用户名: 密码: 验证码:
普通玉米4个籽粒性状的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以籽粒长度、籽粒容重、出籽率等籽粒性状差异明显的6个自交系为供试材料,按6世代遗传交配设计,利用6世代均数分析、6世代遗传方差分析及6世代联合分析等数量性状分析方法,对籽粒长度、籽粒比重、HKWI和出籽率等与产量和商品品质有关的籽粒性状进行了遗传机制研究,取得以下主要研究结果:
     (1)根据6世代均数分析和遗传方差分析结果,4个籽粒性状在多数组合中不符合加性—显性模型,存在上位性效应,其加性效应和显性效应均显著存在,加性效应除籽粒长度在多数组合中表现为减效,其余性状均表现为增效;4个籽粒性状的显性效应均为增效,且显性效应大于加性效应;上位性效应则因材料而异。上述4个籽粒性状的广义遗传率在多数组合中表现较高,狭义遗传率则表现出较大的差异,且出籽率在多数组合中表现为超显性遗传,而其余3个籽粒性状则表现为部分显性,但籽粒比重和HKWI已接近完全显性。
     (2)根据6世代联合分析结果,除籽粒比重外的3个籽粒性状的最适模型为主基因+多基因混合遗传模型,且在多数组合中表现为2对主基因+多基因混合遗传。其中籽粒长度和HKWI检测到的2对主效基因的加性效应为减效,显性效应为增效,且数值相当,并加性效应大于显性效应,互作效应中以1效应和i效应较为明显,作用方向为负向,j_(ab)效应和j_(ba)效应作用较小,作用方向为正向。多基因的加性效和显性效应均为减效,且显性效应大于加性效应,3种上位性效应也较为明显,且[i]效应为减效,[j]效应和[1]效应为增效。出籽率虽然在3个组合中差异较大,但总的来看,该性状检测到的2对主效基因的显性效应均为增效,且加性效应大于显性效应,上位性效应以1效应较为明显,且作用方向为负,多基因的加性效应和显性效应均为减效,且显性效应大于加性效应。此外,3个籽粒性状(籽粒长度、HKWI和出籽率)的主基因遗传率在不同组合的不同世代中存在明显差异,高者可达80%以上,低者仅为10%左右。但总的看来,籽粒长度的主基因遗传率中等偏低,而HKWI和出籽率则表现较高。多基因遗传率同样在不同组合的不同世代中同样存在明显差异,似乎籽粒长度的多基因比主基因所起的作用要大一些,而HKWI和出籽率则多基因比主基因所起的作用要小一些。
     (3)比较4个籽粒性状在不同组合中的遗传表现,结果发现,4个籽粒性状在不同遗传背景下表现出基因型间的差异。而且也存在一定的规律性。从6世代均数分析和遗传方差分析的结果看,其差异主要体现在加性效应的作用程度和作用方
    
    向、上位性效应是否存在、上位性效应存在时的作用程度和作用方向以及遗传率的
    大小等方面。而从6世代联合分析的结果看,其差异主要体现在主效基因是否存在、
    主效基因的数量、主效基因加性效应和上位性效应的作用程度和作用方向以及多基
    因上位性效应的作用程度和作用方向等方面。
     (4)根据4个籽粒性状的遗传特性,可为制定育种方案时提供参考。对于4
    个籽粒性状的选育,通过亲本的选择是有效的,但用于选育亲本的基础群体籽粒性
    状必须表现优良;选育二环系是选育籽粒性状优良自交系的比较有效的方法。籽粒
    长度、HKWI、出籽率等籽粒性状,可在较低世代进行单株选择,但籽粒长度的选
    择标准应适当放宽一些;而籽粒比重,应采用混合选择的方法或在较高世代进行单
    株选择,且选择标准应适当放宽。对于自交系的改良,籽粒长度、HKWI和出籽率
    等籽粒性状,可通过回交转育将外源有利基因导入而予以改良。籽粒比重可通过聚
    合回交法加以改良。
     在亲本选择的同时,还应注意亲本间的组配,以利用上述籽粒性状的显性效应
    和上位性效应,充分发挥杂种优势的增产作用,且必须始终坚持以高配合力为核心,
    以血缘关系和杂种优势为主线,注重杂种优势群和杂种优势模式的挖掘和利用。
     (5)比较本文结果与前人研究的结果,发现4个籽粒性状的遗传比较复杂,
    并且还可能存在本试验无法检测到的其它遗传效应,因此尚需作进一步研究。一方
    面可采用不同的遗传交配设计和试验方法,探索在不同交配方式下籽粒性状的遗传
    机制。另一方面,可利用分子标记对4个籽粒性状进行QTL定位,对遗传试验结
    果作进一步的解释和验证。此外,对于主效基因遗传机制的探讨,本试验采用的遗
    传试验检测方法(6世代联合方法)与分子标记检测方法(QTL定位)各有优缺点,
    可否将两种分析方法相互结合,共同发展,也有待作进一步的探讨。
In the study the material were 6 inbred lines which were obvious diversity in kernel traits, such as kernel length, kernle desity, helling percentage etc. According to 6 generation genetic mating design, we had made genetic mechanism researches on four characters, such as kernel length, kernel desity, HKWI, and helling percentage, with combing quantitative-character genetic analyzing methods such as 6 generation mean analysis, 6 generation genetic variance analysis, and 6 generation joint analysis. The main results are followed.
    (1)According to the result of 6 generation mean analysis and 6 generation genetic variance analysis, we found that 4 kernel traits didn't accord with additive-domiance genetic model, and exited epistasis effect. It was obvious exit additive effect and domiance effect. The values of additive effect of kernel length were negative in most generation, other kernel traits were positive in most generation. The values of domiance effect of 4 kernel traits were positive, and larger than additive effect. The values of epistasis effect were diversity because of different materials. The heritability in broad sense of 4 kernel traits was high, but the heritability in narrow sense of 4 kernel traits was diversity in different materials. Helling percentage was super-dominant, other kernel traits were additive, but kernel desity and HKWI were near to daominant.
    (2)According to 6 generation joint analysis result,. The most suitable genetic model of 4 kernel traits was two-major gene inheritance model in most generation execpt of kernel desity. The values of additive effect were negative ,but the domiance effect were positive of the two major gene in kernel length and HKWI. The values of 1 effect and i effect were negative, and more important than jab effect and jba effect., positive. In polygene, the values of additive effect and domiance effect were negative, and larger than additive. It was important to be 3 epistasis effects. The values of [i] effect was negative, but [j] effect and [1] effect were positive. The values of additive effect and domiance effect were negative, and domiance effect was larger than additive effect. In addition, it was diversity about major gene heritability of 3 kernel traits in different generations of different combinations, from 80% to 10%, but looking totally, the major
    
    
    
    gene heritability of kernel length was lower than HKW1 and helling percentage. The polygene heritability of 4 kernel traits were diversity in different generation of different combinations, too. The function of the polygene heritability was more important than the major heritability in kernel length, on the contrary, the function of the major heritability was more important than polygene heritability in other 2 kernel traits.
    (3)Comparing the genetic characters of 4 kernel traits in different combinations. We found that the genotype of 4 kernel traits was diversity in different heredity backgrounds, and follow any regulation. From the 6 generation mean analysis and the 6 generation genetic variance analysis, the mainly diversity was function and degree of additive effect, exiting epistasis effect or not, function and degree of epistasis effect, and size of gene heritability, etc. From the 6 generation joint analysis, the mainly diversity was exiting major gene, quantity of the major gene, function and degree of additive effect and domiance effect in major gene, and function and degree of epistasis effect in polygene, etc.
    (4)According to the genetic characters of 4 kernel traits,. Selecting the parents is availabe, but the base population must to be eminent. Selecting second cycle lines is a good way to select eminent inbred lines about kernel traits. Some kernel traits such as kernel length, HKWI, and helling percentage, should be individual selection in lower generations, but the stand of selection must be looseness adequately. Kernel desity should be bulk selection in higher generations, but the stand of selection must be looseness. For improved inbred lines, some kernel traits such as kernel length,
引文
(1)张世煌,胡瑞法,彭泽斌.玉米育种的需求分析与技术发展方向[J].中国农业科学.2000,33(增刊):1~8
    (2)杨安贵,高之仁.赖仲铭.玉米几个经济性状的基因效应[J].四川农学院1981届研究生毕业论文集(农学部分)
    (3)孙根楼,赖仲铭.玉米两个异源种质群体的几个经济性状的遗传研究[J].四川农业大学学报..1988,6(4):263~266
    (4)杨克诚,赖仲铭,郑有良.玉米籽粒几个物理性状与粒重的关系及其遗传研究[J].四川农业大学学报. 19875(1):11~16
    (5)尹燕枰,童玉森.玉米主要性状的基因效应与杂种优势关系的研究[J]. 山东农业大学学报.1987,18(1):19~32
    (6)徐乐澜.玉米几个数量性状与籽粒产量的关系[J].辽宁农业科学.1990(5):15~17
    (7)陈岭,崔绍平,孙耀邦.玉米穗部性状的基因效应分析[J].华北农学报.1996,11(2):28~32
    (8)王桂荣,张德水,崔德才,等.玉米杂交种产量构成性状的遗传分析[J].山东农业大学学报.1997,28(3):32~36
    (9)陈洪俭,吴兰云,李祥昭,等.玉米优化农艺性状与籽粒产量的关系[J].安徽农业技术师范学院学报.1998,12(4):42~45
    (10)赵延明,王华山,庄艳,等.玉米穗部性状的遗传相关分析[J].国外农学—杂粮作物.1999,19(6):8~11
    (11)高长健.玉米植株形态和穗部性状的一般配合力效应值相关的通径分析[J].国外农学—杂粮作物.1999,19(6):12~15
    (12)张惠丽,曲力涛,李景文,等.玉米株型与穗部某些性状相关性的研究[J].玉米科学.2001,9(2):59~60
    (13)莫惠栋.谷物作物胚乳性状遗传控制的鉴别[J].遗传学报.1995,22(2):126~132
    (14)愈忠良,赵军华,楼向阳.玉米籽粒性状的遗传效应分析[J].浙江农业科学.1999(4):174~174
    (15)李玉玲,薛喜梅,连东军.普通玉米籽粒性状的遗传效应分析[J].生物数学报.1999,14(3):327~331
    
    
    (16)李玉玲,张泽民,许自成,等.玉米籽粒性状的遗传效应分析[J].遗传.2000,22(3):133~136
    (17)张红伟,孔繁玲.玉米籽粒性状的遗传模型分析研究[J].遗传学报.2000,27(1):56~64
    (18)吕香玲,张宝石,王艳秋,等.影响玉米籽粒含水量的相关性研究[J].辽宁农业科学.200l(2):22~25
    (19)高树仁,王振华,王云生等.高赖氨酸玉米收获时籽粒含水量与籽粒性状的灰色关联分析[J].东北农业大学学报.1993,3(1):27~31
    (20)孙生材,张树光,薛继生,等.玉米籽粒含水量与果穗性状相关性的研究[J].黑龙江八一农垦大学学报.1993,7(1):12~17
    (21)佟屏亚.从玉米高产栽培技术谈谈育种目标的选择[J].耕作与栽培.2000年第4期:5~48
    (22)王克胜,孔繁玲,杜曼·依马买地.玉米株型性状的遗传表达和自交系与杂交种株型的聚类分析[J].北京农业大学学报.1993,7(3):19~27
    (23)霍仕平,晏庆九,许明陆,等.玉米主要株型数量性状的基因效应分析[J].玉米科学.2001,9(1):12~15
    (24)章履孝.玉米的理想株型育种[J].江苏农业学报.1991,7(1):4
    (25)Mather K, &J, l, Jinks. Introduction to Biometrical Genetics[J]. Chapman and hall Ltd. 1977
    (26)Mather, K, & J, L, Jinks. Biometrical Genetics(3nd ed, )[J]. Chapman and Hall Ltd. 1982
    (27)朱立宏.主要农作物抗病性遗传研究进展[M].江苏科学技术出版社.南京.1990
    (28)Simmonds N W. Principlas of Crop Improvement. Longman Inc. 1979
    (29)高明尉.野败型杂交籼稻基因型的初步分析[J].遗传学报.1991,8(1):66~74
    (30)周天理,沈锦骅,叶复初.野败型杂交籼稻的育性基因分析[J].作物学报.1983.9(4):241~247
    (31)莫惠栋.谷物作物品种性状遗传研究进展[J].江苏科学技术出版社.南京.1990
    (32)Khush,GS, &I. Kumar. Genet. 1986, I, 65(1&2): 1~11
    (33)Vasal S K, et al. In Improvement of Quality Traits of Maize for Grain and Oilage
    
    Use [J]. Martinus Nijhoff Publishers. The Netherlands. 1980:37~71
    (34)莫惠栋.质量—数量性状的遗传分析Ⅰ[J].作物学报.1993,9(1):1~6
    (35)莫惠栋.质量—数量性状的遗传分析Ⅱ[J].作物学报.1993,9(3):193~200
    (36)盖钧镒,管荣展,王健康,植物数量性状QTL体系检测的遗传试验方法[J].世界科技研究进展.1999,21(1):34~40
    (37)盖钧镒,王健康.利用回交世代或F2:3家系世代鉴定数量性状主基因+多基因混合遗传模型[J].作物学报.1998,24(4):402~409
    (38)王健康,盖钧镒.混合模型的理论及应用[J].生物数学学报.1995,10(4):87~92
    (39)莫惠栋.胚乳性状地遗传模型和世代平均数[J].遗传学报.1989,16(2):111~117
    (40)章元明,盖钧镒,王健康.利用回交B1和B2及F2群体鉴定数量性状两对主基因+多基因混合遗传模型[J].生物数学学报.200,15(3):358~366
    (41)Bogyo T P, Lance R C M, Peggy Chevalier, et al. Genetic models for quantitatively inherited endosperm characters [J]. Heredity. 1988, 60:61~67
    (42)Mo Huidong. In: Proceeding of the Second International Conference on Quantitative Genetics (ed, B, S, Weir et al) [J]. Sinanter Associates Inc, Massachussetts. 1987:478~487
    (43)莫惠栋.胚乳性状地遗传模型和世代平均数[J].遗传学报.1989,16(2):111~117
    (44)莫惠栋. 种子性状及其遗传效应的鉴别[J].江苏农学院学报.1990,11(2):11~15
    (45)Mo Huidong and Jiang Changjian. Genetic Appraisal for Seed Traits [J]. Jiangsu J of Agr Sci. 1991, 17(3): 7~12
    (46)Foolad M R and Jones R A . Models to estimate maternally controlled genectic variation in quantitative seed charecters [J]. Theor Appl Genet. 1992, 83 : 360~366
    (47)Pooni H S, ISH KUMAR & KHUSH G S, et al. Acomprehensive model for disomically inherited metrical traits expressed in triploid tissues [J]. Heredity. 1992, 69 : 166~174
    (48)Cockeram C C. Random and fixed effects in plant genetics [J]. Theor Appl Genet. 1980, 56:119~131
    
    
    (49)朱军.Mixed model apppriaches for estimating genetic variances and covariances[J].生物数学学报.1992,9(1):1~11
    (50)朱军.作物杂种后代基因型值和杂种优势的预测方法[J].生物数学报.1993,8(1):32~44
    (51)Zhu J, Weir B S. Analysis of cytoplasmic and maternal effects Ⅰ. A genetic model for diploid plant seeds and animals [J]. Theor Appl Genet. 1994a, 89:153~159
    (52)Zhu J, Weir B S. Analysis of cytoplasmic and maternal effects Ⅱ [J]. Genetic models for tripoid endsperms. Theor, Appl, Genet, 1994b, 89:160~166
    (53)吴吉祥,王国建,朱军,等.陆地棉种子性状直接效应和母体效应的遗传效应[J].作物学报.1997,21(1 6):658~664
    (54)石春海,朱军.籼型杂交稻碾米品质的遗传分析[J].生物数学学报.1992,7(4):37~45
    (55)石春海,朱军.籼稻稻米蒸煮品质的种子和母体遗传效应分析[J].中国水稻科学.1994,8(3):129~134
    (56)何光华,谢戌,郑家奎,等.水稻籽粒游离氨基酸含量及其产量的种子和母体遗传效应分析[J].生物数学学报.1995,10(4):71~77
    (57)Botstein D. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. Am J hum Genet. 1980, 32 : 314~331
    (58)Ririn C J. Evaluation of genomic variability at the nucleic acid level [J]. Plant Mol Biol Rep. 1983, 1:9~16
    (59)Burr B. The application of restriction fragment polymorphisms to plant breeding [J]. Genteic Engineering Priciple and Methods. 1983, 5:45~49
    (60)Helentjaris T. Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding plant [J]. Mol Biol. 1985, 5: 109~118
    (61)Helentjaris T. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms [J]. Theor Appl Genet. 1986, 12: 761~769
    (62)Helentjaris T. Construction of a genetic linkage map in maize using restriction fragment polymorphisms [J]. Maize Genet Coop Newsletter. 1996, 60:118~120
    (63)Coe E H1. Maize Genetics Cooperation Newsletter. 1995, 69
    
    
    (64)Weissenbach J G, Gyapay, Dibc, et al. A second-generation linkage map of the human genon [J]. Nature. 1992, 359:794~801
    (65)Gardiner J M, Coe E H, Melia-Hancocks, et al. Development of a core RFLP map in maize using an immortalized F2 population [J]. Genetics. 1993, 134:917~930
    (66)Senior M L, Heun M. Mapping maize microsatelites and polymerate chain reaction confirmation of the targeted repeats using C T primer [J]. Genome. 1993, 36: 884~889
    (67)Musket T G, Paris M, Polacco M, et al. Maize probe bank [J]. Maize Genetics Cooperation Newsletter. 1997, 71:122~123
    (68)Stuber C W, Edwards M P, Wendal J F, et al. Molecular marker facilitated invest investigation of quantitative trait loci in maize ;factors influencing yield and its component traits [J]. Crop Sci. 1987, 27:639~648
    (69)Edwards M D, Helentjaris T, Wrights, et al. Molecular-facilitated investigation of quantitative trait loci in maize Ⅵ. Analysis based on genome saturation with isozyme and restriction fragment length polymorphis markers [J]. Theor Appl Genet. 1992:765~774
    (70)Ragot M H. Molecular markers for plant breeding: Comparisons of RFLP and RAPD genotyping losts [J]. Theor Appl Genet. 1993, 86:975~984
    (71)Austin D F, lee M. Comparative mapping in F2:3 and F6:7 generation of quantitative trait loci for grain yield and yield components in maize [J]. Theor Appl Genet. 1996b, 92 : 817~826
    (72)高之仁.数量遗传学[M].四川大学出版社(1985)
    (73)盖钧镒,章元明,王健康.QTL混合模型扩展至2对主基因+多基因时的多世代联合分析[J].作物学报.2000,26(4):385~391
    (74)Gai J Y, Wang J K. Identification and estimation of a QTL model and its effects [J]. Theor Appl Genet. 1998, 97:1162~1168
    (75)盖钧镒,章元明,王健康.植物数量性状遗传体系[M].科学出版社.2003,1
    (76)曹靖生.玉米几个穗部性状的遗传分析[J].黑龙江农业科学.1994(2):9~11
    (77)杨伟光.玉米籽粒性状的遗传研究[J].玉米科学.2001,9(3):37~39
    (78)潘相文,金益,王立丰.玉米部分品质指标的遗传变异研究[J1.东北农业大学学报.2002,12,33(4):331~336
    
    
    (79)李新海,王振华,黄苏玲,等.普通玉米与高赖氨酸玉米杂交后代籽粒性状的表现及其遗传分析[J].东北农业大学学报.1998,6,29(2):105~110
    (80)杨村,邹庆道,天云,等.玉米籽粒含水量的遗传研究[J].国外农学—杂粮作物.1998,18(2):11~14
    (81)陈永欣,翟广谦,李彦良,等.糯玉米主要性状的遗传规律研究[J].玉米科学.2002.10(1):15~17
    (82)施开鸿,郭其茂,黄玉莲.7个玉米自交系主要性状的配合力及遗传参数分析[J].玉米科学.2001,9(1):39~42
    (83)李泽福,万建民,夏加发,等.水稻外观品质的数量性状基因位点分析[J].遗传学报.2003,30(3):251~259
    (84)Kraja A T.两个玉米自交系杂交组合的QTL分析[J]. Crop Sci. 2000.40(2):338~346,
    (85)白艳风.利用数量性状多元遗传选育玉米自交系[J].玉米科学.2002,10(4):26~28
    (86)金益,潘相文,王振华,等.玉米品质性状的遗传相关和选择方案研究[J].中国农业科学.2003,36(7):851~855
    (87)吴渝生.玉米籽粒性状配合力及其遗传的研究[J].种子.1997,1:13~16
    (88)Veldboom L R. Molecular-marker-facilitated studies of morphological traits in maize Ⅱ determination of QTLs for grain yield and yield components [J]. Theor Appl. Genet.. 1994, 89:451~458
    (89)阿布东,张全德.高赖氨酸玉米(Opaque-2)数量性状的遗传研究[J].浙江农业大学学报.1994,20(6):560~565
    (90)谷思玉.玉米成熟时籽粒脱水速率配合力及相关性的研究[D].东北农业大学硕士论文.1991
    (91)郭祯祥,赵仁勇.干法加工专用玉米的品质研究[J].粮食与饲料工业.2003,No.2:5~7
    (92)王振华,张忠臣,常华章,等.黑龙江省38个玉米自交系生理成熟期及籽粒自然脱水速率的分析[J].玉米科学.2001,9(2):53~55
    (93)陈华文.玉米9个农艺性状与产量的遗传相关及通径分析[J].种子.2003,4:74~76
    (94)卢光远,郝瑞莲,韩英,等.玉米穗部性状的相关与通径分析[J].国外农学
    
    —杂粮作物.1999,19(5):52~53
    (95)潘光堂,荣廷昭,刘礼超,等.化学诱导的玉米孤雌生殖系的遗传分析[J].西南农业学报.1996,9(1):45~52
    (96)向道权,黄烈健,戴景瑞.玉米产量QTL和杂种优势遗传基础研究进展[J].中国农业大学学报.1999,4(增刊):1~7
    (97)盖钧镒,管荣展,王健康.植物数量性状QTL体系检测的遗传试验方法[J].科技前沿与学术讨论:34-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700