稀土铈对UV-B辐射胁迫下植物光合作用光反应的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧层衰减诱发UV-B辐射抵达地球表面增加,对陆生植物的影响引起学术界广泛关注。探讨稀土对UV-B辐射胁迫伤害植物的影响与机理,是稀土环境植物学研究的拓展和延伸,其结果可为减轻UV-B辐射伤害植物的防护对策提供参考。本文采用水培方法,以油料作物大豆(Glycine max)、品种“垦农18”为试验材料,研究稀土铈对UV-B辐射胁迫下植物光合作用光反应的影响。探讨了Ce(Ⅲ)对UV-B辐射胁迫下植物光合作用原初反应、电子传递、光合放氧及光合磷酸化的影响机制,并利用电镜技术同步观察大豆叶片叶绿体超微结构在上述条件下的相应变化。主要内容如下:
     i.确定了Ce(Ⅲ)对大豆幼苗的“剂量-效应”和“时间-效应”
     通过叶面喷施不同剂量Ce(Ⅲ),考察大豆幼苗光合速率(Pn)动态变化,发现各个剂量处理下Pn连续15d动态变化规律不尽相同,证实Ce(Ⅲ)对大豆幼苗光合作用的影响具有剂量效应和时间效应。20mg·L-1Ce(Ⅲ)处理下Pn的增幅最大,且增幅维持较高水平的时间最长,由此确定,该剂量为本实验中的适宜剂量(下同)。
     ii.确定了大豆苗期UV-B辐射的适宜剂量和时间
     测定不同UV-B辐射剂量下大豆叶片Pn变化,发现UV-B辐射剂量与叶片Pn呈显著负相关。与对照植株相比,UV-B辐射强度为0.15W·m-2时,Pn显著降低;为0.45W·m-2时,Pn的降幅>50%。因此确定,0.15 W·m-2和0.45 W·m-2UV-B辐射为本实验中的低(T1)、高(T2)效应剂量。
     iii.发现Ce(Ⅲ)可缓解UV-B辐射对大豆光合作用伤害
     Ce(Ⅲ)能提高大豆幼苗叶绿素(Chl)与类胡萝卜素(Car)含量、气孔导度(Gs)、饱和光光合速率(Ps)、饱和CO2光合速率(Pm)、表观量子效率(AQY)与羧化效率(CE),在一定程度上减缓了因UV-B辐射降解叶绿素、增加气孔阻力、降低量子产额、光合磷酸化和二磷酸核酮糖羧化酶(RuBP羧化酶)活性而导致的Pn下降。Car含量增加能有效防止UV-B辐射引起Chl发生光氧化,减轻了UV-B辐射对光系统的损伤。动态测定结果显示,由于Ce(Ⅲ)介导,减缓了5项指标在UV-B辐射期(1~5d)的下降趋势,而加快了在UV-B辐射结束后(6~11d)的上升速度,缩短了恢复历程,最终呈现较好的恢复效果,且低剂量的恢复效果好于高剂量。Pn与Chl含量、Gs、AQY及CE相关性分析结果表明,不同剂量UV-B辐射对植物光合作用的影响机制存在差异。如低剂量下Pn变化更多受Chl含量和AQY影响,高剂量下Pn消长主要与CE与Gs相关。另外,不同UV-B辐射剂量下,Ce(Ⅲ)缓解Pn递减的机制不尽一致。低剂量辐射下,Ce(Ⅲ)对AQY的调控对Pn影响最大,而在高剂量下,Ce(Ⅲ)维持较高Gs与CE活性最为关键。
Gradual depletion of stratospheric ozone layer in atmosphere has lead to increase in solar UV-B radiation that reaches earth surface. Many investigations concerning the influence of UV-B radiation on different terrestrial plants were carried out during the last 25 years. Study on the effect of rare earths elements on plants exposed UV-B radiation aimed to develop and extend the research for environmental botany of rare earths. The results of this study could provide a new direction for the ecological protection of plants against the damage of UV-B radiation. In this paper, effects of cerium(Ⅲ) on photosynthetic light reactions in soybean seedlings exposed to supplementary ultraviolet-B radiation(UV-B) were studied by hydroponics under laboratory conditions. Various techniques such as photosynthetic gas exchange, chlorophyll fluorescence as well as scanning electron microscope were used to investigate the regulating mechanism of Ce(Ⅲ) on photosynthetic primary reaction, electron transport, photosynthetic oxygen evolution and photophosphorylation and changes of chloroplast ultrastructure in leaves exposed UV-B radiation. The main results were below:
     i. Dose-effect and time-effect relation between the dose of Ce(Ⅲ) and photosynthetic rate in leaves of soybean
     Dynamic changes of photosynthetic rate(Pn) in leaves sprayed with Ce(Ⅲ) solution at various concentration showed that the trends with different treatments was not the same during 15 day, and proved that the effect of Ce(Ⅲ) on Pn were closely related to its concentration and treating time. The increase range of Pn in leaves treated with 20mg·L-1 Ce(Ⅲ) was largest and the period with higher lever was longest, which proved that this concentration was suitable in our experiments.
     ii. Dose-effect relation between the intensity of UV-B radiation and photosynthetic rate in leaves of soybean
     Changes of Pn in leaves exposed different intensity of UV-B radiation showed that Pn was significantly and negatively correlated with intensity of UV-B radiation. Compared with the control sample, Pn was significantly decreased in leaves exposed to UV-B radiation at the level of 0.15W·m-2 while Pn was decrease more than 50% in leaves exposed to UV-B radiation at the level of 0.45W·m-2. In our experiment, the lower intensity of UV-B radiation was 0.15W·m-2 and the higher one was 0.45W·m-2.
     iii. The protective effect of Ce(Ⅲ) on photosynthesis in leaves of soybean against the damage of UV-B radiation
引文
[1] 宁大同,王华东. 全球环境导论[M]. 北京: 科学出版社, 2002, 480-488.
    [2] 陈立民,吴人坚,戴星翼.环境科学原理[M].科学出版社,2003,200-207.
    [3] 祁东林,张晓春,赵玉成,等. 青藏高原东北部地区大气臭氧变化特征[J]. 青海环境, 2001, 11(2):55-59.
    [4] UNEP, 2002. Executive summary. Final of UNEP/WMO Scientific assessment of ozone depletion: 2002. Prepared by the Scientific Assessment Panel of the Montreal Protocol on Substances that Deplete the Ozone Layer. UNEP, Nairobi (released 23 August 2002)
    [5] Bj?rn L.O., Murphy T.M. computer calculations of solar ultraviolet-B radiation at ground level [J]. Physiologia Plantarum, 1985,23:555-561.
    [6] Albritton D.L., Watson R.J.Scientific assessment of stratospheric ozone change.1989 Global Ozone Research and Monitored Project Report NO.20,WMO,Geneva, 1990.
    [7] Kakani V.G., Reddy K.R., Sailaja K. Field crop response to ultraviolet-B radiation: a review [J]. Agricultural and Forest Meteorology, 2003, 120:191-218.
    [8] Flint S.D., Ryel R.J., Caldwell M.M. Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies [J]. Agriculture and Forest Meteorology, 2003, 120: 177-189.
    [9] Laakso K., Huttunen S. Effect of the ultraviolet-B radiation (UV-B) on conifers: a review [J]. Environmental Pollution, 1998, 99: 319-328.
    [10] 王勋陵. 增强紫外B辐射对植物及生态系统影响研究的发展趋势[J]. 西北植物学报,2002, 22(3): 670-681.
    [11] 王传海,郑有飞,何雨红,等. 紫外辐射增加对小麦群体结构的影响[J].南京气象学院学报, 2000, 23(2): 204-210.
    [12] 颜景义,郑有飞,杨志敏.地表太阳紫外辐射强度变化对小麦影响初步研究[J].南京气象学院学报,1995,18(3): 416-420.
    [13] 李元,杨济龙,王勋陵. 紫外辐射增加对春小麦根际土壤微生物种群数量的影响[J].中国环境科学, 1999,19(2):157-160.
    [14] 李元,王勋陵. 增强的UV-B辐射对麦田生态系统中杂草、大型土壤动物和麦蚜种群数量动态的影响[J]. 生态学报,2001,21(1):131-135.
    [15] Ballare C.L., Scopel A.L., Stapleton A.E., et al. Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox. Plant Physiology (Rockville), 1996,112(1):161-170.
    [16] 李元,王勋陵,胡之德. 田间增强 UV-B 辐射对麦田生态系统 Fe 营养和累积的影响[J]. 环境科学,2000,21(2):36-40.
    [17] 李元,王勋陵. UV-B辐射增加对麦田生态系统N、P累积和循环的影响[J].农业环境保护,2000, 19(3):129-132.
    [18] 王传海,郑有飞,万长建,等. 紫外辐射增加对作物种子发芽及幼苗生长的影响[J].中国农业气象,2000,21(3):33-35.
    [19] 冯虎元,徐世健,安黎哲,等. UV-B辐射对8个大豆品种种子萌发率和幼苗生长的影响[J].西北植物学报,2001,21(1):14-20.
    [20] 何雨红,郑有飞,王传海,等.紫外辐射增强对菠菜种子萌发及出苗的影响[J].南京气象学院学报,2001,24(2):265-268.
    [21] 侯扶江,贲桂英,颜景义,等. 田间增加紫外线(UV)辐射对大豆幼苗生长和光合作用的影响[J].植物生态学报,1998,22(3):256-261.
    [22] 王传海,郑有飞,万长建,等. 紫外线 UV-B 增加对小麦开花及结实率的影响[J].农业环境保护, 2000, 19(4):221-223.
    [23] Rozema J., Noordijk A.J., Broekman R.A., et al. (Poly) phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B [J]. Plant Ecology, 2001, 154: 11-26.
    [24] 冯虎元,安黎哲,徐世健,等. 紫外线-B 辐射增强对大豆生长、发育、色素和产量的影响[J].作物学报,2001,27(3):319-323.
    [25] 冯虎元,陈拓,徐世健,等. UV-B 辐射对大豆生长、产量和稳定碳同位素组成的影响[J].植物学报,2001,43(7):709-713.
    [26] 李元,王勋陵. 紫外辐射增加对春小麦生理、产量和品质的影响[J]. 环境科学, 1998, 18(5): 504-509.
    [27] 李元,王勋陵. UV-B 辐射对田间春小麦生物量和产量的影响[J].农村生态环境, 1999, 15(2): 28-31.
    [28] 王传海,郑有飞,万长建,等.紫外辐射增加对小麦产量及产量形成的影响[J].中国农业气象, 2001,22(4):19-32.
    [29] Murphy T.M. Membranes as targets of ultraviolet radiation [J]. Physiologia Plantarum,1983, 58 (2): 381-388.
    [30] 陈拓,安黎哲,冯虎元,等. UV-B 辐射对蚕豆叶膜脂过氧化的影响及其机制[J].生态学报, 2001, 21(4):579-583.
    [31] 杜英君,靳月华. 远紫外辐射对紫杉幼苗针叶膜脂过氧化及内源保护系统的影响[J].应用生态学报,2000,11(5): 660-664.
    [32] 杨景宏,陈拓,王勋陵. 增强紫外线 B 辐射对小麦叶绿体膜组分和膜流动性的影响[J].植物生态学报,2000,24(1):102-105.
    [33] Van T.K., Garrard L.A., West S.H. Effects of UV-B radiation on net photosynthesis of some crop plants [J]. Crop Science,1976,16:715-718.
    [34] Oxada M., Kitajima M., Bulter W.L. Inhibition of photosystem Ⅰand photosystem Ⅱin chloroplasts by UV radiation[J]. Plant and Cell Physiology, 1976,17: 35-41.
    [35] 侯扶江,李广,贲桂英. 增强的 UV-B 辐射对黄瓜不同叶位叶片生长,光合作用和呼吸作用的影响[J]. 应用与环境生物学报,2001,7(4): 321-326.
    [36] Herick F. Effect of ultraviolet light on stomata movement [J]. Biologia Plantarum,1964, 6: 70-73.
    [37] Wright L.A., Murphy T.M. Short wave ultraviolet light closes leaf stomata [J]. American Journal of Botany, 1982, 69: 1196-1198.
    [38] 郑有飞,简慰民,李秀芬,等. 紫外辐射增强对大豆影响的进一步分析[J].环境科学学报, 1998, 18(5): 549-552.
    [39] Rikin A., Atomon D., Gitter C. Chilling injure in cotton: Prevention of abscisic acid [J]. Plant and Cell Physiology, 1979, 20: 1537-1539.
    [40] 杨景宏,陈拓,王勋陵. 增强 UV-B 辐射对小麦叶片内源 ABA 和游离脯氨酸的影响[J].生态学报,2000,20(1):39-42.
    [41] Piere M., Baschke K. Correlation between loss of turgor and accumulation of abscisic acid in detached leaves [J]. Planta,1980, 148:174-182.
    [42] Brandle J.R., Campbell W.F., Sisson W.B. and Caldwell M.M. Net photosynthesis, electron transport capacity, and ultrastructure of Pisum sativum L. exposed to ultraviolet-B radiation [J]. Plant physiology, 1977, 60(1):165-169.
    [43] 侯扶江,贲桂英. 紫外线-B 辐射对 3 种植物幼苗光合作用和呼吸作用的影响研究初报 [J].草业学报,1998,7(3):77-79.
    [44] Larkum A.W.D., Wood W.F. The effect of UV-B radiation on photosynthesis and respiration of phyto-plankt on benethic macroalgae and sea grasses [J].Photosynthetic Research, 1993, 36(1): 17-23.
    [45] Mackerness S.A., Liu L.S. Individual members of the light-harvesting complex Chlorophyll a/b binding protein gene family in pea show differential responses to Ultraviolet-B radiation [J]. Plant Physiology, 1998, 103:377-384.
    [46] Jordan B. R. Changes in mRNA levels and polypeptide subunit of ribulose1, 5-bisphosphate caboxylase in response to supplementary Ultraviolet-B radiation [J]. Plant Cell Environment, 1992, 1591-1598.
    [47] Lumsden P. J. Plants and UV-B responses to environmental change [M]. Cambridge University Press, U K, 1997.
    [48] Nogues S., Baker N. R. Evaluation of the role of damage to photosystem Ⅱ. In the inhibition of CO 2 assimilation in pea leaves on expo sure to UV-B radiation [J]. Plant Cell Environment, 1995, 18: 781-787.
    [49] Cabor G. L., Mikos G. The role of the genome project in determining gene function insights from model organisms [J]. Cell, 1996, 86: 521-529.
    [50] Macherness S., Thomas B., Jordan B.R., The effect of supplementary ultraviolet-B radiation on mRNA transcripts, translition and stability of chloroplast proteins and pigment formation in pisum sativum [J]. Journal of Experimental Botany, 1997,48:729-738.
    [51] Susek R., Chory J., A tale of two genomes role of a chloroplast signal in coordination nuclear and plastid genome expression [J]. Australian Journal of Plant Physiology, 1992,19:387-399.
    [52] Jenkins M.E., Suzukit C., Mount D.W. Evidence that heat and ultraviolet radiation activiate a common stress response program in plants that is altered in the UV-B mutant of A rabidops is thaliana [J]. Plant Physiology, 1997, 115: 1351-1362.
    [53] Jenkins G.J. UV and blue light signal transduction in Arabidopsis [J]. Plant Cell and Environment, 1997, 20: 773 - 778.
    [54] Harter K., et al. Light induces rapid changes of the phosphorylation pattern in the cytosol of evacuolated parsley protoplasts [J]. Proc Natl Acad Sci USA,1994, 91:5038-5048.
    [55] Mackerness S., et al. Early signalling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide [J]. FEBS Letter, 2001,489: 237-242.
    [56] Li S.S., Paulsson M., Bjornl O. Temperature-dependent and photorepair of DNA damage induced by UV-B radiation in suspension cultured tobacco cells [J]. Journal Photochemistry and Photobiology: Biology, 2002, 66 (1): 67-72.
    [57] Hidema J., Kuma I.T., Sutherland B.M. UV Radiation- sensitive Norin 1 rice contains defect ive cyclobutane pyrimidine dimmer photolyase [J]. Plant Cell, 2000, 12: 1569-1578.
    [58] Li S.S., Wang Y., Wang X.J., et al. Cyclobutane pyrimidine dimer accumulation in relation to UV-B sensitivity in rice cultivars [J ]. Acta Botanica Neerlandica, 2000, 42(6): 576-581.
    [59] 黄晓华,周青,马育国,等. 钙减轻紫外辐射伤害小麦幼苗的研究[J ].农业环境保护,2001,40(6): 457-458.
    [60] 周青,黄晓华,施国新,等. 钙对紫外辐射B胁迫下小麦幼苗若干生物学特性的影响[J ].环境科学,2001,22(6): 79-82.
    [61] 倪嘉缵. 稀土生物无机化学(第二版)[M]. 北京:科学出版社,2002,8.
    [62] 魏复盛,刘建良,腾恩江,等. 我国土壤中稀土元素背景值特征[J]. 环境科学,1991, 13(5): 78-82.
    [63] 冉勇,刘铮. 稀土元素在土壤和氧化物表面的吸附和解吸研究[J]. 环境科学学报, 1993,13(3): 288-294.
    [64] 张运林,张庆忠. 稀土在春小麦上的十年定位试验[J].稀土, 1993, 14(5): 40-44.
    [65] 陈组义. 核素失踪技术研究稀土元素 147Pm、141Ce 和 147Nd 的环境毒理学与安全性[J]. 核学农报, 2004, 18(1): 36-42.
    [66] 竺伟民,陈组义. 稀土元素在土壤中运移数值模拟研究[J].中国稀土学报,1996,14(4): 314-346.
    [67] 彭安,朱建国. 稀土元素的环境化学及生态效应[M]. 北京: 中国环境科学出版社, 2003.
    [68] Cossa D. Cadmium in Mytilus spp.: Worldwide survey and relationship between seawater and mussel content [J]. Marine Environmental Research, 1978,26: 265-284.
    [69] Scribner B.F. Proceedings Sixth Summer Conference On Spectroscopy and Its Application [M]. New York: Technology Press, 1939,10.
    [70] WangY.Q., Sun J.X., Chen H.M., et al. Determination of the contents and distribution characteristics of REE in natural plants by NAA [J]. Journal of Radioanalytical and Nuclear Chemistry, 1997, 219(1): 99-103.
    [71] Thomas W.A. Decomposition of loblolly pine needles with and without additions of dogwood leaves. Ecology, 1968,49:568-571.
    [72] 王玉琦,孙景信. 中子活化法研究稀土矿区植物体中稀土元素的分布特征[J].中国稀土学报, 1997,13:160-164.
    [73] Ichihashi H., Morita H., Tatsukawa.R. Rare earth elements (REEs) in naturally grown plants in relation to their variation in soils[J]. Environmental Pollution, 1992, 76(2): 157-162.
    [74] 郭伯生. 农业中的稀土[M]. 北京:中国农业科技出版社, 1988.
    [75] 王凤珍,齐大荃,邵宏翔,等. ICP-AES 法测定信阳毛尖茶叶、茶水及茶酒中的稀土元素[J]. 中国稀土学报, 1988, 6(3):81-85.
    [76] 马玉增,劳秀荣,刘春生,等. 浸种花生稀土元素分配规律的研究[J]. 稀土,1996, 17(5):63-65.
    [77] 祁俊生. 稀土在玉米及水稻中吸收分布与积累规律研究[J].西南农业大学学报, 2000, 22(6):545-548.
    [78] 李德成,王东红. 稀土元素在土壤环境和植物中的分布[J]. 农业环境保护,2001,20(4):193-195.
    [79] 魏幼璋. 稀土在农业中应用的生理学基础[J].植物营养与肥料学报, 2000, 6(4): 464-470.
    [80] 马林. 喷施硝酸稀土对甘蔗钾素吸收、运转和分配的影响[J].稀土, 2003, 24(3): 47-50.
    [81] 孙景信,赵航. 小麦与水稻植株中稀土元素的含量及其分布的研究[J]. 科学通报, 1992,37(24): 2273-2276.
    [82] Furie B.C. Substitution of lanthanum ions for calcium ions in the activation of bovine prothrombin by activated factor X [J]. Journal Biological Chemistry, 1975, 25: 3235-3241.
    [83] Leonard R.T., Nagahashi G., Thomson W.W. Effect of lanthanum. on ion absorption in corn roots [J]. Plant physiology, 1975, 55(3): 542-546.
    [84] Zhou S.G., Liu M. Energy dispersive X-Ray microanalysis and ultrastructural location of Lanthanum in intact plant [J]. Acta Botanica Sinica, 1998,40(2): 180-183.
    [85] 周世恭. 镧在植物体中能谱分析和超微结构定位[J]. 电子显微学报, 1993,12(5):100-403.
    [86] Robards A.W., Ross M.E., The entry of ions and molecules into roots: an investigation using electron-opaque tracers [J]. Planta, 1974,120: 1-12.
    [87] 李齐,沈应柏. Ce在I-69杨根中的吸收、分布及其对其它元素吸收的影响[J]. 中国稀土学报,1995,13(4):355-360.
    [88] Cao X.D., Zhao G.W., Yin M., et a1. Determination of ultratrace rare earth elements in tea by induce timely coupled plasma mass spectrometry with microwave digestion and AG50W-x8 cation exchange chromatography [J]. Analysis,1998,123(4):1115-1119.
    [89] 熊炳昆,陈蓬等. 稀土农林研究与应用[M]. 北京: 冶金工业出版社, 2000, 1-4.
    [90] 吴兆明,唐锡珂,高小霞,等. 稀土元素对农业增产作用的研究Ⅱ. 稀土元素对作物某些生理过程的影响[J].中国稀土学报, 1984, 2: 73-75.
    [91] 罗连光,万强,张秀菊,等. 稀土微肥的应用效果[J].湖南农业科学, 2004,5:22-24.
    [92] 张在德,彭涛. 稀土元素对大麦种子萌发及幼菌吸收NO3-和K+的影响[J].稀土, 1990, 11(2): 26-28.
    [93] 候彩霞,沈薄礼,刘戈,等. 镧和铈对小麦幼苗过氧化物酶和淀粉酶活性及其同工酶的影响[J].稀土,1997,18(2):64-66.
    [94] 刘德龙,杨燕生. 稀土发光探针研究钙调素的进展[J].稀土,1998,19(4):62-65.
    [95] 秦煊南,周祖春. 稀土对巨峰葡萄果实产量品质的影响及生理效应研究[J].西南农业大学学报,1996,18(1):61-64.
    [96] 卫春智,于继洲. 稀土元素对苹果园艺性状及产量的影响[J].土壤通报,2001,32(5):228-229.
    [97] 张宏江,郝星.施用稀土多元复合肥对减少蔬菜中硝酸盐积累的研究[J].稀土,199516(3):42-45.
    [98] 万强,李东郁.稀土提高农产品产量,改善品质和降低农药残留量效果的研究[J].稀土, 998, 19(5):49-55.
    [99] 胡瑞芝,王惠群.离子稀土对水稻叶片脂质过氧化作用和细胞透性及产量的影响[J].湖南农学院学报,1995,21(3):231-234.
    [100] 张殿香,苏正义.春小麦施用稀土增产效果及抗逆性的初步研究[J].稀有金属, 1994, 18(4): 253-257.
    [101] 聂呈荣,黎振兴.稀土对花生光合作用和氮素代谢的影响[J].广东农业科学,1996,5:25-27.
    [102] 常江 , 张自立 , 郜红建 , 等 . 外源稀土对水稻伤流组分的影响 [J]. 植物营养与肥料学报,2004,10(5):522-525.
    [103] 廖铁军,苏彬彦.稀土对作物的生物效应研究[J].稀土,1994,15(5):26-29.
    [104] 李元沅,胡瑞芝.离子稀土对水稻根际生物磁性及生长发育的影响[J].湖南农业大学学报,1996,22(4):341-345.
    [105] 高粱,夏荣基. 施用稀土的小麦显微结构研究[J]. 稀土,1988,(4): 26-28.
    [106] 白宝璋,杨玉昌,孟宪局,等. 稀土元素对甜菜光合产物分配的影响[J].核农学报, 1995, 9(3): 189-192.
    [107] 黄晓华,周青.稀土在农肥中的应用[J].自然杂志, 2002, 23(3): 160-163.
    [108] 储仲稀. 氯化铈对高等植物叶绿素形成的影响[J]. 稀有金属,1988,11(7): 17-20.
    [109] 沈薄礼,戴新宾.稀土对小麦叶绿体光化学反应的效应[J]. 稀土,1994,15(2): 71-73.
    [110] 严重玲,洪业汤,杨先科, 等. 稀土元素对酸雨胁迫下小麦抗氧化酶的生物作用[J]. 科学通报,1998,43(20): 2206-2211.
    [111] 严重玲,洪业汤,王世杰,等. 稀土元素对酸雨胁迫小麦活性氧清除系统响应的作用[J].作物学报,1999,25(4): 504-508.
    [112] Huang X.H., Zhou Q. Ecophysiological effect of La-Gly on soybean harmed by acid rain [J]. Journal of Rare Earths,1999, 17(1): 77-80.
    [113] Huang X.H., Zhou Q. Effect of Cerium on seed germination under acid rain stress [J]. Journal of Rare Earths, 2000,18(4):298-303.
    [114] 周青,黄晓华,王东燕,等. La 对腊梅酸致损伤的影响[J]. 生态学杂志, 1997,16(6): 59-63.
    [115] 周青,黄晓华,王丹,等. La-Gly 对酸雨伤害植物的影响[J]. 应用与环境生物学报,1999,5(6): 570-575.
    [116] 严重玲,李瑞智,钟章成. 酸雨胁迫下稀土元素对小麦的生物学效应[J]. 中国农业科学, 1998, 31(3) : 89-92.
    [117] 贾棚,邢勇,周亚梭,等.水稻抗重金属污染实验[J].中国稀土学报,1997,15(专辑): 401-406.
    [118] 贾棚,高惠仙,王青,等.甘蓝抗重金属污染研究[J].中国稀土学报,1997,15(专辑): 432-437.
    [119] Zhou Q., Huang X.H. Mitigative effect of La on Glycine max seedling under Pb-Cd compound pollution [J]. Journal of Rare Earths, 1999,17(4): 303-309.
    [120] Huang X.H., Zhou Q. Effect of La-Gly physiological characteristics of Glycine max seedling under Pb stress [J]. Journal of Rare Earths, 2000,18(3):244-250.
    [121] 胡忻,陈逸郡,王小蓉,等. 稀土元素铈对小麦幼苗镉伤害的防护效应[J]. 南京大学学报(自然科学), 2001,37(6):671-675.
    [122] 张丽霞. Nd(III)及其配合物对重金属镉伤害植物的缓解效应[J]. 广西师院学报(自然科学版),2001,18(4): 33-36.
    [123] 安黎哲,王勋陵. 臭氧对春小麦生长的影响及稀土的防护作用[J]. 生态学报,1994,14(1): 95-99.
    [124] 万强,田际榕,彭海壶,等.稀土提高农产品产量\改善品质和降低农药残留量的研究[J]. 稀土, 1998,19(5):49-53.
    [125] 赫超兴,王怀松,张志斌,等. 稀土植宝处理对大棚小白菜产量及农药残留量的影响[J].中国蔬菜,2001,(6):13-18.
    [126] 汪东风,王常红. 稀土在茶树上应用研究进展[J]. 稀土,1996,17(4):46-49.
    [127] Grill E., Winnacker E.L. Phytochelatins,a class of heavy metal-binding peptides from plants are functionally analogous to metallothioneins[J]. Proceeding of the National Academy of Science of USA,1987, 84:439-445.
    [128] Smith J.C., Mikiten T.M. Speciation of yttrium and lanthanides in natural water by inductively coupled plasma mass spectrometry after preconcentration by ultrafiltration and with a chlating resin[J]. Analysis,1998,123(5):773-779.
    [129] Zheng H.L., Zhang G.C., Cao J.Q., et al. Effect of La on H+ transmembrane gradient and membrane potential rive seedling roots[J]. Journal of Rare Earths, 2002,20(3):234-239.
    [130] 郑海雷,赵中秋,张春光,等. 稀土生物效应机理研究进展[J].稀土,2000,21(4): 55-60.
    [131] Rengel Z. Rare earth elements and other metals on net Ca2+ uptake by amaranthus protoplasts [J]. Journal of Plant Physiology,1994,143:47-56.
    [132] Gary D.H. Physiological effect of direct impact of acidic deposition on foliage [J]. Agriculture Ecology Environment, 1992,42: 307-314.
    [133] 郭得惠,张延毅. 模拟酸雨对蔬菜作物细胞透性和叶绿素含量的影响[J]. 植物生理学通讯,1985,(5):24-28.
    [134] 张金标,黄维南. Cd 对植物生理生态效应研究进展[J]. 生态学报, 2000, 20(3):514-518.
    [135] 赵贵文,陈为钧. 稀土元素对植物光合生理效应的作用机制[M]. 中国稀土科技进展, 北京: 冶金工业出版社,2000, 334.
    [136] Andersson I. Large structures at high resolution:the 1.6 A crystal structure of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase complexd with 2-carboxyarabinitol bisphosphate [J]. Journal of Molecular Biology,1996, 259:160-168.
    [137] Chen W.T., Gu Y.H.,Wang S.B., et al. Effect of lanthanum on RuBPcase activity of tobacco seedling [J]. Journal of Rare Earths,2000,18(4):310-316.
    [138] 彭安,庞欣. 稀土对植物抗逆作用的自由基机制[J]. 环境化学,2002,21(4): 313-319.
    [139] Wang J.S., Guo C.R., Cheng Y.X., et al. Mechanism of cerium ions scavenging superoxide radical[J]. Journal of Rare Earths,1997,15(2):46-52.
    [140] Wang C.X., Liu Y.L., Li F.M., et al. Inhibition effect of rare earth nitrates on superoxide anionradical by pulse radiolysis [J]. Journal of Rare Earths, 2000,18(3):286-292.
    [141] Ji H.N., Zhou Q., Huang X.H., et al, UV-Vis Spectroscopy study on the interaction between microperoxidase-11 and rare earth ion Pr(III) under acid rain stress[J]. Journal of Rare Earths,2002,20(5):54-62.
    [142] Gupta M. Role of glutathione and phytochelation in H. verticillata and V. spiralis under mercury stress [J]. Chemosphere, 1998, 37(4): 785-791.
    [143] Xu D.Q., Shen Y.K. Photosynthetic efficiency and crop yield [M]. In: Pressarakli M(ed). Handbook of Plant and Crop Physiology (New edition). New York: Marcel Dekker, 2002,821-834.
    [1] 熊炳昆,陈蓬.稀土农林研究与应用[M]. 北京:冶金工业出版社,2000,8.
    [2] 李荣昌,杨晓达,王夔等.我国稀土生物无机化学研究进展[J].中国稀土学报, 2004,22(1): 1-6.
    [3] Furst A. Hormetic effects in pharmacology: pharmacological inversions asprototypes for hormesis [J]. Health Physics,1987, 52(5): 527-530.
    [4] 陈组义. 稀土的 hormesis 效应及其农用对农业生态环境的潜在影响[J].农村生态环境,2004,20(4): 1-5.
    [5] 张晓春,李邨,陆天虹,等.镧离子对植物体内过氧化物酶活性的影响[J].无机化学学报,2003,19 (12): 1285-1289.
    [6] 卢振伟,陈东.混和稀土对大鼠肝脏中 7 种酶的小剂量刺激作用[J].应用化学,2003,20(1):6-9.
    [7] 张信连,杨维东,刘洁生,等. 稀土元素生物效应中的 Hormesis 现象[J].生物技术,2004,12(6): 82-84.
    [8] 倪嘉缵. 稀土生物无机化学(第 2 版) [M].北京:科学出版社,2002.
    [9] Gao Y., Zeng F., Yi A., et al. Research of the entry of rare earth elementsEu3+ and La3+ into plant cell [J ]. Biological Trace Element Research, 2003, 91 (3): 253-265.
    [10] Hong F.S., Wang L., Meng X.X. The effect of cerium (III) on the chlorophyll formation in spinach [J]. Biological Trace Element Research, 2002, 89(3): 263-276.
    [11] 邱关明,李幼荣,陈石燕,等. 稀土对生物机体剂量效应机理的研究进展[J].稀土, 2003, 24(1): 49-56.
    [12] 李新民,倪嘉缵,陈建文,等. 镧和钙对人红细胞膜的作用[J].中国稀土学报,1995,13(3): 259-262.
    [13] 张金红,吴携平,魏继中,等. 稀土元素对蚕豆叶片质膜上 Ca2+、Mg2+-ATPase 活性的影响[J].生物化学杂志, 1992, 8(2): 195-200.
    [14] Liu P., Liu Y., Lu Z., et al. Study on biological effect of La3+ on Escherichiacoli by atomic force microscopy [J]. Journal of Inorganic Biochemistry, 2004,98(1) :68-72.
    [15] 竺伟民,熊炳昆,等. 农业中的稀土[M]. 北京:中国农业科技出版社, 1988,309.
    [16] 张运林,熊炳昆,胡影浦,等. 稀土在春小麦上的十年定位试验[J]. 稀土, 1993,14(5): 40-44.
    [17] Kakani V.G., Reddy K.R., Sailaja K. Field crop response to ultraviolet-B radiation: a review [J]. Agricultural and Forest Meteorology, 2003,120:191-218.
    [18] Van T.K., Garrard L.A., West S.H. Effects of UV-B radiation on net photosynthesis of some crop plants [J]. Crop Science, 1976,16:715-721.
    [19] Basiouny F.M. Some morphological and biochemical characteristics of C3 and C4 plants irradiated with UV-B radiation [J]. Plant Physiology, 1978, 42:29-34.
    [20] Teramura A.M. Effects of UV-B radiation on soybean [J]. Plant Physiology, 1980,5:483-471.
    [21] Murali N.S., Teramura A.H. Effect of supplemental UV-B radiation on the growth and physiologyof field growth soybean [J]. Environmental and Experimental Botany, 1986,26 (3): 233-239.
    [22] 杨志敏,颜景义,郑有飞. 紫外辐射增加对大豆光合作用和生长的影响[J]. 生态学报, 1996, 16(2): 154-159.
    [23] 郑有飞,简慰民,李秀芬,等. 紫外辐射增强对大豆影响的进一步分析[J].环境科学学报, 1998,18(5): 549-552.
    [24] Murali N.S., Teramura A.H. Effect of UV-B irradiation on soybean.ⅥInfluence of phosphorus nutrition on growth and flavonoid content [J]. Plant Physiology,1985,63: 413-419.
    [25] 颜景义,杨志敏,郑有飞,等.大豆对紫外辐射的生物效应的研究[J]. 农业环境保护, 1995,14(4): 154-157,177.
    [26] 郑有飞 , 颜景义 , 杨志敏 , 等 . 紫外线辐射增加对大豆影响及其估算 [J]. 应用气象学报,1995.6:214-219.
    [27] 高召华,李元,谭玲玲.植物 UV-B 辐射响应的种内差异及机理探讨[J].农业生态环境, 2002, 18(1):50-53.
    [28] Allen D.J., Mckee I.F., Farage P.K., et al. Analysis of limitiations to CO2 assimilation on exposure of leaves of two Brassica napes cultivars to UV-B [J]. Plant Science, 1997, 20:633-640.
    [29] Bolink E.M., Schalkwijk I.V., Posthumus F., et al. Growth under UV-B radiation increases tolerance to high-light stress in pea and bean plants [J]. Plant Ecology, 2001, 154: 149-156.
    [30] Nogués S., Barker N.R. Effect of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation [J]. Journal of Experimental Botany, 2000, 51:1309-1317.
    [31] Petropoulou Y., Kyparissis A., Nikolopoulos D., et al. Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions [J]. Plant Physiology, 1995, 94:37-44.
    [32] 李德成,王东红.稀土元素在土壤环境和植物中的分布[J]. 农业环境保护,2001,20(4):193-195.
    [1] Okada M., Kitajima M., Bulter W.L. Inhibition of photosystem Ⅰand photosystem Ⅱin chloroplasts by UV radiation [J]. Plant Cell Physiology, 1976, 17:35-41.
    [2] Strid A. Alteration in expression of defense genes in Pisum sativm after exposure to supplementary UV-B radiation [J]. Plant Cell Physiology, 1993, 34:949-953.
    [3] 侯扶江,李广,贲桂英. 增强的UV-B辐射对黄瓜不同叶位叶片生长,光合作用和呼吸作用的影响[J]. 应用与环境生物学报, 2001, 74:321-326.
    [4] Wright L.A., Murphy T.M. Short-wave ultraviolet light closes leaf stomata [J]. Amerivan Journal of Experimental Botany, 1982, 69:1196-1199.
    [5] Day T.A., Vogelmann T.C. Alterations in photosynthesis and pigment distribution in pea leaves following UV-B exposure [J]. Plant Physiology, 1995, 94:433-440.
    [6] 郑有飞,简慰民,李秀芬,等. 紫外辐射增强对大豆影响的进一步分析 [J]. 环境科学学报, 1998, 18(5): 549-552.
    [7] 杨景宏, 陈拓, 王勋陵. 增强UV-B辐射对小麦叶片内源ABA和游离脯氨酸的影响 [J].生态学报, 2000, 20(1):39-42.
    [8] Nogués S., Allen D.J., Morison J.I.L., Baker N.R. Characterization of Stomatal Closure Caused by Ultraviolet-B Radiation [J]. Plant Physiology, 1999, 121(2): 489-496.
    [9] 熊炳昆,陈蓬.稀土农林研究与应用[M].北京:冶金工业出版社,2000,8.
    [10] 高粱,夏荣基. 施用稀土的小麦显微结构研究 [J]. 稀土, 1988, (4):26-28.
    [11] 储钟稀. 氯化铈对高等植物叶绿素形成的影响 [J]. 稀有金属, 1988, 11(7):17-20.
    [12] 储钟稀,牟梦华,张和民,等. 氯化铈对螺旋藻光合放氧色素和蛋白质形成的影响 [J].中国稀土学报, 1994, 12(4):344-347.
    [13] 白宝璋,杨玉昌,孟宪局,等. 稀土元素对甜菜光合产物分配的影响 [J]. 核农学报,1995, 9(3):189-192.
    [14] 梁婵娟,曾庆玲,沈东兴,等. 稀土对UV-B辐射伤害植物的影响Ⅰ-Ce对UV-B辐射胁迫下油菜幼苗生长的影响 [J]. 农业环境科学学报, 2004, 23(1): 22-25.
    [15] 张志良. 植物生理学实验指导 [M].北京:高等教育出版社,1990,57.
    [16] 余叔文. 植物生理与分子生理学 [M]. 北京:科学出版社, 1992, 87.
    [17] Spunda V., Kalina J., Naus J., et al. Responses of photosystem Ⅱphotochemistry and pigment composition in needles of Norway spruce saplings to increase radiation level [J]. Photosynthetica, 1993, 28:401-413.
    [18] Sharma P.K., Anand P., Sankhalkar S., Shetye R. Photochemical and biochemical changes in wheatseedlings exposed to supplementary UV-B radiation [J]. Plant Science, 1998, 132:21-30.
    [19] Correia C.M., Torres-Pereira M.S., Torres-Pereira J.M.G. Growth, photosynthesis and UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B radiation [J]. Environmental Pollution, 1999,104: 383-388.
    [20] 聂呈荣,黎振兴. 稀土对花生光合作用和氮素代谢的影响 [J]. 广东农业科学, 1996, (5): 25-27.
    [21] 廖铁军,黄云,苏彬彦,等.稀土对菠菜产量、品质的作用及生理效应研究[J].稀土,1994,15(5): 26-29.
    [22] 储钟稀,牟梦华,邵宏翔,等.铈对黄瓜叶绿体叶绿素蛋白质复合物的影响[J].植物学报,1994, 36(10): 785-789.
    [23] 胡勤海,叶兆杰. 稀土元素的植物生理效应[J]. 植物生理学通讯,1996,32(4): 296-300.
    [24] 刘清华,钟章成. 紫外线-B对银杏光合生理指标的影响 [J]. 西南师范大学学报(自然科学版), 2002, 27(3):378-381.
    [25] Waterworth W.M., Jiang Q., West C.E., et al. Characterization of Arabidopsis photolyase enzymes and analysis of their role in protection from ultraviolet-B radiation [J]. Journal of Experimental Botany, 2002, 53(371): 1005-1015.
    [26] Huang X.H., Zhou Q., Zhang G.S. Advances on Rare Earth Application in Pollution Ecology [J]. Journal of Rare Earths, 2005, 23(1): 5-11.
    [27] Liang B., Zhang G.S., Zhang F., et al. Effect of Lanthanum on plant under supplementary ultraviolet-B radiation:ⅠEffect of lanthanum on flavonoids contents in soybean seedlings exposed to supplementary ultraviolet-B radiation[J]. Journal of Rare Earths, 2006 (In Press).
    [28] Barsig M., Malz R. Fine structure, carbohydrates and photosynthetic pigments of sugar maize leaves under UV-B radiation [J]. Environmental and Experimental Botany, 2000, 43: 121-130.
    [29] Wright L.A., Murphy T.M. Short-wave ultraviolet light closes leaf stomata [J]. American Journal of Experimental Botany, 1982, 69:1196-1199.
    [30] Negash L., Jensén P., Bj?rn L.O. Effect of ultraviolet radiation on accumulation and leakage of 86Rb+ in guard cells of Vicia faba [J]. Plant Physiology, 1987, 69:200-204.
    [31] Dai Q.J. Ultraviolet-B radiation effects on growth and physiology of four rice cultivars [J]. Crop Science, 1992, 32:1269-1275.
    [32] Liang C.J., Huang X.H., Tao W.Y., et al. Responses of antioxidant enzymes and photosynthesis in rape seedling to the combined stresses of acid rain and UV-B radiation [J]. Journal of Environmental Sciences, 2005, 17(6): 1038-1041.
    [33] Liang C.J., Huang X.H., Tao W.Y., et al. Effects of cerium on growth and physiological mechanism in plants under enhanced ultraviolet-B radiation [J]. Journal of Environmental Sciences, 2006, 18(1): 125-129.
    [34] Chen W.J., Gu Y.H., Zhao G.W., et al. Effects of rare earth ions on activity of RuBPcase in tobacco [J]. Plant Science, 2000,152: 145-151.
    [35] Nogués S., Allen D.J., Morison J.I.L., et al. Characterization of Stomatal Closure Caused by Ultraviolet-B Radiation [J]. Plant Physiology, 1999, 121(2): 489-496.
    [36] Nogués S., Allen D.J., Morison J.I.L., et al. Ultraviolet-B radiation effects on water relation, leaf development and photosynthesis in droughted pea plants [J]. Plant Physiology,1995,117:173-178.
    [37] ZgallaǐH., Steppe K., Lemeur R. Photosynthetic, physiological and biochemical responses of tomato plants to polyethylene glycol-induced water deficit [J]. Journal of Integrative Plant Biology, 2005,47(12): 1470-1479.
    [38] 许大全,张玉忠,张荣铣. 植物光合作用的光抑制 [J]. 植物生理学通讯,1992, 28(4):237-243.
    [39] Olsson L.C., Fraysse L., Bornman J.F. Influence of high light and UV-B radiation on photosynthesis and D1 turnover in atrazine-tolerant and sensitive cultivars of Brassica napus [J]. Journal of Experimental Botany, 2000, 343: 265-274.
    [40] 许大全. 光合作用效率 [M]. 上海:上海科学技术出版社, 2002, 44.
    [41] 周正朝,张希彪,上官周平. 植物对稀土元素的生理生态响应[J]. 西北农业学报, 2004, 13(2): 119-123.
    [42] Makino A., Nakano H., Mae T. Responses of ribulose-1,5-bisphosphate carboxylase, cytochrome F, and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis [J ]. Plant Physiology, 1994, 105:173-179.
    [43] Allen D.J., Nogs S., Baker N.R. Ozone depletion and increase UV-B radiation: is there a real threat to photosynthesis? [J]. Journal of Experimental Botany, 1998, 49(328):1775-1788.
    [44] 陈为钧,顾月华,王圣兵,等. 镧对烟草 RuBPcase 活性影响的研究 [J]. 中国稀土学报, 2000, 18(3):258-261.
    [45] 赵贵文,陈为钧. 稀土元素对植物光合生理效应的作用机制[M].中国稀土科技进展, 北京: 冶金工业出版社, 2000, 334.
    [46] Sharma P.K., Anand P., Sankhalkar S., Shetye R. Photochemical and biochemical changes in wheat seedlings exposed to supplementary UV-B radiation [J]. Plant Science, 1998, 132: 21-30.
    [1] Krause G.H., Weis E. Chlorophyll fluorescence and photosynthesis: the basics [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 313-349.
    [2] Maxwell K., Johnson G.N. (2000). Chlorophyll fluorescence-a practical guide [J]. Journal of Experimental Botany, 51: 659-668.
    [3] Strasser R.J., Tsimill-Michael M., Srivastava. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G and Govindjee (eds). Advances in Photosynthesis and Respiration. Netherlands: KAP Press, chapter 2004, 12: 1-47.
    [4] Strasser R.J., Srivastava A., Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria [J]. Photochemistry and Photobiology, 1995, 61: 32-42.
    [5] Kausky H., Hirsch A. Neue Versuche zur Kohlens?ureassimilation [J]. Naturwissenschaften, 1931,19: 96.
    [6] Govindjee D. Sixty-three years since Kautsky: Chlorophyll a fluorescence [J]. Australian Journal Plant Physiology, 1995, 22: 131-160.
    [7] Maldonado-Rodriguez R., Pavlov S., Gonzalez A., et al. Can machines recognise stress in plants? [J]. Environ Chem Lett, 2003, 1: 201-205.
    [8] Strasser R.J., Strivastava A., Govindgee. Polyphasic chlorophyll a fluorescence transients [J]. Photosynthesis Research, 1997, 52: 147-155.
    [9] Jansen M.A.K., Babu T.S., Heller D., et al. Ultraviolet-B effects on Spirodela oligorrhiza induction of different protection mechanisms [J]. Plant Science, 1996,115:217-223.
    [10] Renger G., Volker M., Eckert H.J., et al. On the mechanism of photosystem Ⅱdeterioration by UV-B irradiation [J]. Photochemical Photobiology, 1989, 49:97-105.
    [11] Vass I., Sass L., Spetea C., et al. UV-B-induced inhibition of photosystem Ⅱ electron transport studied by EPR and chlorophyll fluorescence impairment of donor and acceptor side component [J]. Biochemistry, 1996, 35: 8964-8973.
    [12] Allen D.J., Nogs S., Baker N.R. Ozone depletion and increase UV-B radiation: is there a real threat to photosynthesis?[J]. Journal of Experimental Botany, 1998, 49(328): 1775-1788.
    [13] Hideg E., Vass I. UV-B induced free radical production in plant leaves and isolated thylakoid membranes [J]. Plant Science, 1996, 115: 251-260.
    [14] Nogués S., Allen D.J., Morison J.I.L., Baker N.R. Ultraviolet-B radiation effects on water relation, leaf development and photosynthesis in droughted pea plants [J]. Plant Physiology, 2002, 117:173-181.
    [15] 聂磊,李淑仪,廖新荣,等. 稀土对沙田柚叶片某些生理特性的影响[J]. 仲恺农业技术学院学报, 1999, 12(1) : 44-48.
    [16] Demming-Adams B., Adams W.W. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation [J]. Physiology Plantarum, 1996, 98:253-264.
    [17] Hermans C., Smeyers M., Rodriguez R.M., Eyletters M., Strasser R.J., Delhaye J.P. Quality assessment of urban trees: A comparative study of physiological characterization, airborne imaging and on site of fluorescence monitoring by the OJIP-test [J]. Journal of Plant Physiology, 2003, 160: 81-90.
    [18] 苏行,胡迪琴,林植芳,等. 广州市大气污染对两种绿化植物叶绿素荧光特性的影响[J]. 植物生态学报, 2002, 26(5):599-604.
    [19] Krause G.H., Koster S., Wong S.C. Photoinhibition of photosynthesis under anaerobic condition studied with leaves and chloroplast of Pinacia Oleracea L [J]. Planta, 1985, 165: 430-438.
    [20] Krause G.H. Photoinhibition of photosynthesis an evaluation of damaging and protection mechanisms [J]. Plant Physiology, 1988, 74: 566-574.
    [21] Van, Hasselt P.R., Chow W.S., Anderson J.M. Short-term treatment of pea leaves with supplementary UV-B at different oxygen concentrations: impacts on chloroplast and plasma membrane bound processes [J]. Plant Science, 1996, 120:1-9.
    [22] Greenberg B.M., Gaba V., Canaani O., et al. Separate photosensitize mediate degradation of the 32-kDa photosystemⅡ reaction center protein in the visible and UV spectral regions [J]. Proceeding of the National Academy of Science of USA, 1989, 86: 6617-6620.
    [23] 沈博礼,戴新宾. 稀土对小麦叶绿体光化学反应的效应[J]. 稀土, 1994,15(2): 71-72.
    [24] Hong F.S., Wei Z.G., Zhao G.W., et al. Extended X-ray absorption fine structure study of the bound form of lanthanide in chlorophyll-α from Dicranopteris Dichotoma [J]. Biological Trace Element Research, 2001, 82:289-295.
    [25] Bilger W., Bjrkman O. Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis [J]. Photosynthesis Research, 1990, 25: 173-185.
    [26] 金松恒,蒋德安,王品美,等. 水稻孕穗期不同叶位叶片的气体交换与叶绿素荧光特性[J]. 中国水稻科学, 2004, 18(5):443-448.
    [27] 李新国,段伟,孟庆伟,等. PSⅠ的低温光抑制[J]. 植物生理学通讯, 2002, 38(4):375-381.
    [28] Schnettger B., Critchley C., Santore U.J. Relationship between photoinhibition of photosynthesis, D1 protein turnover and chloroplast structure: Effects of protein synthesis inhibitor [J]. Plant Cell Environment, 1994, 17: 55-64.
    [29] Harbinson J., Genty B., Barker N.R. The relationship between CO2 assimilation and electron transport in leaves [J]. Photosynthesis Research, l990, 25: 2l3-224.
    [30] 洪法水,王雪峰,刘超,等. Ce3+对菠菜 D1/D2/Cytb559 复合物影响的光谱学研究[J]. 中国科学(B辑), 2002, 32(6): 520-526.
    [31] Van, Kooten O., Snel J.F.H. The use of chlorophyll fluorescence nomeclature in plant stress physiology [J]. Photosynthesis Research, 1990, 25:147-150.
    [32] Osmond B., Ramu S.J., Levasseu R.G. Fluorescence quenching during photosynthesis and photoinhibition of Vlva rotundata Blid [J]. Planta, 1993, 190:97-106.
    [33] Van, Kootem O., Snel J.F.H. The use of chlorophyll fluorescence nomenclature in plant stress physiology [J]. photosynthesis research, 1990,25:147-150.
    [34] Sharma P.K., Anand P., Sankhalkar S., et al. Photochemical and biochemical changes in wheat seedlings exposed to supplementary UV-B radiation [J]. Plant Science, 1998, 132:21-30.
    [35] 姜闯道,高辉远,邹琦,等. 田间大豆叶片成长过程中光合特性及光破坏防御机制[J]. 植物生理与分子生物学学报, 2004, 30(4): 428-434.
    [36] Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photos [J]. Annual Review of Plant Physiology and Plant Molecular Biology, l999, 50: 601-639.
    [37] Spunda V., Kalina J., Naus J., et al. Responses of photosystem Ⅱphotochemistry and pigment composition in needles of Norway spruce saplings to increase radiation level [J]. Photosynthetica, 1993, 28:401-413.
    [38] 许大全,张玉忠,张荣铣. 植物光合作用的光抑制 [J]. 植物生理学通, 1992, 28 (4): 237-243.
    [39] Krall J.P., Edward G.E. Relationship between photosystem Ⅱ activity and CO2 fixation in leaves [J]. Journal of Physiology Plant, 1992, 86:180-187.
    [40] Bj?rkman O., Demming-Adams B. Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants [M]. Ecophysiology of Photosynthesis. Berlin: Springer, 17-47.
    [1] 许大全,沈允纲. 光合产物水平与光合机构运转关系的探讨[J]. 植物生理学报,1982,8(2): 173-186.
    [2] Sailisbury F.B., Ross C. Plant physiology [M]. Wadsworth Publishing Company, New York,1969,214.
    [3] Gregory R.P.F. Biochemistry of photosynthesis [M]. 3rd edition, John Wiley and Sons Ltd, London, 1989, 73-77.
    [4] 许大全. 光合作用效率 [M]. 上海:上海科学技术出版社,2002,40.
    [5] 沈薄礼.稀土对小麦(Triticum aestivum)体内光合和呼吸速率及磷酸化功能的影响[J]. 新疆大学学报(自然科学版), 1995,12(1):92-95.
    [6] 周青,黄晓华,宁允叶,等. LaCl3对桃树优质增产的生理学探讨[J]. 应用与环境生物学报,1998, 4(4): 360-363.
    [7] 潘登奎,王玉国,张金桐. LaCl3和PrCl3对菠菜离体叶绿体光合磷酸化作用的影响[J].中国稀土学报, 2003, 21(3): 76-80.
    [8] Allen D.J., Nogs S., Baker N.R. Ozone depletion and increase UV-B radiation: is there a real threat to photosynthesis? [J]. Journal of Experimental Botany, 1998, 49(328): 1775-1788.
    [9] Jansen M.A.K., Gaba V., Greenberg B.M. Higher plants and UV-B radiation: balancing damage, repair and acclimation [J]. Trends in Plants Sciences, 1998, 3(4): 131-135.
    [10] 叶济宇,米华玲. 离体叶绿体的制备. 见:中国科学院上海植物生理研究所编. 现代植物生理学实验指南[M]. 北京:科学出版社, 2002, 1-3.
    [11] 潘登奎,王玉国,张金桐.LaCl3和PrCl3对菠菜离体叶绿体光合磷酸化作用的影响[J].中国稀土学报,2003, 21(1): 77-80.
    [12] 张志良.植物生理学实验指导(第三版)[M].北京:高等教育出版社, 2003,86.
    [13] 袁晓华,杨汉中 主编. 植物生理生化实验[M]. 北京:高等教育出版社,983: 183-190.
    [14] 黄卓辉. 叶绿体偶联因子腺苷三磷酸酶(ATPase)活力的测定. 植物生理学实验手册[M]. 上海:上海科技出版社, 1985,111-115.
    [15] Holá D., Ko?ová M., Rothová O., et al. The effect of low growth temperature on Hill reaction and photosysthem Ⅱ activities in three biotypes of Kochia scoparia(L.) Schrad. With different sensitivity to atrazine and ALS-inhibiting herbicides [J]. Plant Soil Environment, 2004,50(1):10-17.
    [16] 赵微平.作物生理学[M].北京:农业出版社, 1982:281-292.
    [17] Hideg E., Vass I. UV-B induced free radical production in plant leaves and isolated thylakoid membranes [J]. Plant Science, 1996, 115:251-260.
    [18] Rajagopal S., Murthy S.D.S., Mohanty P. Effect of ultraviolet-B radiation on intact cells of the cyanobacterium spirulina platensis: characterization of the alterations in the thylakoid membranes [J]. Journal of Photochemistry and Photobiology B: Biology, 2004, 54: 61-66.
    [19] Murphy T.M. Effect of broad-band ultraviolet and visible radiation in hydrogen peroxide formation by cultured rose cells [J]. Plant Physiology, 1990, 80:63-78.
    [20] 陈为钧,魏正贵,陶冶,顾月华,赵贵文.镧对烟草叶绿体光化学反应的影响[J].作物学报, 2001,27(4): 506-511.
    [21] 沈博礼,戴新宾.稀土对小麦叶绿体光化学反应的效应[J]. 稀土, 1994,15(2): 71-72.
    [22] 王金胜,郭春绒,程玉香.铈清除超氧物阴离子自由基的机理[J].中国稀土学报,1997,15(2): 151-154.
    [23] 潘登奎,杨家朴,韩渊怀,等. La3+离子对菠菜叶绿体Hill反应活性影响的研究[J].山西农业大学学报,1993,13(3):237-241.
    [24] 潘登奎,张金桐. LaCl3、PrCl3对叶绿体光合磷酸化偶联因子活性影响研究[J].山西农业大学学报,1994, 14(4):382-385.
    [25] Hong F.S. Effect of Eu3+ on characterization of photosystem Ⅱparticles from Spinach by spectroscopy [J]. Biological Trace Element Research, 2004,97(3): 279-288.
    [26] 郭春绒,史瑞雪,王金胜,程玉香.铈对小麦幼苗叶绿体的保护作用[J].中国稀土学报, 2000, 18(4): 367-369.
    [27] Bowl E.R.C., Neuhaus G. Cyclic GMP and calcium mediate phytochrome phototransduction [J]. Cell, 1994, 77 :73-78.
    [28] Gao Y., Zeng F., Yi A., et al. Research of the entry of rare earth elements Eu3+ and La3+ into plant cell[J]. Biological Trace Element Research, 2003, 91(3):253-265.
    [29] Nivison H.T., Leonard E.F., Andre T.J. Translation by isolated pea chloroplasts [J]. Methods in Enzymology,1986,118: 282-295.
    [30] 颜日辉,李立人. 几种因子对离体豌豆叶绿体蛋白质合成的影响[J]. 植物生理学报,1998,24(1): 77-82.
    [31] He Y.W., Loh C.S. Cerium and lanthanum promote floral initiation and reproductive growth of Arbidopsis thaliana [J]. Plant Science, 2000, 159: 117-124.
    [32] 高尚德,吴以平,赵心玉.有机锡对海洋微藻的生理效应[J]. 海洋与湖沼,1994, 25 (3): 259-265.
    [33] Grobe C.W., Murphy T.M. Solar ultraviolet-B radiation effects on growth and pigment composition of the interidal alga Ulva expansa (Setch) S. & G.(Chlorophyta) [J]. J.Experimental Marine Biology and Ecology,1998, 225:39-51.
    [34] 于娟,唐学玺,田继远. 蒽与UV-B辐射共同作用对2种海洋微藻的毒性效应[J].中国水产科学, 2002,9 (2):157-160.
    [35] Stebbing A.R.D. Hormesis-the stimulation of growth by low levels of inhibitions [J]. Science of Total Environment, 1982, 22:213-234.
    [36] Gerber S., H?der D.P. Effect of enhanced solar irradiation on chlorophyll fluorescence and photosynthetic oxygen production of five species of phytoplankton [J]. FEMS Microbiology Ecology, 1995, 16:33-42.
    [37] 蔡恒江 , 唐 学 玺 , 张 培 玉 . 3 种 赤 潮 微 藻 对 UV-B 辐 射 处 理 的 敏 感 性 [J]. 海 洋 科学 , 2005,29(3):30-32.
    [38] 杜英君,姜萍,王兵,史奕. UV-C对紫杉针叶叶绿体膜脂过氧化及PSⅡ电子传递活性的影响[J]. 应用生态学报, 2003, 14(8):1218-1222.
    [39] Casati P., Lara M.V., Andreo C.S. Regulation of enzymes involved in C4 photosynthesis and the antioxidant metabolism by UV-B radiation in Egeria densa, a submersed aquatic species [J]. Photosynthesis Research, 2002,71:251-264.
    [40] 朱壬葆,刘永,罗祖玉. 辐射生物学[M]. 北京:科学出版社,112.
    [41] Lesser M.P., Shick J.M. Effects of visible and ultraviolet radiation on the ultrastructure of zooxanthellae(Symbiodinium sp.) in culture and in situ [J]. Cell Tissue Research,1990,256: 501-508.
    [42] Liang C.J., Huang X.H., Tao W.Y., et al. Effect of Cerium on growth and physiological mechanism in plants under supplementary UV-B radiation [J]. Journal of Environmental Sciences, 2006,18(1): 125-129.
    [43] 倪嘉缵. 稀土生物无机化学(第2版) [M].北京:科学出版社,2002.
    [44] Hong F.S., Wang X.F., Liu C., et al. Effect of Ce3+ on spectral characteristic of D1/D2/Cytb559 complex from spinach [J]. Science in China, Series B, 2003, 46(1): 42-50.
    [45] Wang J.S., Guo C.R., Cheng Y.X., et al. Mechanism of cerium ions scavenging superoxide radical [J]. Journal of Rare Earths, 1997, 15(2): 46-51.
    [46] 叶济宇,李德耀,沈允钢.低渗膨胀对菠菜完整叶绿体光合作用的影响[J]. 植物生理学报,1995,21(1): 73-79.
    [47] Bukhov N.G., Wiese C., Neimanis S., et al. Heat sensitivity of chloroplasts and leaves : leakage of protons from thylakoids and reversible activation of cyclic electron transport [J]. Photosynthesis Research,1999,59:81-93.
    [1] Coode D., Bachheld J. Effect of long term fumigation with ozone on the turnover of the D1 reaction center polypeptide of photosystem Ⅱin spruce [J]. Plant Physiology,1992, 86:568-574.
    [2] 鲁润龙,顾月华. 细胞生物学[M]. 合肥:中国科学技术大学出版社, 2002,96.
    [3] 腾俊琳,翟中和. 银杏精子细胞生毛体及其它细胞器的超微结构[J]. 植物学报,1996,38(6): 421-425.
    [4] 许大全.光合作用效率[M].上海:上海科学技术出版社,2002.
    [5] 唐茜,施嘉璠. 川西茶区主栽品种光合强度与叶片结构相关关系的研究[J]. 四川大学学报,1997, 15(2):193-198.
    [6] Hollósy F. Effects of ultraviolet radiation on plant cells [J]. Micron, 33:179-197.
    [7] 魏幼璋,高其康. 稀土元素钕对油菜超微结构的影响[J].电子显微学报, 2000, 19(2): 149-153.
    [8] 罗虹,陈汝民.La3+对墨兰根状茎某些细胞器发育的影响[J]. 热带亚热带植物学报,1996, 4(3):56-59.
    [9] Trebst A. Energy conservation in photosynthetic electron transport of chloroplasts [J]. Annual Review Plant Physiology and Plant Molecular Biology, 1974,25:423-458.
    [10] 熊福生,高煜珠,詹勇昌,等. 植物叶片蔗糖、淀粉积累与其降解酶活性关系研究[J]. 作物学报,1994,20(1):52-58.
    [11] Santos A., Almeida J.M., Santos I., et al. Biochemical and ultrastructural changes in pollen of Zea mays L. grown under enhanced UV-B radiation [J]. Annals of Botany,1998, 82: 641-645.
    [12] 朱素琴,徐向明,陈章和,等. UV-B 辐射对几种木本植物幼苗生长和叶绿体超微结构的影响[J]. 热带亚热带植物学报, 2002, 10(3):235-244.
    [13] He J., Huang L.K., Whitecross M.I. Chloroplast ultrastructure changes in Pisum sativum associated with supplementary ultraviolet (UV-B) radiation [J]. Plant Cell Environment,1994, 17: 771-775.
    [14] 利容千,王建波. 植物逆境细胞及生理学[M]. 武汉大学出版社,2002, 321-327.
    [15] Dixon R.A., Paiva N.L. Stress-induced phenylpropanoid metabolism [J]. The Plant Cell, 1995, 7: 1085-1097.
    [16] Yu S.G., Bj?rn L.O. Ultraviolet-B simulates grana formation in chloroplasts in the African desert plant Dimorphotheca pluvialis [J]. Journal of Photochemistry and Photobiology B: Biology, 1999, 49:65-70.
    [17] 魏幼璋. 稀土元素钕对油菜光合作用的影响及作用机制[J]. 浙江大学学报(农业与生命科学版), 2000, 26(3): 271-273.
    [18] 劳秀荣,王文祥,李燕婷,等. 外源稀土元素对花生增产效应的机理研究[J]. 植物营养与肥料学报, 2002, 8(4): 473-477.
    [19] Gao Y., Zeng F., Yi A., et al. Research of the entry of rare earth elements Eu3+ and La3+ into plant cell[J]. Biological Trace Element Research, 2003, 91(3): 253-265.
    [20] 李 功 藩 , 蔡 琬 平 , 吴 亚 君 . 叶 绿 体 结 构 状 态 与 光 化 学 活 性 的 关 系 [J]. 植 物 生 理 学报,1987,13(3):295-301.
    [21] 匡延云.光合作用原初光能转化过程的原理与调控[M]. 南京: 江苏科学技术出版社,2004,255.
    [22] 周正朝,张希彪,上官周平. 植物对稀土元素的生理生态响应[J]. 西北农业学报,2004,13(2): 119-123.
    [23] Musil C.F. Differential effects of elevated ultraviolet-B radiation on the photochemical and reproductive performances of dicotyledonous arid-environment ephemerls [J]. Plant Cell Environment, 1995,18:884-854.
    [24] Huang X.H., Zhou Q., Zhang G.S. Advances on rare earth application in pollution ecology [J]. Journal of Rare Earths, 2005, 23(1): 5-11.
    [25] Wang J.S., Guo C.R., Chheng Y.X., et al. Mechanism of cerium ions scavenging superoxide radical [J]. Journal of Rare Earths, 1997, 15(2): 46-51.
    [26] Jansen M.A.K., Gaba V., Greenberg B.M. Higher plants and UV-B radiation: balancing damage, repair and acclimation [J]. Trends in Plants Sciences, 1998, 3(4): 131-135.
    [27] Lao K.O., Glazer A.N. Ultraviolet-B radiation photodestruction of a light-harvesting complex [J]. Process Safety and Environmental Protection, 1996, 93:5258-5263.
    [28] 程龙,李满,熊焰,等. 紫外诱导植物产生 DNA 损伤的修复机制[J]. 生命的化学,2005,25(6): 504-506.
    [29] Sancer G.B. DNA photolyase: physical properties, action mechanism, and roles in dark repair [J]. Mutation Research, 1990, 236:14 -60.
    [30] Sreu S.A., Chow W.S., Anderson J.M. UV-B damage and protect ion at the molecular level in plants[J]. Photosynthesis Research, 1994, 39: 475-489.
    [31] 胡勤海,叶畅,叶兆杰,等. 钕对金鱼藻生长生理及细胞叶绿体结构的影响[J]. 浙江农业大学学报, 1997, 23(2): 175-178.
    [32] 胡勤海,叶畅,叶兆杰. 稀土元素镧对金鱼藻生长生理及细胞叶绿体结构的影响[J].环境科学学报, 1997, 17(1):82-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700