用户名: 密码: 验证码:
低频信号的锚杆动态响应特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于锚杆锚固技术在用于岩体、坝基、边坡、地下洞加固中,其施工方法简便、加固效果明显、经济效益显著,所以该技术已经广泛应用于水电、铁路、矿山、建筑、隧道等领域。锚杆锚固工程不仅受岩土工程条件、锚杆结构设计、锚杆与围岩体系的相互作用、施工以及专业技术水平和经验等关联因素的影响,而且锚杆的施工还具有高度的隐蔽性,发现质量问题难,事故处理更难,所以对锚固质量、锚杆的完整性和锚杆中应力状态进行实时监控是非常有必要的。
     本文主要应用数值分析、实验研究、信号处理等方法来研究低频应力波在锚杆中的传播情况。一方面本文使用数值分析的方法来仿真锚杆锚固系统,并对结果进行分析。另一方面通过做试验得到试验数据及试验波形,使用信号处理方法对其进行特征值的提取,将特征提取所得数据及波形,用D-S证据理论对锚杆的质量进行判定。
     1)数值分析:使用ANSYS/LS-DYNA动力有限元分析软件建立锚杆锚固系统的三维模型,对锚杆锚固系统中的低频应力波的传播和反射进行模拟,并对仿真结果进行分析。
     2)锚杆检测试验:在锚杆顶端施加瞬态激振力,由安装在锚杆顶端的一个传感器接收反射信号。本试验共设计了四种不同材质锤头的小锤:铁头、铝头、尼龙加铁头和橡胶头,作为激励震源,对三根规格不相同的螺纹钢锚杆进行随机测试并采集信号。
     3)信号处理:Hilbert-Huang变换是分析非线性非平稳信号最有效的新方法,已经逐渐应用到地震信号分析、语音信号分析,故障诊断等领域中。本文使用HHT法将试验采集到的信号波形进行特征值提取,去除信号中多余的噪声,并与小波变换方法去噪进行比较。
     4)用HHT方法进行特征值提取之后的数据,为了能将其数据区分开来,采用用D-S证据理论的方法来诊断锚杆故障,其数据为有缺陷锚杆和无缺陷锚杆的两类数据。
The construction method of the technology of anchor bolt used in rock, foundation, slope, underground hole reinforcement is simple, reinforcement and economic significantly, so the technology has been widely used in hydropower, railway, mining, construction, tunnel and other fields. The engineering of anchor bolt is influenced by geotechnical engineering conditions, structural design of anchor, the interaction of anchor and rock, construction, professional skills and experience. The bolt construction also has a high degree of concealment, so finding the quality problems is difficult, and dealing with the accident is more difficult. In a word, the quality of anchor, the integrity of anchor bolt and the stress state in anchor bolt are monitored in real-time, which is necessary.
     The methods of numerical analysis, experimental research and signal processing are mainly used to study the propagation of low-frequency stress wave in the bolt in the paper. On the one hand, the numerical analysis method is used to simulate the bolt anchoring system, and the results were analyzed. On the other hand, the signal processing method is used to extract the feature value of data and waveforms obtained by a test. Finally, the D-S evidence theory is used to determine the quality of the bolt.
     1) Numerical analysis: The three-dimensional model of anchoring system is established by the ANSYS/LS-DYNA dynamic finite element analysis software. The low-frequency stress wave propagation and reflection in the anchoring system are simulated, and the simulation results are analysis.
     2) Bolt testing: The transient excitation force is applied on the top of the bolt, and the sensor installed at the top of the bolt receives the reflected signals. The hammers of four different materials were designed: iron head, aluminum head, nylon plus iron head and rubber head, which are as an incentive source and used to test and collect signals to the three different specifications of the steel bolt.
     3) Signal processing: Hilbert-Huang transform is the most effective method to analyze the nonlinear and non-stationary signals and has been applied to seismic signal analysis, speech signal analysis, fault diagnosis and other areas. The HHT method is used to extract the feature value of the signals tested, and the noise signals are removed, which is compared to the wavelet transform.
     4) The data extract by HHT is the defective bolt data and defect-free bolt data. In order to distinguish between the two types of data, the D-S evidence theory is used to diagnose the failure bolt.
引文
[1]岳向红,刘明贵,李祺.锚杆检测技术研究进展.土工基础,2005, 6(3): 83-85
    [2]郭凤卿,张昌锁.锚杆锚固质量无损检测技术及研究进展.太原理工大学学报,2005, 36(6): 11-13
    [3]田凯.岩土工程锚杆检测技术发展现状.施工技术,2007, 36(7): 344-346
    [4]汪明武,王鹤龄.锚固质量的无损检测技术.岩石力学与工程学报,2002, 21(1): 126-129
    [5]朱国维,彭苏萍,王怀秀,等.一种锚固力无损检测设备.煤田地质与勘探,2002, 30(6): 54-57
    [6]李义,刘海峰,王富春.锚杆锚固状态参数无损检测及其应用.岩石力学与工程学报,2004, 23(10): 1741-1744
    [7]廖春芳,吴艾,吴铁怀.潭邵高速公路锚杆锚固质量无损检测技术及应用.公路,2003, 1(1): 56-58
    [8]许明,张永兴,阴可.锚杆极限承载力的人工神经网络预测.岩石力学与工程学报,2002, 21(5): 755-758
    [9] H.F. Thurner. Boltometer Instrument for Non-destructive Testing of Grouted Rock Bolts. 2nd International Symposium on Field Measurements in Geomachanics, 1988, 6(6):135-143
    [10] A.A. Rodger, G.D. Milne, G.S. Littlejohn. Condition Monitoring and Integrity Assessment of Rock Anchorages. Proc. Int. Conf. on Ground Anchorages and Anchorage Structures, 1997, 6(4):343-352
    [11] A. Ivanovic, R.D. Neilson, A.A. Rodger. Numerical Modeling of Single Tendon Ground Anchorage. Geotech Eng, 2001, 149(2):103-113
    [12] S.C. Tadolini. Mine Roof Bolt Load Determinations Utilizing Ultrasonic Measurement Systems. CIM Bulletin, 1990, 83(940):49-54
    [13] M.D. Beard, M.J.S. Lowe. Nordestructive Testing of Rock Bolts Using Guided Ultrasonic Waves. Intl Journal of Rock Mechanics and Mining Science, 2003, 6(40):527-536
    [14] I. Vrkljan, A. Szavits, M.S. Kovacevic. Nordestructive Procedure for Testing Grouting Quality of Rock Anchors. Proceedings of the Congress of the International Society for Rock Mechanics, 1999, 9(2):1475-1478
    [15] G.D. Agnew. An Investigation of Methods for Producing A Non-destructive Grouted Tendon Tester. Consultancy report, 1990, 6(7):13-18
    [16]张东方.锚杆锚固质量动力无损检测数值模拟研究. [郑州大学硕士论文],2010: 7-29
    [17]孙峙华.锚杆围岩体系的锚固质量检测技术的研究. [武汉理工大学硕士论文],2005: 17-35
    [18]卢伟倬.低应变反射波法参数影响分析. [天津大学硕士论文],2003: 11-25
    [19]陈建功.锚杆围岩结果系统低应变动力响应理论与应用研究. [重庆大学博士论文],2008:35-50
    [20]郭世明,高才坤.弹性应力波法检测锚杆锚固质量.岩土钻掘矿业工程,1999, 7(1): 72-76
    [21]李义,王成.应力反射波检测锚杆锚固质量的实验研究.煤炭学报,2000, 25(2): 160-163
    [22] ANSYS/LS-DYNA中国技术支持中心. ANSYS/LS-DYNA用户使用手册.北京:北京理工大学出版社,1998, 3-22
    [23]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显示动力学分析.北京:清华大学出版社,2005, 3-42
    [24]徐攸在.桩的动测技术.北京:中国建筑工业出版社, 1999: 68-71
    [25]林维正.土木工程质量无损检测技术.北京:中国电力出版社, 2008: 172-222
    [26]赵海鸥. LS-DYNA动力分析指南.北京:兵器工业出版社,2003, 6-24
    [27]尚晓江,苏建宇. ANSYS/LS-DYNA动力分析方法与工程实例.北京:中国水利水电出版社,2008, 183-191
    [28] M.D. Beard, M.J.S. Lowe. Non-destructive tTsting of Rock Bolt Using Guided Ultrasonic Waves. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7):527-536
    [29] V. Madenga, D.H. Zou, C. Zhang. Effects of Curing Time and Frequency on Ultrasonic Wave Velocity in Grouted Rock Bolts. Journal of Applied Geophysics, 2006, 59(5):79-87
    [30] G. Grasselli. 3D Behaviour of Bolted Rock Joints: Experimental and Numerical Study. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(8):13-24
    [31] Yue Cai, Tetsuro Esaki, Yujing Jiang. An Analytical Model to Predict Axial Load in Grouted Rock Bolt for Soft Rock Tunnelling. Tunnelling and Underground Space Technology, 2004, 19(9):607-618
    [32]丰莉.基于伪随机信号的锚杆中应力波传播特征试验研究. [山东科技大学硕士论文],2009: 33-53
    [33]毋琦.改进HHT方法及其在故障信号分析中的应用. [华北电力大学硕士论文],2006: 9-14
    [34]汤宝平,钟佑明,程发斌.基于HHT的非平稳信号分析仪的研究.仪器仪表学报,2007, 28(1): 29-32
    [35]黄天立,楼梦麟.基于HHT的非线性结构系统识别研究.地震工程与工程振动,2006, 26(3): 80-83
    [36]孙立瑛,李一博,勒世久,等.基于小波包和HHT变换的声发射信号分析方法.仪器仪表学报,2008, 29(8): 1577-1581
    [37] M. Datig, Torsten Schlurmann. Performance and Limitations of the HHT with An Application to Irregular Water Waves. Ocean Engineering, 2004, 31(9):1783-1834
    [38] Z.K. Peng, Peter W. Tseb, F.L. Chu. An Improved Hilbert-Huang Transform and Its Application in Vibration Signal Analysis. Journal of Sound and Vibration, 2005, 286(3):187-205
    [39] Z.K. Peng, Peter W. Tse, F.L. Chu. A Comparison Study of Improved Hilbert-Huang Transform and Wavelet Transform. Application to Fault Diagnosis for Rolling Bearing. Mechanical Systems and Signal Processing, 2005, 19(9):974-988
    [40] E. Delechelle. Empirical Mode Decomposition Synthesis of Fractional Processes in 1D and 2D-space. Image and Vision Computing, 2005, 23(9):799-806
    [41] Chengjie Cai. Empirical Mode Decomposition of Micro-doppler Signature. IEEE, 2005.
    [42]赵海峰.基于HHT的非平稳信号故障特征提取研究. [大庆石油学院硕士论文],2007: 4-13
    [43]罗志增,蒋静坪.基于D-S理论的多信息融合方法及应用.电子学报,1999, 27(9): 100-102
    [44]胡晓明,吴建华.基于证据理论数据融合的故障诊断研究.液压气动与密封,2008, 28(3): 14-16
    [45]诸葛建伟.基于D-S证据理论的网络异常检测方法.软件学报,2006, 17(3): 463-471
    [46]赵鹏.基于扩展D-S证据融合算法的网络异常入侵检测研究. [山东大学硕士论文],2008: 21-27
    [47]杨霞.基于SVM和D-S理论的垃圾邮件过滤研究. [江苏大学硕士论文],2008: 25-29
    [48]闫玉根,付平,吕丹丹,等.全自动生化分析仪机电机构研究.河北工业科技. 2010, 27(1): 22-25
    [49] D. Yu, D.Frincke. Alert Confidence Fusion in Intrusion Detection Systems with Extended Dempster-Shafer Theory. ACM 43rd Southeast Conference, 2005, 2(4):142-147.
    [50] Majid H. Tangestani. A Comparative Study of Dempster-Shafer and Fuzzy Models for Landslide Susceptibility Mapping Using A GIS: An experience from Zagros Mountains, SW Iran. Journal of Asian Earth Sciences, 2009, 35(9):66-73
    [51] Chinmay R. Application of Dempster-Shafer Theory in Condition Monitoring Applications: A Case Study. Pattern Recognition Letters, 2001, 22(1):777-785
    [52] J.A. Malpica, M.C. Alonso, M.A. Sanz. Dempster-Shafer Theory in Geographic Information Systems:A survey. Expert Systems with Application, 2007, 32(2):47-55
    [53] Isabelle Bloch. Some Aspects of Dempster-Shafer Evidence Theory for Classification of Multi-modality Medical Images Taking Partial Volume Effect into Account. Pattern Recognition Letters, 1996, 17(3):905-919

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700