种植体表面不同形貌对骨质疏松症骨结合的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验一去势后绵羊不同部位骨质变化及颌骨骨质疏松动物模型的建立
     目的探索绵羊去势后建立颌骨骨质疏松模型的时间,比较去势后颌骨与其它部位骨骼变化的差异,检测骨质疏松颌骨的皮质骨、松质骨的微观结构特点及其生物力学性能,建立适用于颌骨骨质疏松相关研究的绝经后骨质疏松大动物模型。方法12只成年绵羊随机分为2组,去势组7只,假手术组5只。去势组绵羊切除双侧卵巢,同时辅以甲泼尼龙琥珀酸钠(0.45mg/kg.d)和低钙饮食。术后6个月、12个月时检测腰椎和下颌骨的BMD的变化。所有动物与去势术后12个月时处死,应用MicroCT、组织形态观察和生物力学的方法,检测颌骨骨质疏松时皮质骨结构和厚度、骨小梁三维微观结构和生物力学的变化,同时与股骨、腰椎、肋骨进行比较。
     结果去势12个月后,绵羊下颌骨的BMD值下降了31.0% (P <0.05);下颌皮质骨厚度及松质骨BV/TV、Tb.Th、Tb.N均显著低于对照组(P <0.05), Tb.Sp和TBPf显著高于对照组(P <0.05);下颌骨的轴向最大压缩应力降低34.2%(P <0.05);组织形态学观察可见骨小梁稀疏、变细甚至中断,失去正常拱桥状结构。结论①通过去势、糖皮质激素加低钙饮食的方法可以建立绵羊颌骨骨质疏松模型,采用此方法建模需要1年左右时间。②绵羊去势后时颌骨骨丧失晚于腰椎,但也可发生骨质疏松。
     实验二纯钛种植体微/纳米表面对正常骨质骨结合的影响
     目的比较机械加工表面、微米结构表面及微/纳米复合结构表面三种类型的种植体对骨结合和生物力学性能的影响。方法机械加工的纯钛种植体依次通过氢氟酸酸蚀、阳极氧化的处理,形成机械加工表面、微米机构表面及微/纳米复合结构表面三种类型的种植体。在8只绵羊的双侧下颌骨各植入三种类型的种植体,3个月后通过共振频率检测、MicroCT、组织形态计量学观察及生物力学的方法,检测三种表面形貌对种植体骨结合和稳定性的影响。结果种植体植入三个月后,微/纳米表面组ISQ较机械加工组、微米表面组分别提高15.47%、11.50%(P <0.05),微/纳米表面组BIC较机械加工表面组、微米表面组分别提高34.07%、23.15%(P <0.05),微/纳米表面组最大拔出力较机械加工表面组、微米表面组分别提高24.35%、11.77%(P <0.05),微/纳米表面组BV/TV、Tb.Sp、TBPf与机械加工组、微米表面组比较差异均有显著性(P <0.05)。结论①在正常骨质情况下,种植体表面的微/纳米复合结构可以有效的提高种植体的骨结合率,增加种植体的稳定性,但对种植体周围500μm外的骨质影响不大。②MicroCT可以三维再现种植体周围骨小梁结构,但种植体-骨结合界面受到金属伪影的干扰,故应与组织形态学互为补充。
     实验三纯钛种植体微/纳米表面对骨质疏松症骨结合的影响
     目的比较机械加工表面、微米机构表面及微/纳米结构表面三种类型的种植体在骨质疏松情况下对骨结合和生物力学性能的影响。方法通过去势、糖皮质激素加低钙饮食的方法建立绵羊颌骨骨质疏松模型,在8只骨质疏松的绵羊双侧下颌骨各植入三种类型的种植体(机械加工表面、微米机构表面及微/纳米复合结构表面),3个月后通过共振频率检测、MicroCT、组织形态计量学观察及生物力学的方法,检测三种表面形貌种植体在骨质疏松情况下对种植体骨结合和稳定性的影响。结果种植体植入三个月后,微/纳米表面组ISQ较机械加工组、微米表面组分别提高29.22%、28.17%(P <0.05),微/纳米表面组BIC较机械加工表面组、微米表面组分别提高47.51%、36.78%(P <0.05),微/纳米表面组最大拔出力较机械加工表面组最大拔出力、微米表面组分别提高34.41%、19.30%(P <0.05),微/纳米表面组BV/TV、Tb.Sp、TBPf与机械加工组、微米表面组比较差异均有显著性(P <0.05)。结论①颌骨骨质疏松情况下,种植体植入后可以形成骨结合,但骨结合率低于正常,生物力学性能下降。②颌骨骨质疏松情况下,种植体表面的微纳米结构可以有效的提高种植体的骨结合率,增加种植体的稳定性。
Experiment 1 Establishment of a Postmenopausal Osteoporosis Ovine Jaw Model by Ovariectomy
     Objective To study the time to establishment of an osteoporosis ovine jaw model through ovariectomy (OVX). To evaluate the micro-architectural and biomechanical changes of jaw bone after OVX and compare to other bones. Method 12 adult sheep were randomly divided into two groups: OVX group (n=7), sham-operated group (n=5). At the time of operation and after 12 months, all sheep underwent dual energy x-ray absorptiometry (DEXA) of jaw and lumbar vertebrae. 12 months after operation, all sheep were sacrificed. The trabecular bone (jaw, spine, femoral condyle, rib) and cortical bone (jaw) were harvested and compared by MicroCT. Axial compression tests were used to evaluate the mechanical properties of jaw. Results 12 months after operation, jaw BMD in OVX group decreased by 31.0% compared with that in control group (P < 0.05). The maxium compression strain of jaw in OVX group decreased by 34.2% compared with that in Sham group (P < 0.05). BV/TV、Tb.Th、Tb.N and Tb.Sp of trabecular bone decreased significantly (P <0.05). Histomorphologically, trabecular bone of jaw decreased significantly in OVX group compared with that in control group. Micro-fracture and micro-defect in trabecular bone of jaw could be seen in OVX group. Conclusions①Ovariectomy can establish post-menopausal osteoporosis ovine jaw model. The ovariectomized phase should be maintained 12 months at least to ensure the animal model could be established successfully.②The jaw osteoporosis could be found after OVX, though the bone loss in jaw occurs slower than that in spine.
     Experiment 2 Effect of hierarchical micro/nano surface titanium implant on osseointegration
     Objective To investigate the effects of three morphologically differing titanium implants (machined surface, micro-textured surface, hierarchical micro/nano- textured surface) on osseointegration in ovine jaw. Method The machined surface of pure titanium implant was fabricated by acid in 0.5% (wt/v) hydrofluoric (HF) to form the micro-textured surface, then the micro-textured surface was further anodized in HF acid electrolytes to form the hierarchical micro/nano-textured surface. The three morphologically differing titanium implants were placed in ovine mandibles respectively. 3 months after implantation, resonance frequency analysis (RFA), MicroCT, histomorphometry and biomechanical tests were applied to detect the osseointegration of the three morphologically differing titanium implants. Results 3 months after implantation, the implant stability quotient (ISQ) values in micro/nano surface group increased by 15.47%, 11.50% compared with that in machined surface group and micro surface group (P <0.05). MicroCT analysis showed that there were significant differences between BV/TV, Tb.Sp and TBPf in the micro/nano group and that in machined surface group and micro surface group (P <0.05). The bone implant contact (BIC) increased by 34.07%, 23.15% compared with that in machined surface group and micro surface group (P <0.05). The maximum pull-out forces increased by 24.35%, 1.77% compared with that in machined surface group and micro surface group (P <0.05). Conclusions①Implant modification by HF acid etching and anodization to form a hierarchical micro/nano-textured surface could improve titanium implant osseointegration.②MicroCT images show 3D information of trabecular bone around implant clearly, which cannot be obtained using 2D histomorphometry. Due to the limitations of scanning at the tissue–implant interface, conventional histomorphometrical analysis and MicroCT are neither interchangeable, nor independent techniques, but need to be considered as complementary techniques.
     Experiment 3 Effect of hierarchical micro/nano surface titanium implant on osseointegration in ovariectomized sheep
     Objective To investigate the effects of three morphologically differing titanium implants (machined surface, micro-textured surface, hierarchical micro/nano- textured surface) on osseointegration in OVX ovine jaw. Method The machined surface of pure titanium implant was fabricated by acid in 0.5% (wt/v) hydrofluoric (HF) to form the micro-textured surface, then the micro-textured surface was further anodized in HF acid electrolytes to form the hierarchical micro/nano-textured surface. The three morphologically differing titanium implants were placed in mandibles of OVX sheep respectively. 3 months after implantation, resonance frequency analysis (RFA), MicroCT, histomorphometry and biomechanical tests were applied to detect the osseointegration of the three morphologically differing titanium implants. Results 3 months after implantation, the implant stability quotient (ISQ) values in micro/nano surface group increased by 29.22%, 28.17% compared with that in machined surface group and micro surface group (P <0.05). MicroCT analysis showed that there were significant differences between BV/TV, Tb.Sp and TBPf in the micro/nano group and that in machined surface group and micro surface group (P <0.05). The bone implant contact (BIC) increased by 47.51%, 36.78% compared with that in machined surface group and micro surface group (P <0.05). The maximum pull-out forces increased by 34.41%, 19.30 % compared with that in machined surface group and micro surface group (P <0.05). Conclusions①Osseointegration of dental implant can be achieved in osteoporotic bone, but it does worse than in normal bone.②Implant modification by HF acid etching and anodization to form a hierarchical micro/nano-textured surface could improve titanium implant osseointegration in OVX sheep.
引文
[1] Takeda T. [Senescence-accelerated mouse (SAM): with special reference to age-associated pathologies and their modulation][J]. Nippon Eiseigaku Zasshi, 1996, 51(2): 569-578.
    [2] Matsushita M, Tsuboyama T, Kasai R, et al. Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis[J]. Am J Pathol, 1986, 125(2): 276-283.
    [3] Ensrud K E, Lewis C E, Lambert L C, et al. Endogenous sex steroids, weight change and rates of hip bone loss in older men: the MrOS study[J]. Osteoporos Int, 2006, 17(9): 1329-1336.
    [4]乔伟伟,柳启沛,等.大鼠营养干预性骨质疏松症模型的研究[J].上海实验动物科学, 2002, 22(3): 145-151.
    [5] Weinstein R S, Jilka R L, Parfitt A M, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone[J]. J Clin Invest, 1998, 102(2): 274-282.
    [6] Parfitt A M, Villanueva A R, Foldes J, et al. Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis[J]. J Bone Miner Res, 1995, 10(3): 466-473.
    [7] Kanis J A, Stevenson M, Mccloskey E V, et al. Glucocorticoid-induced osteoporosis: a systematic review and cost-utility analysis[J]. Health Technol Assess, 2007, 11(7): 1-231.
    [8]陈艳,吴铁,崔燎.短期摄入不同浓度酒精对小鼠股骨的影响[J].中国骨质疏松杂志, 2005, 11(1): 9-11.
    [9] Chakkalakal D A. Alcohol-induced bone loss and deficient bone repair[J]. Alcohol Clin Exp Res, 2005, 29(12): 2077-2090.
    [10] Wang Y, Li Y, Mao K, et al. Alcohol-induced adipogenesis in bone and marrow: a possible mechanism for osteonecrosis[J]. Clin Orthop Relat Res, 2003(410): 213-224.
    [11] Cheung R C, Gray C, Boyde A, et al. Effects of ethanol on bone cells in vitro resulting in increased resorption[J]. Bone, 1995, 16(1): 143-147.
    [12]洪志勇,刘爱平.制作骨质疏松症大鼠模型的甲状旁腺切除法[J].上海实验动物科学, 1996, 16(2): 85-86.
    [13] Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment in osteoporosis[J]. Osteoporos Int, 2005, 16 Suppl 2: S129-S138.
    [14] Chachra D, Lee J M, Kasra M, et al. Differential effects of ovariectomy on the mechanical properties of cortical and cancellous bone in rat femora and vertebrae[J]. Biomed Sci Instrum, 2000, 36: 123-128.
    [15] Weinstein R S, Jia D, Powers C C, et al. The skeletal effects of glucocorticoid excess override those of orchidectomy in mice[J]. Endocrinology, 2004, 145(4): 1980-1987.
    [16] Chen H, Shoumura S, Emura S. Ultrastructural changes in bones of the senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis[J]. Histol Histopathol, 2004, 19(3): 677-685.
    [17] Barbier L, Schepers E. Adaptive bone remodeling around oral implants under axial and nonaxial loading conditions in the dog mandible[J]. Int J Oral Maxillofac Implants, 1997, 12(2): 215-223.
    [18] Panula H E, Nieminen J, Parkkinen J J, et al. Subchondral bone remodeling increases in early experimental osteoarthrosis in young beagledogs[J]. Acta Orthop Scand, 1998, 69(6): 627-632.
    [19] Kooistra H S, Okkens A C, Bevers M M, et al. Concurrent pulsatile secretion of luteinizing hormone and follicle-stimulating hormone during different phases of the estrous cycle and anestrus in beagle bitches[J]. Biol Reprod, 1999, 60(1): 65-71.
    [20] Akimoto M, Nagahata N, Furuya A, et al. Gastric pH profiles of beagle dogs and their use as an alternative to human testing[J]. Eur J Pharm Biopharm, 2000, 49(2): 99-102.
    [21] Chavassieux P, Pastoureau P, Chapuy M C, et al. Glucocorticoid-induced inhibition of osteoblastic bone formation in ewes: a biochemical and histomorphometric study[J]. Osteoporos Int, 1993, 3(2): 97-102.
    [22] Turner A S. The sheep as a model for osteoporosis in humans[J]. Vet J, 2002, 163(3): 232-239.
    [23] Rogers J, Hixson J E. Baboons as an animal model for genetic studies of common human disease[J]. Am J Hum Genet, 1997, 61(3): 489-493.
    [24] Torricelli P, Fini M, Giavaresi G, et al. In vitro models to test orthopedic biomaterials in view of their clinical application in osteoporotic bone[J]. Int J Artif Organs, 2004, 27(8): 658-663.
    [25] Jerome C P, Turner C H, Lees C J. Decreased bone mass and strength in ovariectomized cynomolgus monkeys (Macaca fascicularis)[J]. Calcif Tissue Int, 1997, 60(3): 265-270.
    [26] Dudley-Javoroski S, Shields R K. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation[J]. J Rehabil Res Dev, 2008, 45(2): 283-296.
    [27] Crabtree N J, Kibirige M S, Fordham J N, et al. The relationship between lean body mass and bone mineral content in paediatric health and disease[J].Bone, 2004, 35(4): 965-972.
    [28] Whalen J P, Krook L. Periodontal disease as the early manifestation of osteoporosis[J]. Nutrition, 1996, 12(1): 53-54.
    [29] Hohlweg-Majert B, Schmelzeisen R, Pfeiffer B M, et al. Significance of osteoporosis in craniomaxillofacial surgery: a review of the literature[J]. Osteoporos Int, 2006, 17(2): 167-179.
    [30] Bodic F, Hamel L, Lerouxel E, et al. Bone loss and teeth[J]. Joint Bone Spine, 2005, 72(3): 215-221.
    [31] Horner K, Devlin H, Alsop C W, et al. Mandibular bone mineral density as a predictor of skeletal osteoporosis[J]. Br J Radiol, 1996, 69(827): 1019-1025.
    [32] Taguchi A, Tanimoto K, Suei Y, et al. Relationship between the mandibular and lumbar vertebral bone mineral density at different postmenopausal stages[J]. Dentomaxillofac Radiol, 1996, 25(3): 130-135.
    [33] Kribbs P J. Comparison of mandibular bone in normal and osteoporotic women[J]. J Prosthet Dent, 1990, 63(2): 218-222.
    [34] Bollen A M, Taguchi A, Hujoel P P, et al. Case-control study on self-reported osteoporotic fractures and mandibular cortical bone[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000, 90(4): 518-524.
    [35] Streckfus C F, Johnson R B, Nick T, et al. Comparison of alveolar bone loss, alveolar bone density and second metacarpal bone density, salivary and gingival crevicular fluid interleukin-6 concentrations in healthy premenopausal and postmenopausal women on estrogen therapy[J]. J Gerontol A Biol Sci Med Sci, 1997, 52(6): M343-M351.
    [36] Jonasson G. Mandibular alveolar bone mass, structure and thickness in relation to skeletal bone density in dentate women[J]. Swed Dent J Suppl,2005(177): 1-63.
    [37] Jonasson G, Kiliaridis S, Gunnarsson R. Cervical thickness of the mandibular alveolar process and skeletal bone mineral density[J]. Acta Odontol Scand, 1999, 57(3): 155-161.
    [38] Hirai T, Ishijima T, Hashikawa Y, et al. Osteoporosis and reduction of residual ridge in edentulous patients[J]. J Prosthet Dent, 1993, 69(1): 49-56.
    [39] Kribbs P J, Chesnut C R, Ott S M, et al. Relationships between mandibular and skeletal bone in an osteoporotic population[J]. J Prosthet Dent, 1989, 62(6): 703-707.
    [40] Hildebolt C F. Osteoporosis and oral bone loss[J]. Dentomaxillofac Radiol, 1997, 26(1): 3-15.
    [41] Krook L, Whalen J P, Lesser G V, et al. Human periodontal disease and osteoporosis[J]. Cornell Vet, 1972, 62(3): 371-391.
    [42] Solar P, Ulm C W, Thornton B, et al. Sex-related differences in the bone mineral density of atrophic mandibles[J]. J Prosthet Dent, 1994, 71(4): 345-349.
    [43] Elovic R P, Hipp J A, Hayes W C. Maxillary molar extraction causes increased bone loss in the mandible of ovariectomized rats[J]. J Bone Miner Res, 1995, 10(7): 1087-1093.
    [44] Nishimura I, Hosokawa R, Kaplan M L, et al. Animal model for evaluating the effect of systemic estrogen deficiency on residual ridge resorption[J]. J Prosthet Dent, 1995, 73(3): 304-310.
    [45] Klemetti E, Vainio P, Lassila V, et al. Trabecular bone mineral density of mandible and alveolar height in postmenopausal women[J]. Scand J Dent Res, 1993, 101(3): 166-170.
    [46] Bollen A M, Taguchi A, Hujoel P P, et al. Number of teeth and residual alveolar ridge height in subjects with a history of self-reported osteoporoticfractures[J]. Osteoporos Int, 2004, 15(12): 970-974.
    [47] Drozdzowska B, Pluskiewicz W, Tarnawska B. Panoramic-based mandibular indices in relation to mandibular bone mineral density and skeletal status assessed by dual energy X-ray absorptiometry and quantitative ultrasound[J]. Dentomaxillofac Radiol, 2002, 31(6): 361-367.
    [48] von Wowern N, Kollerup G. Symptomatic osteoporosis: a risk factor for residual ridge reduction of the jaws[J]. J Prosthet Dent, 1992, 67(5): 656-660.
    [49] Pilgram T K, Hildebolt C F, Dotson M, et al. Relationships between clinical attachment level and spine and hip bone mineral density: data from healthy postmenopausal women[J]. J Periodontol, 2002, 73(3): 298-301.
    [50] Otogoto J, Ota N. [Correlation between periodontal disease and osteoporosis using panoramic radiographic parameters for diagnosed osteoporosis in dental clinic][J]. Clin Calcium, 2003, 13(5): 582-586.
    [51] Tezal M, Wactawski-Wende J, Grossi S G, et al. The relationship between bone mineral density and periodontitis in postmenopausal women[J]. J Periodontol, 2000, 71(9): 1492-1498.
    [52] Klemetti E, Collin H L, Forss H, et al. Mineral status of skeleton and advanced periodontal disease[J]. J Clin Periodontol, 1994, 21(3): 184-188.
    [53] Famili P, Cauley J, Suzuki J B, et al. Longitudinal study of periodontal disease and edentulism with rates of bone loss in older women[J]. J Periodontol, 2005, 76(1): 11-15.
    [54] Jeffcoat M K. Safety of oral bisphosphonates: controlled studies on alveolar bone[J]. Int J Oral Maxillofac Implants, 2006, 21(3): 349-353.
    [55] Bass S L, Triplett R G. The effects of preoperative resorption and jaw anatomy on implant success. A report of 303 cases[J]. Clin Oral Implants Res, 1991, 2(4): 193-198.
    [56] Jaffin R A, Berman C L. The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis[J]. J Periodontol, 1991, 62(1): 2-4.
    [57] Johns R B, Jemt T, Heath M R, et al. A multicenter study of overdentures supported by Branemark implants[J]. Int J Oral Maxillofac Implants, 1992, 7(4): 513-522.
    [58] Hutton J E, Heath M R, Chai J Y, et al. Factors related to success and failure rates at 3-year follow-up in a multicenter study of overdentures supported by Branemark implants[J]. Int J Oral Maxillofac Implants, 1995, 10(1): 33-42.
    [59] Degidi M, Piattelli A, Gehrke P, et al. Five-year outcome of 111 immediate nonfunctional single restorations[J]. J Oral Implantol, 2006, 32(6): 277-285.
    [60] Weng D, Jacobson Z, Tarnow D, et al. A prospective multicenter clinical trial of 3i machined-surface implants: results after 6 years of follow-up[J]. Int J Oral Maxillofac Implants, 2003, 18(3): 417-423.
    [61] Truhlar R S, Morris H F, Ochi S. Implant surface coating and bone quality-related survival outcomes through 36 months post-placement of root-form endosseous dental implants[J]. Ann Periodontol, 2000, 5(1): 108-109.
    [62] Hall J A, Payne A G, Purton D G, et al. A randomized controlled clinical trial of conventional and immediately loaded tapered implants with screw-retained crowns[J]. Int J Prosthodont, 2006, 19(1): 17-19.
    [63] Aalam A A, Nowzari H. Clinical evaluation of dental implants with surfaces roughened by anodic oxidation, dual acid-etched implants, and machined implants[J]. Int J Oral Maxillofac Implants, 2005, 20(5): 793-798.
    [64] Glauser R, Ree A, Lundgren A, et al. Immediate occlusal loading of Branemark implants applied in various jawbone regions: a prospective, 1-year clinical study[J]. Clin Implant Dent Relat Res, 2001, 3(4): 204-213.
    [65] Glauser R, Ruhstaller P, Windisch S, et al. Immediate occlusal loading of Branemark System TiUnite implants placed predominantly in soft bone: 4-year results of a prospective clinical study[J]. Clin Implant Dent Relat Res, 2005, 7 Suppl 1: S52-S59.
    [66] Ottoni J M, Oliveira Z F, Mansini R, et al. Correlation between placement torque and survival of single-tooth implants[J]. Int J Oral Maxillofac Implants, 2005, 20(5): 769-776.
    [67] Mericske-Stern R, Oetterli M, Kiener P, et al. A follow-up study of maxillary implants supporting an overdenture: clinical and radiographic results[J]. Int J Oral Maxillofac Implants, 2002, 17(5): 678-686.
    [68] Amorim M A, Takayama L, Jorgetti V, et al. Comparative study of axial and femoral bone mineral density and parameters of mandibular bone quality in patients receiving dental implants[J]. Osteoporos Int, 2007, 18(5): 703-709.
    [69] August M, Chung K, Chang Y, et al. Influence of estrogen status on endosseous implant osseointegration[J]. J Oral Maxillofac Surg, 2001, 59(11): 1285-1289, 1290-1291.
    [70] Blomqvist J E, Alberius P, Isaksson S, et al. Factors in implant integration failure after bone grafting: an osteometric and endocrinologic matched analysis[J]. Int J Oral Maxillofac Surg, 1996, 25(1): 63-68.
    [71] Kondell P A, Nordenram A, Landt H. Titanium implants in the treatment of edentulousness: influence of patient's age on prognosis[J]. Gerodontics, 1988, 4(6): 280-284.
    [72] Bryant S R, Zarb G A. Crestal bone loss proximal to oral implants in older and younger adults[J]. J Prosthet Dent, 2003, 89(6): 589-597.
    [73] Balshi S F, Wolfinger G J, Balshi T J. A retrospective analysis of 44 implants with no rotational primary stability used for fixed prosthesisanchorage[J]. Int J Oral Maxillofac Implants, 2007, 22(3): 467-471.
    [74] Doyle S L, Hodges J S, Pesun I J, et al. Factors affecting outcomes for single-tooth implants and endodontic restorations[J]. J Endod, 2007, 33(4): 399-402.
    [75] Elkhoury J S, Mcglumphy E A, Tatakis D N, et al. Clinical parameters associated with success and failure of single-tooth titanium plasma-sprayed cylindric implants under stricter criteria: a 5-year retrospective study[J]. Int J Oral Maxillofac Implants, 2005, 20(5): 687-694.
    [76] Granstrom G. Osseointegration in irradiated cancer patients: an analysis with respect to implant failures[J]. J Oral Maxillofac Surg, 2005, 63(5): 579-585.
    [77] Wagenberg B, Froum S J. A retrospective study of 1925 consecutively placed immediate implants from 1988 to 2004[J]. Int J Oral Maxillofac Implants, 2006, 21(1): 71-80.
    [78] Brochu J F, Anderson J D, Zarb G A. The influence of early loading on bony crest height and stability: a pilot study[J]. Int J Prosthodont, 2005, 18(6): 506-512.
    [79] Degidi M, Piattelli A, Felice P, et al. Immediate functional loading of edentulous maxilla: a 5-year retrospective study of 388 titanium implants[J]. J Periodontol, 2005, 76(6): 1016-1024.
    [80] Jebreen S E, Khraisat A. Multicenter retrospective study of ITI implant-supported posterior partial prosthesis in Jordan[J]. Clin Implant Dent Relat Res, 2007, 9(2): 89-93.
    [81] Attard N J, Zarb G A. Long-term treatment outcomes in edentulous patients with implant overdentures: the Toronto study[J]. Int J Prosthodont, 2004, 17(4): 425-433.
    [82] Balshi S F, Allen F D, Wolfinger G J, et al. A resonance frequency analysis assessment of maxillary and mandibular immediately loaded implants[J]. Int J Oral Maxillofac Implants, 2005, 20(4): 584-594.
    [83] Ostman P O, Hellman M, Wendelhag I, et al. Resonance frequency analysis measurements of implants at placement surgery[J]. Int J Prosthodont, 2006, 19(1): 77-83, 84.
    [84] Pan J, Shirota T, Ohno K, et al. Effect of ovariectomy on bone remodeling adjacent to hydroxyapatite-coated implants in the tibia of mature rats[J]. J Oral Maxillofac Surg, 2000, 58(8): 877-882.
    [85] Duarte P M, Cesar N J, Goncalves P F, et al. Estrogen deficiency affects bone healing around titanium implants: a histometric study in rats[J]. Implant Dent, 2003, 12(4): 340-346.
    [86] Duarte P M, Goncalves P F, Casati M Z, et al. Age-related and surgically induced estrogen deficiencies may differently affect bone around titanium implants in rats[J]. J Periodontol, 2005, 76(9): 1496-1501.
    [87] Alsaadi G, Quirynen M, Komarek A, et al. Impact of local and systemic factors on the incidence of oral implant failures, up to abutment connection[J]. J Clin Periodontol, 2007, 34(7): 610-617.
    [88] Ozawa S, Ogawa T, Iida K, et al. Ovariectomy hinders the early stage of bone-implant integration: histomorphometric, biomechanical, and molecular analyses[J]. Bone, 2002, 30(1): 137-143.
    [89] Soshi S, Shiba R, Kondo H, et al. An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine[J]. Spine (Phila Pa 1976), 1991, 16(11): 1335-1341.
    [90] Martin R B, Paul H A, Bargar W L, et al. Effects of estrogen deficiency on the growth of tissue into porous titanium implants[J]. J Bone Joint Surg Am,1988, 70(4): 540-547.
    [91] Keller J C, Stewart M, Roehm M, et al. Osteoporosis-like bone conditions affect osseointegration of implants[J]. Int J Oral Maxillofac Implants, 2004, 19(5): 687-694.
    [92] Friberg B, Ekestubbe A, Mellstrom D, et al. Branemark implants and osteoporosis: a clinical exploratory study[J]. Clin Implant Dent Relat Res, 2001, 3(1): 50-56.
    [93] Dao T T, Anderson J D, Zarb G A. Is osteoporosis a risk factor for osseointegration of dental implants?[J]. Int J Oral Maxillofac Implants, 1993, 8(2): 137-144.
    [94] Carvalho C M, Carvalho L F, Costa L J, et al. Titanium implants: a removal torque study in osteopenic rabbits[J]. Indian J Dent Res, 2010, 21(3): 349-352.
    [95] Fujimoto T, Niimi A, Sawai T, et al. Effects of steroid-induced osteoporosis on osseointegration of titanium implants[J]. Int J Oral Maxillofac Implants, 1998, 13(2): 183-189.
    [96] Mori H, Manabe M, Kurachi Y, et al. Osseointegration of dental implants in rabbit bone with low mineral density[J]. J Oral Maxillofac Surg, 1997, 55(4): 351-361, 362.
    [97] Yamazaki M, Shirota T, Tokugawa Y, et al. Bone reactions to titanium screw implants in ovariectomized animals[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1999, 87(4): 411-418.
    [98] Motohashi M, Shirota T, Tokugawa Y, et al. Bone reactions around hydroxyapatite-coated implants in ovariectomized rats[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1999, 87(2): 145-152.
    [99] Pan J, Shirota T, Ohno K, et al. Effect of ovariectomy on bone remodelingadjacent to hydroxyapatite-coated implants in the tibia of mature rats[J]. J Oral Maxillofac Surg, 2000, 58(8): 877-882.
    [100] Becker W, Hujoel P P, Becker B E, et al. Osteoporosis and implant failure: an exploratory case-control study[J]. J Periodontol, 2000, 71(4): 625-631.
    [101] Turner A S. Animal models of osteoporosis--necessity and limitations[J]. Eur Cell Mater, 2001, 1: 66-81.
    [102] Veigel E, Moore R J, Zarrinkalam M R, et al. Osteopenia in the maxillofacial area: a study in sheep[J]. Osteoporos Int, 2011, 22(4): 1115-1121.
    [103] Newton B I, Cooper R C, Gilbert J A, et al. The ovariectomized sheep as a model for human bone loss[J]. J Comp Pathol, 2004, 130(4): 323-326.
    [104] Aldini N N, Fini M, Giavaresi G, et al. Pedicular fixation in the osteoporotic spine: a pilot in vivo study on long-term ovariectomized sheep[J]. J Orthop Res, 2002, 20(6): 1217-1224.
    [105] Giavaresi G, Fini M, Torricelli P, et al. The ovariectomized ewe model in the evaluation of biomaterials for prosthetic devices in spinal fixation[J]. Int J Artif Organs, 2001, 24(11): 814-820.
    [106] Montanaro L, Arciola C R, Campoccia D, et al. In vitro effects on MG63 osteoblast-like cells following contact with two roughness-differing fluorohydroxyapatite-coated titanium alloys[J]. Biomaterials, 2002, 23(17): 3651-3659.
    [107] Chappard D, Aguado E, Hure G, et al. The early remodeling phases around titanium implants: a histomorphometric assessment of bone quality in a 3- and 6-month study in sheep[J]. Int J Oral Maxillofac Implants, 1999, 14(2): 189-196.
    [108] Puleo D A, Nanci A. Understanding and controlling the bone-implant interface[J]. Biomaterials, 1999, 20(23-24): 2311-2321.
    [109] Rho J Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone[J]. Med Eng Phys, 1998, 20(2): 92-102.
    [110] Chen P Y, Lin A Y, Lin Y S, et al. Structure and mechanical properties of selected biological materials[J]. J Mech Behav Biomed Mater, 2008, 1(3): 208-226.
    [111] Kubo K, Tsukimura N, Iwasa F, et al. Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model[J]. Biomaterials, 2009, 30(29): 5319-5329.
    [112] Holy C E, Fialkov J A, Davies J E, et al. Use of a biomimetic strategy to engineer bone[J]. J Biomed Mater Res A, 2003, 65(4): 447-453.
    [113] Whang K, Healy K E, Elenz D R, et al. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture[J]. Tissue Eng, 1999, 5(1): 35-51.
    [114]邢晓建,刘宝林,等.骨结合率对种植体—骨界面应力分布的影响[J].西安交通大学学报:医学版, 2002, 23(4): 395-397.
    [115]卢军,潘可风,徐晓琳,等.不同骨结合率对种植体骨界面应力分布的影响[J].口腔颌面外科杂志, 2005, 15(3): 234-237.
    [116] Roberts W E. Bone tissue interface[J]. J Dent Educ, 1988, 52(12): 804-809.
    [117] Hale T M, Boretsky B B, Scheidt M J, et al. Evaluation of titanium dental implant osseointegration in posterior edentulous areas of micro swine[J]. J Oral Implantol, 1991, 17(2): 118-124.
    [118] Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis[J]. Clin Oral Implants Res, 1996, 7(3): 261-267.
    [119] Meredith N. A review of nondestructive test methods and their applicationto measure the stability and osseointegration of bone anchored endosseous implants[J]. Crit Rev Biomed Eng, 1998, 26(4): 275-291.
    [120] Davies J E. Mechanisms of endosseous integration[J]. Int J Prosthodont, 1998, 11(5): 391-401.
    [121] Davies J E. Understanding peri-implant endosseous healing[J]. J Dent Educ, 2003, 67(8): 932-949.
    [122] Schouten C, Meijer G J, van den Beucken J J, et al. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography[J]. Biomaterials, 2009, 30(27): 4539-4549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700