/ml以下浓度时双环铂对细胞周期的阻滞不显著。阳性对照药物雷帕霉素组,G0/G1期细胞数目增加,细胞周期阻滞在Go/G1期。
     在对HASMC和HAEC细胞周期检测中各药物组及正常对照组均未见凋亡峰(Sub-G1)。
     三、双环铂干预培养后HASMC和]HLAEC细胞增殖蛋白PCNA和凋亡蛋白Bax, Bcl-2表达的变化
     HASMC在不同浓度双环铂干预下,PCNA蛋白的表达量明显下降,其中双环铂100ng/mL组PCNA表达量达最低值。HAEC在不同浓度双环铂干预下,10μg/ml组和100ng/ml组PCNA表达量轻度减低,其他浓度组PCNA表达无明显变化。雷帕霉素在HASMC和HAEC中均抑制了PCNA的表达。
     在HASMC中,促凋亡蛋白Bax在各双环铂浓度组表达量均明显上升。抗凋亡蛋白Bcl-2表达在双环铂1μg/ml组升高,在100ng/ml组较正常组相比无明显差异,在10ng/ml、1ng/ml组Bcl-2表达稍减低,Bax/Bcl-2比值增高,即双环铂有促进凋亡作用。雷帕霉素组Bax/Bcl-2较正常对照组无明显变化。在HAEC中,Bax在各双环铂浓度组表达均升高,且随着药物浓度上升,Bax表达量有升高趋势。雷帕霉素组Bax表达较正常组降低。在同样的试验条件下,未检测到HAEC中Bcl-2蛋白表达。上述结果表明双环铂对HAEC也有促进凋亡的作用,低浓度的雷帕霉素无促凋亡作用。
     结论
     双环铂对HASMC和HAEC产生抑制增殖作用与药物作用时间、浓度呈正相关。随着药物作用时间的延长,药物浓度的增加,双环铂对细胞增殖的抑制作用逐渐加强。
     双环铂对HASMC的半数抑制浓度(IC50)为3.47μg/ml,对HAEC的半数抑制浓度为72.44μg/ml,两者相差20.88倍。双环铂对HAEC抑制增殖的最低有效浓度(10μg/ml)较对HASMC抑制增殖的最低有效浓度(10ng/ml)高1000倍。
     双环铂对HASMC和HAEC细胞周期的影响检测表明,双环铂为非特异性细胞周期阻滞药物。
     双环铂干预HASMC和HAEC后,HASMC表达PCNA显著下降,而HAEC表达PCNA正常或轻度下降,结果表明相同浓度下双环铂对HASMC的增殖抑制作用明显强于对HAEC的增殖抑制作用。双环铂干预HASMC和AEC后,促进HASMC凋亡蛋白的表达,表明双环铂在细胞凋亡的线粒体通路上,通过调节Bax和Bcl-2的表达,产生促进细胞凋亡的作用。但是这种促进凋亡的作用只体现在蛋白水平上,在细胞学实验中,流式细胞检测未见凋亡峰出现。
     综合上述实验结果,尽管在蛋白检测中发现细胞凋亡蛋白表达升高,但是细胞周期检测中在各个双环铂浓度组均未见凋亡峰,表明低浓度双环铂对细胞的抑制作用,主要是通过抑制细胞增殖来体现的。与雷帕霉素相比,双环铂抑制平滑肌作用尽管稍弱,但在纳克水平即可产生对平滑肌细胞的抑制作用;与雷帕霉素不同的是,双环铂对内皮细胞增殖的影响明显弱于对平滑肌细胞增殖的影响,在微克水平才产生对内皮细胞的抑制作用。双环铂这种对内皮细胞和平滑肌细胞抑制作用显著不同的特点,使其有希望成为药物洗脱支架的携带药物,值得进一步研究。
Background
     Drug-eluting stent (DES) has shown superior angiographic and clinical results compared with bare metal stent (BMS) in patient with coronary artery disease undergoing PCI. DES decreases late loss and restenosis by reduced neointimal proliferation following stenting, however it also inhibits re-endothelialization and vascular healing which can increase the incidence of in-stent thrombosis. We expect to approach a new drug which could inhibit the overgrowth of vascular smooth muscle cells (SMCs), and have no significant effect on re-endothelialization.
     Dicycloplatin is the third generation of platimum complex, developed by Xing Da Scientific Systems company, which own country has the independent intellectual property rights. At present the studies about dicycloplatin are in laboratory research and phrase Ⅲ clinical trial, which showed significant antitumor effects and safety characteristics, no studies about the effect on normal and benign proliferation cell and tissues is reported.
     Objective
     The objective of the study is to investigate the effects of dicycloplatin on proliferation of HASMC and HAEC in vitro and to approach the potential possibility of dicycloplatin to be used for DES. Human aortic smooth muscle cells (HASMC) and human aortic endothelial cells (HAEC) were cultured in vitro. In cytology level, MTS assay was used to evaluate the effect of dicycloplatin on the proliferation of HASMC and HAEC, flow cytometry was used to detect the effect of dicycloplatin on cell cycle. In protein molecular level, the proliferating cell nuclear antigen (PCNA), Bax, and Bcl-2protein expression were detected to evaluate the effects of dicycloplatin on proliferation and apoptosis in HASMC and HAEC.
     Methods
     1. MTS assay to evaluate the effects of dicycloplatin on proliferation of HASMC and HAEC.
     HASMC and HAEC were cultured in vitro. HASMC and HAEC were incubated with different concentration of dicycloplatin for24hours,48hours, and72hours, cell proliferation was measured by MTS assay to explore if the efficacy is time and dose dependent.
     Double diluted dicycloplatin from100μg/ml to0.39μg/ml was incubated with HASMC for72hours; double diluted dicycloplatin from200μg/ml to1.56μg/ml was incubated with HAEC for72hours, cell proliferation was measured by MTS assay, log(concentration) and growth rate were used to explore the50%inhibited concentration(IC50) for HASMC and HAEC.
     HASMC and HAEC were incubated with different concentration of dicycloplatin (10μg/ml,1μg/ml,100ng/ml,10ng/ml,1ng/ml) for72hour, rapamycin as positive control groups, cell proliferation was measured by MTS assay, SPSS software, One-Way ANOVA method were used to analyze the minimum effective concentration.
     2. Flow Cytometry to detect the influence of dicycloplatin and rapamycin on the HASMC and HAEC cell cycle
     HASMC and HAEC were cultured for24hours, then cultured with serum-free smooth muscle cell medium (SMCM) or endothelial cell medium (ECM) for24hours. HASMC were divided into6groups:negative control group, lng/ml of rapamycin group;1μg/ml,100ng/ml,10ng/ml,1ng/ml dicycloplatin groups. HAEC were divided into6groups:negative control groups,10ng/ml of rapamycin group,10μg/ml,1μg/ml,100ng/ml,10ng/ml of dicycloplatin groups. Cell samples were collected48hours after incubation, the samples were fixed in low temperature, PI dyeing for30min, the cell cycle was detected by flow cytometry.
     3. Western Blot to detect the effect of dicycloplatin on PCNA, Bax and Bcl-2protein expression in HASMC and HAEC.
     The divided group, treatment with different concentration of dicycloplatin and rapamycin were same as above. Protein samples were collected48hours after incubation. Protein expression of PCNA, Bax, Bcl-2were analyzed using Western blot.
     Result
     1. The effects of dicyclopaltin on proliferation of HASMC and HAEC.
     For HASMC incubated with lOμg/ml dicycloplatin for24hours,48hours,72hours, the proliferation inhibiting rate were16%,39%and75%, respectively; the inhibiting rate in1μg/ml group were13%,13%and27%, respectively; the inhibiting rate in100ng/ml group were11%,9%and20%. For HAEC incubated with lOμg/ml dicycloplatin for24hours,48hours,72hours,the proliferation inhibiting rate was6.41%,11.05%and14.83%, respectively; the inhibiting rate in1μg/ml group were1.35%,0.60%and1.3%, respectively. The inhibiting efficacy of dicycloplatin is in a dose and time dependent manner.
     The drug concentration at which maximal HASMC and HAEC proliferation were inhibited by50%(IC50) were3.47μg/ml and72.44μg/ml respectively. The IC50for HAEC is20.88times higher than that for HASMC.
     Dicycloplatin in lOng/ml-lOμg/ml remarkably inhibited proliferation of HASMC (P<0.05), compared with the negative control group. Dicycloplatin in lng/ml had no proliferation inhibiting effect on HASMC (P=0.83). Dicycloplatin in10μg/ml remarkably inhibited proliferation of HAEC (P<0.05), dicycloplatin in1ng/ml-1μg/ml had no proliferation inhibiting effect (P>0.05). The minimum effective inhibiting concentration for HAEC was103-times higher than it for HASMC. The positive control group, rapamycin in lng/ml inhibited proliferation both for HASMC and for HAEC, and the effect was weaker in HAEC than in HASMC.
     2. Cell cycle analysis demonstrated that:for HASMC, dicycloplatin in1μg/ml arrested cell cycle in G2/M phase; in lOng/ml-100ng/ml arrested in S phase. For HAEC, dicycloplatin in10μg/ml arrested cell cycle in S phase; the rest groups showed no significant difference in cell cycle. Dicycloplatin was a non-specific inhibiter on cell cycle. In all groups, there were no apoptosis peak (Sub-G1) detected.
     3. In HASMC, PCNA expression remarkably decreased in all dicycloplatin groups compared to negative control group, Bax expression was increased in all dicyclopaltin groups, Bcl-2expression was increased in dicyclopatin1μg/mL group, decreased in10ng/ml and lng/ml groups. The ratio of Bax/Bcl-2was increased in all dicycloplatin groups. In HAEC, PCNA expression was normal or decreased slightly compared with negative control group, Bax expression was increased in all dicycloplatin groups. In the same experiment condition, Bcl-2was not detected in HAEC.
     Conclusion
     The inhibiting effect of dicycloplatin on proliferation of HASMC is in a dose and time dependent manner. The IC50for inhibiting HAEC proliferation is about20.88times higher than that for HASMC. The minimum effective concentration of dicycloplatin for inhibiting proliferation of HAEC is103-times higher than that for HASMC.
     Cell cycle analyze show that dicycloplatin is a non-specific inhibiter on cell cycle.
     At the same concentration, dicycloplatin inhibits PCNA expression more remarkably in HASMC than in HAEC. In the mitochondrion apoptosis pathway, dicycloplatin regulates the expression of Bax and Bcl-2, even in low concentratin, dicycloplatin can promote apoptosis in HAEC and HASMC. This effect is only detected in protein level, in cell cycle analysis there are no apoptosis peak detected.
     In summery, although in Western blot experiment apoptosis associate protein expression is up regulated, there are no apoptosis peak(Sub-G1) detected in cell cycle analysis. In low concentration, dicyclopatin inhibits cell proliferation rather than promotes apoptosis. Similar with rapamycin, dicyclopatin significantly inhibits proliferation of HASMC in nanogram level, but the effect is weaker than rapamycin. Different to rapamycin, dicycloplatin inhibiting proliferation of HAEC needs much higher concentration. This characteristic of dicycloplatin may have potential to be used for a drug carried by DES.
引文
1. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. The New England journal of medicine 2002;346.
    2. Park SJ, Shim WH, Ho DS, et al. A paclitaxel-eluting stent for the prevention of coronary restenosis. The New England journal of medicine 2003;348.
    3. Alfke H, Boger RH, Bode-Boger SM. [Restenosis after percutaneous transluminal angioplasty:I. Etiology and clinical significance]. Vasa 1996;25.
    4. Lagerqvist B, James SK, Stenestrand U, Lindback J, Nilsson T, Wallentin L. Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. The New England journal of medicine 2007;356.
    5. Nordmann AJ, Briel M, Bucher HC. Mortality in randomized controlled trials comparing drug-eluting vs. bare metal stents in coronary artery disease:a meta-analysis. European heart journal 2006;27.
    6. Camenzind E, Steg PG, Wijns W. Stent thrombosis late after implantation of first-generation drug-eluting stents:a cause for concern. Circulation 2007; 115.
    7. Stone GW, Moses JW, Ellis SG, et al. Safety and efficacy of sirolimus-and paclitaxel-eluting coronary stents. The New England journal of medicine 2007;356.
    8. Vestweber D. Molecular mechanisms that control endothelial cell contacts. The Journal of pathology 2000; 190.
    9. Nakagawa K, Chen YX, Ishibashi H, et al. Angiogenesis and its regulation:roles of vascular endothelial cell growth factor. Seminars in thrombosis and hemostasis 2000;26.
    10. Schiffrin EL, Touyz RM. Vascular biology of endothelin. Journal of cardiovascular pharmacology 1998;32 Suppl 3.
    11. Bauriedel G, Kandolf R, Welsch U, Hofling B. [Mechanisms of re-stenosis after angioplasty]. Z Kardiol 1994;83 Suppl 4.
    12. Ruggeri ZM. The role of von Willebrand factor in thrombus formation. Thrombosis research 2007; 120 Suppl 1.
    13. Consigny PM, Vitali NJ. Resistance of freshly adherent endothelial cells to detachment by shear stress is matrix and time dependent. J Vase Interv Radiol 1998;9.
    14. Cercek B, Sharifi B, Barath P, Bailey L, Forrester JS. Growth factors in pathogenesis of coronary arterial restenosis. Am J Cardiol 1991;68.
    15. Roque M, Cordon-Cardo C, Fuster V, Reis ED, Drobnjak M, Badimon JJ. Modulation of apoptosis, proliferation, and p27 expression in a porcine coronary angioplasty model. Atherosclerosis 2000; 153.
    16. Ong AT, Serruys PW. Technology Insight:an overview of research in drug-eluting stents. Nature clinical practice 2005;2.
    17. Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB, Marks AR. Rapamycin inhibits vascular smooth muscle cell migration. The Journal of clinical investigation 1996;98.
    18. Shiode N, Shirota K, Goto K, et al. Comparison of long-term angiographic follow-up after sirolimus-eluting stent and bare-metal stent implantation. Internal medicine (Tokyo, Japan) 2008;47.
    19. Whan Lee C, Kim SH, Suh J, et al. Long-term clinical outcomes after sirolimus-eluting stent implantation for treatment of restenosis within bare-metal versus drug-eluting stents. Catheter Cardiovasc Interv 2008;71.
    20. Mollmann H, Elsasser A, Nef H, et al. Treatment of in-stent restenosis with sirolimus-eluting-stents:results from the prospective German Cypher stent registry. Clin Res Cardiol 2008;97.
    21. Sehgal SN. Rapamune (Sirolimus, rapamycin):an overview and mechanism of action. Therapeutic drug monitoring 1995; 17.
    22.杨旭清.超分子抗癌药物双环铂的结构研究.中国科学化学2010;40.
    23. Barabas K, Milner R, Lurie D, Adin C. Cisplatin:a review of toxicities and therapeutic applications. Vet Comp Oncol 2008;6.
    24.马华智等.顺铂、卡铂和双环铂对pBR322质粒DNA的断裂作用.20032003;15.
    25. Yang LFLLX-q. The comparison study of Maigor Target Organ Hurt Induced By Dicycloplatin and Its Derivated in Rats. Carcinogenesis, Teratogenesis&Mutagenesis 2005;17.
    26. Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT):subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Archives of biochemistry and biophysics 1993;303.
    27. Wiepz GJ, Edwin F, Patel T, Bertics PJ. Methods for determining the proliferation of cells in response to EGFR ligands. Methods Mol Biol 2006;327.
    28. Berg K, Zhai L, Chen M, Kharazmi A, Owen TC. The use of a water-soluble formazan complex to quantitate the cell number and mitochondrial function of Leishmania major promastigotes. Parasitol Res 1994;80.
    29. Xu RH, Yuan ZY, Guan ZZ, Li S. [Reverse effect of genetically modified adenovirus H101 on drug-resistance of A549/DDP cells to cisplatin]. Ai zheng= Aizheng= Chinese journal of cancer 2005;24.
    30. Marx SO, Jayaraman T, Go LO, Marks AR. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circulation research 1995;76.
    31. Liu HT, Li F, Wang WY, et al. Rapamycin inhibits re-endothelialization after percutaneous coronary intervention by impeding the proliferation and migration of endothelial cells and inducing apoptosis of endothelial progenitor cells. Texas Heart Institute journal/from the Texas Heart Institute of St;37.
    32.颜冬梅.铂类抗癌新药双环铂的体内外抗肿瘤活性.中国现代应用药学杂志2007;24.
    33. Ormerod MG, O'Neill C, Robertson D, Kelland LR, Harrap KR. cis-Diamminedichloroplatinum(II)-induced cell death through apoptosis in sensitive and resistant human ovarian carcinoma cell lines. Cancer Chemother Pharmacol 1996;37.
    34. O'Neill CF, Ormerod MG, Robertson D, Titley JC, Cumber-Walsweer Y, Kelland LR. Apoptotic and non-apoptotic cell death induced by cis and trans analogues of a novel ammine(cyclohexylamine)dihydroxodichloroplatinum(IV) complex. Br J Cancer 1996;74.
    35. O'Neill CF, Koberle B, Masters JR, Kelland LR. Gene-specific repair of Pt/DNA lesions and induction of apoptosis by the oral platinum drug JM216 in three human ovarian carcinoma cell lines sensitive and resistant to cisplatin. Br J Cancer 1999;81.
    36. Ormerod MG, Orr RM, Peacock JH. The role of apoptosis in cell killing by cisplatin:a flow cytometric study. Br J Cancer 1994;69.
    37. Gallo R, Padurean A, Jayaraman T, et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation 1999;99.
    38. Miao LF, Huang CL, Chen LF, et al. Effects of rapamycin-loaded poly(lactic-co-glycolic) acid nanoparticles on distribution of cell cycle, expression of p27 protein, and proliferation of human umbilical arterial vascular smooth muscle cell in vitro]. Zhongguo yi xue ke xue yuan xue bao;32.
    39.严瑞芳王.双环铂诱导肺癌细胞发生凋亡的初步评价.实用肿瘤学杂志2005;19.
    1. Buchwalow IB, Cacanyiova S, Neumann J, Samoilova VE, Boecker W, Kristek F. The role of arterial smooth muscle in vasorelaxation. Biochemical and biophysical research communications 2008;377.
    2. Vanhoutte PM. [Endothelial dysfunction and vascular pathology]. Bulletin et memoires de 1' Academie royale de medecine de Belgique 2006; 161.
    3. Wu KK. Prostacyclin and nitric oxide-related gene transfer in preventing arterial thrombosis and restenosis. Agents and actions 1997;48.
    4. Schiffrin EL, Touyz RM. Vascular biology of endothelin. Journal of cardiovascular pharmacology 1998;32 Suppl 3.
    5. Spencer CG, Martin SC, Felmeden DC, Blann AD, Beevers GD, Lip GY. Relationship of homocysteine to markers of platelet and endothelial activation in "high risk" hypertensives:a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial. International journal of cardiology 2004;94.
    6. Myllarniemi M, Calderon L, Lemstrom K, Buchdunger E, Hayry P. Inhibition of platelet-derived growth factor receptor tyrosine kinase inhibits vascular smooth muscle cell migration and proliferation. Faseb J 1997; 11.
    7. Segev A, Aviezer D, Safran M, Gross Z, Yayon A. Inhibition of vascular smooth muscle cell proliferation by a novel fibroblast growth factor receptor antagonist. Cardiovascular research 2002;53.
    8. Speir E, Epstein SE. Inhibition of smooth muscle cell proliferation by an antisense oligodeoxynucleotide targeting the messenger RNA encoding proliferating cell nuclear antigen. Circulation 1992;86.
    9. Yuzhakov A, Kelman Z, Hurwitz J, O'Donnell M. Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. The EMBO journal 1999;18.
    10. Maga G, Stucki M, Spadari S, Hubscher U. DNA polymerase switching:I. Replication factor C displaces DNA polymerase alpha prior to PCNA loading. Journal of molecular biology 2000;295.
    11. Cardone JM, Brendel M, Henriques JA. DNA repair by polymerase delta in Saccharomyces cerevisiae is not controlled by the proliferating cell nuclear antigen-like Radl7/Mec3/Ddcl complex. Genet Mol Res 2008;7.
    12. Helt CE, Wang W, Keng PC, Bambara RA. Evidence that DNA damage detection machinery participates in DNA repair. Cell cycle (Georgetown, Tex 2005;4.
    13. Ioachim E, Michael M, Stavropoulos NE, et al. Expression patterns of cyclins D1, E and cyclin-dependent kinase inhibitors p21(Wafl/Cipl) and p27(Kipl) in urothelial carcinoma:correlation with other cell-cycle-related proteins (Rb, p53, Ki-67 and PCNA) and clinicopathological features. Urologia internationalis 2004;73.
    14. Naryzhny SN. Proliferating cell nuclear antigen:a proteomics view. Cell Mol Life Sci 2008;65.
    15.王淳等.双环铂诱导肺癌细胞发生凋亡的初步评价.实用肿瘤学杂志2005:19.
    16. Giam M, Huang DC, Bouillet P. BH3-only proteins and their roles in programmed cell death. Oncogene 2008;27 Suppl 1.
    17. van Delft MF, Huang DC. How the Bcl-2 family of proteins interact to regulate apoptosis. Cell research 2006; 16.
    1. A. G. Transluminal dilatation of coronary-artery stenosis. Lancet 1978; 1.
    2. Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. The New England journal of medicine 1987;316.
    3. Fischman DL LM, Baim DS, et al., for the Stent Restenosis, Investigators. S. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease.. N Engl J Med 1994;331.
    4. Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. The New England journal of medicine 1994;331.
    5. Barragan P, Sainsous J, Silvestri M, et al. Ticlopidine and subcutaneous heparin as an alternative regimen following coronary stenting. Catheterization and cardiovascular diagnosis 1994;32.
    6. Schomig A, Neumann FJ, Kastrati A, et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. The New England journal of medicine 1996;334.
    7. Moliterno DJ. Healing Achilles--sirolimus versus paclitaxel. The New England journal of medicine 2005;353.
    8. Jeremias A, Kirtane A. Balancing efficacy and safety of drug-eluting stents in patients undergoing percutaneous coronary intervention. Annals of internal medicine 2008; 148.
    9. Nordmann AJ, Briel M, Bucher HC. Mortality in randomized controlled trials comparing drug-eluting vs. bare metal stents in coronary artery disease:a meta-analysis. European heart journal 2006;27.
    10. Lagerqvist B, James SK, Stenestrand U, Lindback J, Nilsson T, Wallentin L. Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. The New England journal of medicine 2007;356.
    11. Camenzind E, Steg PG, Wijns W. Stent thrombosis late after implantation of first-generation drug-eluting stents:a cause for concern. Circulation 2007; 115.
    12. Stone GW, Moses JW, Ellis SG, et al. Safety and efficacy of sirolimus-and paclitaxel-eluting coronary stents. The New England journal of medicine 2007;356.
    13. Wilson GJ, Nakazawa G, Schwartz RS, et al. Comparison of inflammatory response after implantation of sirolimus-and paclitaxel-eluting stents in porcine coronary arteries. Circulation 2009; 120.
    14. Finn AV, Kolodgie FD, Harnek J, et al. Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus-or paclitaxel-eluting stents. Circulation 2005;112.
    15. Finn AV, Nakazawa G, Joner M, et al. Vascular responses to drug eluting stents: importance of delayed healing. Arteriosclerosis, thrombosis, and vascular biology 2007;27.
    16. Joner M, Nakazawa G, Finn AV, et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. Journal of the American College of Cardiology 2008;52.
    17. Niemela K.O. Biodegradable coating for drug-eluting stents--more than a facelift? European heart journal 2008;29.
    18. Meredith IT, Worthley S, Whitbourn R, et al. Clinical and angiographic results with the next-generation resolute stent system:a prospective, multicenter, first-in-human trial. Jacc 2009;2.
    19. Kereiakes DJ, Cannon LA, Feldman RL, et al. Clinical and angiographic outcomes after treatment of de novo coronary stenoses with a novel platinum chromium thin-strut stent:primary results of the PERSEUS (Prospective Evaluation in a Randomized Trial of the Safety and Efficacy of the Use of the TAXUS Element Paclitaxel-Eluting Coronary Stent System) trial. Journal of the American College of Cardiology;56.
    20. Costa JR, Jr., Abizaid A, Feres F, et al. EXCELLA First-in-Man (FIM) study: safety and efficacy of novolimus-eluting stent in de novo coronary lesions. EuroIntervention 2008;4.
    21. Patel JK, Kobashigawa JA. Everolimus:an immunosuppressive agent in transplantation. Expert opinion on pharmacotherapy 2006;7.
    22. Wiemer M, Serruys PW, Miquel-Hebert K, et al. Five-year long-term clinical follow-up of the XIENCE V everolimus eluting coronary stent system in the treatment of patients with de novo coronary artery lesions:the SPIRIT FIRST trial. Catheter Cardiovasc Interv;75.
    23. Claessen BE, Beijk MA, Legrand V, et al. Two-year clinical, angiographic, and intravascular ultrasound follow-up of the XIENCE V everolimus-eluting stent in the treatment of patients with de novo native coronary artery lesions:the SPIRIT Ⅱ trial. Circ Cardiovasc Interv 2009;2.
    24. Gordon PC, Applegate RJ, Hermiller JB, et al. Clinical and angiographic outcomes with an everolimus-eluting stent in large coronary arteries:the SPIRIT Ⅲ 4.0 mm registry. Catheter Cardiovasc Interv;75.
    25. Matter CM, Rozenberg Ⅰ, Jaschko A, et al. Effects of tacrolimus or sirolimus on proliferation of vascular smooth muscle and endothelial cells. Journal of cardiovascular pharmacology 2006;48.
    26. Grube E, Buellesfeld L. Rapamycin analogs for stent-based local drug delivery. Everolimus-and tacrolimus-eluting stents. Herz 2004;29.
    27. Kollum M, Farb A, Schreiber R, et al. Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimus-eluting stents in a porcine model of restenosis. Catheter Cardiovasc Interv 2005;64.
    28. Valgimigli M, Percoco G, Malagutti P, et al. Tirofiban and sirolimus-eluting stent vs abciximab and bare-metal stent for acute myocardial infarction:a randomized trial. Jama 2005;293.
    29. Huang Y, Venkatraman SS, Boey FY, Umashankar PR, Mohanty M, Arumugam S. The short-term effect on restenosis and thrombosis of a cobalt-chromium stent eluting two drugs in a porcine coronary artery model. Journal of interventional cardiology 2009;22.
    30. Byrne RA, Kastrati A, Tiroch K, et al.2-year clinical and angiographic outcomes from a randomized trial of polymer-free dual drug-eluting stents versus polymer-based Cypher and Endeavor [corrected] drug-eluting stents. Journal of the American College of Cardiology;55.
    31. Inoue T, Sata M, Hikichi Y, et al. Mobilization of CD34-positive bone marrow-derived cells after coronary stent implantation:impact on restenosis. Circulation 2007; 115.
    32. Garg S, Duckers HJ, Serruys PW. Endothelial progenitor cell capture stents:will this technology find its niche in contemporary practice? European heart journal;31.
    33. Beijk MA, Klomp M, Verouden NJ, et al. Genous endothelial progenitor cell capturing stent vs. the Taxus Liberte stent in patients with de novo coronary lesions with a high-risk of coronary restenosis:a randomized, single-centre, pilot study. European heart journal;31.
    34. Granada JF, Inami S, Aboodi MS, et al. Development of a novel prohealing stent designed to deliver sirolimus from a biodegradable abluminal matrix. Circ Cardiovasc Interv;3.
    35. Windecker S, Simon R, Lins M, et al. Randomized comparison of a titanium-nitride-oxide-coated stent with a stainless steel stent for coronary revascularization:the TiNOX trial. Circulation 2005;111.
    36. Moschovitis A, Simon R, Seidenstucker A, et al. Randomised comparison of titanium-nitride-oxide coated stents with bare metal stents:five year follow-up of the TiNOX trial. EuroIntervention;6.
    37. van der Giessen WJ, Lincoff AM, Schwartz RS, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 1996;94.
    38. Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent:should we be cautious? Circulation 2004; 109.
    39. Virmani R, Liistro F, Stankovic G, et al. Mechanism of late in-stent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans. Circulation 2002; 106.
    40. Colombo A, Corbett SJ. Drug-eluting stent thrombosis:increasingly recognized but too frequently overemphasized. Journal of the American College of Cardiology 2006;48.
    41. Yin T, Wang G. [Research progress of the drug-coated stents]. Sheng wu yi xue gong cheng xue za zhi= Journal of biomedical engineering= Shengwu yixue gongchengxue zazhi 2005;22.
    42. Schakenraad JM, Dijkstra PJ. Biocompatibility of poly (DL-lactic acid/glycine) copolymers. Clinical materials 1991;7.
    43. Schellhammer F, Berlis A, Bloss H, Pagenstecher A, Schumacher M. Poly-lactic-acid coating for endovascular stents. Preliminary results in canine experimental arteriovenous fistulae. Investigative radiology 1997;32.
    44. Bunger CM, Grabow N, Sternberg K, et al. Sirolimus-eluting biodegradable poly-L-lactide stent for peripheral vascular application:a preliminary study in porcine carotid arteries. The Journal of surgical research 2007; 139.
    45. Meredith IT, Worthley S, Whitbourn R, et al. The next-generation Endeavor Resolute stent:4-month clinical and angiographic results from the Endeavor Resolute first-in-man trial. EuroIntervention 2007;3.
    46. Gershlick A, Kandzari DE, Leon MB, et al. Zotarolimus-eluting stents in patients with native coronary artery disease:clinical and angiographic outcomes in 1,317 patients. The American journal of cardiology 2007; 100.
    47. Sakurai R, Hongo Y, Yamasaki M, et al. Detailed intravascular ultrasound analysis of Zotarolimus-eluting phosphorylcholine-coated cobalt-chromium alloy stent in de novo coronary lesions (results from the ENDEAVOR Ⅱ trial). The American journal of cardiology 2007; 100.
    48. Sakurai R, Bonneau HN, Honda Y, Fitzgerald PJ. Intravascular ultrasound findings in ENDEAVOR Ⅱ and ENDEAVOR Ⅲ The American journal of cardiology 2007;100.
    49. Beijk MA, Piek JJ. XIENCE V everolimus-eluting coronary stent system:a novel second generation drug-eluting stent. Expert review of medical devices 2007;4.
    50. Kereiakes DJ, Cutlip DE, Applegate RJ, et al. Outcomes in Diabetic and Nondiabetic Patients Treated With Everolimus-or Paclitaxel-Eluting Stents Results From the SPIRIT IV Clinical Trial (Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System). Journal of the American College of Cardiology;56.
    51. Han Y, Jing Q, Xu B, et al. Safety and efficacy of biodegradable polymer-coated sirolimus-eluting stents in "real-world" practice:18-month clinical and 9-month angiographic outcomes. Jacc 2009;2.
    52. Zupancic R, Legat A, Funduk N. Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints. The Journal of prosthetic dentistry 2006;96.
    53. Kastrati A, Mehilli J, Dirschinger J, et al. Intracoronary stenting and angiographic results:strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 2001; 103.
    54. Pache J, Kastrati A, Mehilli J, et al. Intracoronary stenting and angiographic results:strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. Journal of the American College of Cardiology 2003;41.
    55. Commandeur S, van Beusekom HM, van der Giessen WJ. Polymers, drug release, and drug-eluting stents. Journal of interventional cardiology 2006; 19.
    56. Ormiston JA, Abizaid A, Spertus J, et al. Six-Month Results of the NEVO RES-ELUTION I (NEVO RES-I) Trial:A Randomized, Multicenter Comparison of the NEVO Sirolimus-Eluting Coronary Stent With the TAXUS Liberte Paclitaxel-Eluting Stent in De Novo Native Coronary Artery Lesions. Circ Cardiovasc Interv.
    57. Tamai H, Igaki K, Kyo E, et al. Initial and 6-month results of biodegradable poly-1-lactic acid coronary stents in humans. Circulation 2000; 102.
    58. Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB):a prospective open-label trial. Lancet 2008;371.
    59. Serruys PW, Ormiston JA, Onuma Y, et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB):2-year outcomes and results from multiple imaging methods. Lancet 2009;373.
    60. Spuentrup E, Ruebben A, Mahnken A, et al. Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a new, metallic, coronary magnetic resonance imaging stent. Circulation 2005;111.
    61. Waksman R, Pakala R, Baffour R, Seabron R, Hellinga D, Tio FO. Short-term effects of biocorrodible iron stents in porcine coronary arteries. Journal of interventional cardiology 2008;21.
    62. Hermawan H, Purnama A, Dube D, Couet J, Mantovani D. Fe-Mn alloys for metallic biodegradable stents:degradation and cell viability studies. Acta biomaterialia;6.
    63. Peuster M, Wohlsein P, Brugmann M, et al A novel approach to temporary stenting:degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits. Heart (British Cardiac Society) 2001;86.
    64. Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys:a new principle in cardiovascular implant technology? Heart (British Cardiac Society) 2003;89.
    65. Waksman R, Pakala R, Kuchulakanti PK, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv 2006;68.
    66. Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents:a prospective, non-randomised multicentre trial. Lancet 2007;369.
    67. R W. Current state of the absorbable metallic (magnesium) stent.. EuroIntervention 2009;5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700