推扫式遥感相机基于图像的实时自动调焦研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调焦技术是空间光学遥感相机(以下简称遥感相机)研制过程中的关键技术之一。调焦系统作为遥感相机的重要组件,是保证成像质量的关键部分。基于数字图像的自动调焦方法,结构简单,智能程度高,在普通数码相机中已经得到了较多的应用。基于图像的自动调焦关键是要建立图像质量评价函数(检焦函数)。图像质量评价函数值是指导自动调焦过程的依据。目前普通数码相机中常用的图像质量评价函数大多都依赖相机对同一个景物多次成像。而推扫式遥感相机的特殊性在于从同一片CCD中不可能获得基于同一景物的多次图像,因此普通的检焦函数不能直接应用于推扫式遥感相机。为解决这一问题实现推扫式遥感相机基于图像的自动调焦,本文提出了一种不依赖于相机对同一景物重复成像的绝对式检焦算法,并根据绝对式检焦算法实现了推扫式遥感相机基于图像的自动调焦;同时文中在研究了推扫式遥感相机成像过程的基础上,从另一方面提出了在推扫式遥感相机中得到基于同一景物的重复图像,利用常用检焦算法完成检焦过程的方法,并通过提出相适应的聚焦方法同样实现了推扫式遥感相机基于图像的自动调焦。最终通过建立相应的实验平台对文中的调焦方法做了测试验证。根据以上方法本文具体的研究有如下几点:
     1、在信噪比一定时,MTF体现成像系统对各频率的传递能力,从频域角度全面地反应了系统的成像质量。用图像处理方法反演计算MTF时,并不依赖于对某个景物的成像。本文提出的利用在时域中和MTF对应的线扩散函数(LSF)作为检焦函数,不依赖相机对某一景物多次成像,属于绝对式检焦函数。并且基于LSF的检焦过程避免了傅立叶变换,保证了较高的检焦实时性。同时文中研究实现了从遥感图像中提取LSF的方法,最终通过曲线拟合将LSF的分辨率提高到了0.1倍像元尺寸,保证了较高的检焦准确性。
     2、随着遥感相机成像覆盖范围的不断扩大。现有CCD器件的尺寸已经远远不能满足大焦面遥感相机的要求,必需要用拼接技术利用多片CCD来满足成像要求。根据推扫式遥感相机的成像过程,在CCD的拼接结构中保留一定的重叠成像区域,则利用这些重叠区域可以从不同的CCD中获得基于同一景物的重复图像。本文正是从这一角度出发提出了将现有的图像检焦函数应用于推扫式遥感相机的方法,为推扫式遥感相机的自动调焦提供了可行性依据。
     3、在分析了现有的聚焦方法的基础之上,针对本文提出的推扫式遥感相机基于图像的检焦方法,研究提出了与检焦方法相适应的聚焦策略。
     4、针对本文采用的自动调焦方法,依托遥感相机的研制,建立了调焦验证实验板,并提出了相应的软件实现方案,实现并测试了调焦过程。根据测试验证结果,对算法的精度及实时性做了详细的分析。结果表明本文提出的推扫式遥感相机图像自动调焦方法具有较高的可行性,为实际的应用提供了解决方案。
Focusing technology is one of the key technologies in the development ofspace optical remote sensing camera (referred hereinafter as a remote sensingcamera). As an important component of remote sensing camera, focusing system is akey part to ensure the imaging quality. Automatic focusing method based on digitalimages with simple structure high degree of intelligence has got more and moreapplications in a common digital camera. The key of auto-focusing based on imageprocessing is to establish the image quality assessment function (focus-checkingfunction). Under the guidance of real-time calculation with image quality evaluationfunction, the focusing action can be implemented correctly. Currently the imagequality evaluation function used in ordinary digital camera mostly relies on thecamera imaging the same scene several times. The specific imaging way of thepushbroom remote sensing camera leads to the result that images of a same scenecan not be obtained several times from one CCD. Therefore, the ordinaryfocus-checking function can not be directly applied to the pushbroom remotesensing camera. To solve this problem, this paper proposed one absolutefocus-checking function independant on repeatedly imaging of the same scene, andrealized the auto-focus by image in pushbroom remote sensing camera. On the otherside, after the research on pushbroom imaging principle, a method to get therepeated images of the same scene in the pushbroom remote sensing camera wasproposed, and the traditional focus-checking method was used. With corrected focusing method proposed the auto-focus by image in pushbroom remote sensingcamera was also realized. At last the experiment plate was set up, and the methodproposed in this paper was tested correspondedly. According to the above methodsthe specific study in this paper are as follow:
     1) With certain SNR, the MTF embodies the imaging system's transmissioncapacity of different frequencies, also reflects the imaging quality of the systemfrom the frequency domain. The inverse calculation of MTF from image does notdepend on the imaging of certain scene. The absolute focus-checking functionproposed in this paper, using the line spread function (LSF) witch is thecorrespondence of MTF in time domain, does not depend on the camera imagingone scene repeatedly. The focus-checking process based on LSF avoided the Fouriertransform, ensuring a high level of real-time in focus-checking process. This paperalso studied the method of picking up LSF from remote sensing images. Then withthe curve fitting the resolution of LSF is increased to0.1times the pixel size, whichensured a high accuracy.
     2) With the expanding coverage of remote sensing camera image, the size ofthe existing CCD device has been far from satisfying the requirements of remotesensing camera of large focal plane. The stitching technique of using multi-chipCCD is necessary to meet the image requirements. According to the pushbroomremote sensing camera imaging process, retaining a certain overlapping imagingarea in the splicing structure of the CCD, duplicate images based on the same scenefrom different CCDs can be got from these overlapping regions. From thisperspective, this paper proposed the method using the existing image focus-checkingfunction into the pushbroom remote sensing camera,which provides a strongfeasibility for the pushbroom remote sensing camera auto-focus.
     3) After analyzing the existing focus-methods, according to the focus-checkingmethod based on image proposed in this paper, the correct focus-method was set up.
     4) Aimed at the Auto-focusing method proposed in this paper, a validation andtesting board was built with corresponding software to implement the auto-focus.According to the results of the test, a detailed analysis of the accuracy and real-time was conducted. The results showed that the auto-focusing method proposed in thispaper for pushbroom remote sensing camera using image has a high feasibility, andprovids a solution for practical application.
引文
[1]吴世法.近代成像技术与图像处理[M].北京:国防工业出版社,1997.
    [2]刘明.国外航空侦查相机的发展和研发[J].电光与控制,2004,11(2):56-59.
    [3]张庆君,马世俊.中巴地球资源卫星成就与发展[J].航天器工程,2009,18(7):1-8.
    [4]姜景山,王文魁,都亨.空间科学与应用(第一版)[M].北京:科学出版社,2001.17-20.
    [5]张以忠,卢小飞,曾文龙.日本太空侦察力量发展现状及能力分析[J].国防科技,2008,29(3):84-87.
    [6]梁巍,周润松.国外侦察卫星最新进展[J].航天器工程,2007,16(3):30-40.
    [7]黄贤忠,张建霞,刘宗杰.国产SWDC航空数码相机及其应用[J].测绘通报,2009,9:36-38.
    [8] Augustyn T. KS-146A long rang oblique photography camera system[C]. SPIE:309. Bellingham,Washington,USA:1981.76-85.
    [9] Ruck R. Design versatility of the prism panoramic camera: the KS-116and KA-95cameras[C]. SPIE:309. Bellingham, Washington, USA:1981.69-75.
    [10]白杉,杨秉新.航天侦察相机的发展和研发[J].影像技术,2006,2:3-6.
    [11]黄巧林,金伟其,朱敏.航天TDI CCD相机视频信号处理中相关双采样技术的研究[J].航天返回与遥感,2002,23(4):17-25.
    [12]许兆林,付战平.航空CCD侦察相机系统研究[J].航空计测技术,2001,21(5):3-6.
    [13]丁亚林,田海英,王家骐.空间遥感相机调焦机构设计[J].光学精密工程,2001.9,9(1):35-37.
    [14]杨永彬.空间光学相机调焦技术研究[J].航天器工程,2011,20(2):20-24.
    [15]朱宏殷,郭永飞,司国良.多TDICCD拼接相机成像非均匀性实时校正的硬件实现[J].光学精密工程,2011,19(12):3034-3042.
    [16]杨秉新. TDI CCD在航天遥感器中的应用[J].大连理工大学学报,1997,37(增刊2):158-159.
    [17]张洪文.空间相机调焦技术的研究[D]:[硕士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003.
    [18]惠守文.长焦距实时航空相机自动调焦技术的研究[D]:[硕士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003.
    [19]黄其昆.自动调焦二十年[J].大众摄影,2001,(5):52-55.
    [20]王任华,沈忙作.自动调焦算法研究[J].光电工程,2000,27(4):11-13.
    [21]刘焕雨,熊文卓,万秋华,等.基于图像处理方法的自动调焦系统的研制[J].测试技术学报,2007,21(1):13-16.
    [22]刘焕雨,万秋华.图像法自动调焦原理及系统实现[J].微机算计信息,2008,24(5-1):39-40.
    [23]梁翠萍,李清安,乔彦峰,等.简析光学系统自动调焦的方法[J].电光与控制,2006,13(6):93-96.
    [24]王昕,王海霞,徐抒岩.基于功率谱的遥感相机自动调焦算法研究与实现[J].电子器件,2007,30(3):980-987.
    [25]周九飞,崔林培,周刚,等.航空成像设备自动调焦方法[J].光学学报,2010,30(1):105-108.
    [26]李朝辉,匡海鹏,韩昌元.空间相机相关法实时检焦技术研究[J].仪器仪表学报,2002,23(2):166-169.
    [27] Jennison L G G. A Self Imaging Technique for Focussing An IR Telescope[C].SPIE:1309.1990.
    [28]张新洁,颜昌翔,谢涛.星载遥感器调焦机构的设计[J].光学精密工程,2009,17(11):2758-2761.
    [29]王书新,李景林,刘磊,等.大尺寸焦平面空间相机调焦机构的精度分析[J].光学精密工程,2010,18(10):2239-2243.
    [30]柴方茂,樊延超.一种新型调焦机构设计[J].光机电信息,2010,27(6):16-19.
    [31]李开瑞,李英杰,赵育良,等.基于多尺度分析的航空相机自动调焦系统的研究[J].航空计测技术,2001,21(6):8-10.
    [32]高飞,张葆,刘大禹.一种航天遥感器调焦机构实验研究[J].长春理工大学(自然科学版),2008,31(2):26-31.
    [33] egni G L D. In-flight Refocusing Method for the SPOT HRV Camera[J].Photogrametric Engineering and Remote Sensing,1984,50(12):1697-1705.
    [34]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,1999.
    [35]朱述龙,张占睦.遥感图象获取与分析[M].北京:科学出版社,2000.
    [36]吴宏圣. TDICCD全景航空相机像移补偿研究[D]:[硕士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003.
    [37] Inc D.A Time Delay and Integration Image Sensor with High Speed OutputArchitecture[EB/OL]. http://www.Dalsa.com.2009.
    [38] Inc D.TDI Line Scan Primer and Selection Guide[EB/OL]. http://www.Dalsa.com.2009.
    [39]王文华.大视场遥感相机成像均匀性研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010.
    [40]佟首峰,李德志,郝志航.高分辨力TDI-CCD遥感相机的特性分析[J].光电工程,2001,28(8):64-67.
    [41]杨烨,朱永红,焦文春. TDICCD成像的速度同步分析和实验[J].航天返回与遥感,2003,24(1):38-42.
    [42]刘亚侠. TDICCD遥感相机标定技术的研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2005.
    [43]王欣,安志勇,杨瑞宁.基于图像清晰度评价函数的CCD摄像机自动调焦技术研究[J].长春理工大学学报(自然科学版),2008,31(1):11-14.
    [44]冯精武,喻擎苍,芦宁,等.调焦系统中数字图像清晰度评价函数的研究[J].机电工程,2011,28(3):354-368.
    [45]任四刚,李见为,谢利利.基于灰度差分法的自动调焦技术[J].光电工程,2003,30(2):53-55.
    [46]赵志彬,刘晶红.基于图像功率谱的航空光电平台自动检焦设计[J].光学学报,2010,30(12):3495-3500.
    [47]张继超,丁亚林,张洪文.一种航空画幅遥感相机调焦机构的设计[J].光学仪器,2007,29(2):50-54.
    [48]吕世良,王晓茜,刘金国,等.基于单片机的星载相机调焦控制系统的设计与实现[J].微计算机信息,2010,26(11-2):3-5.
    [49]陈国金.数字图像自动聚焦技术研究及系统实现[D]:[博士学位论文].西安:西安电子科技大学,2007.
    [50]修吉宏.基于图像功率谱的航空图像质量判别技术研究[D]:[博士学位论文].北京:中国科学院研究生院,2005.
    [51]李奇,冯华君,徐之海.数字图像清晰度评价函数研究[J].光子学报,2002,31(6):376-378.
    [52]曹茂永,孙农亮.离焦模糊图像清晰度评价函数的研究[J].仪器仪表学报,2001,22(3):426-430.
    [53]许盛,李见为.高级显微镜系统智能化自动调焦的研究及实现[J].光学仪器,2000,22(5):22-26.
    [54]王昕,王海霞,徐抒岩,等.推扫式遥感相机自动检焦技术研究[J].光学技术,2005,32(Suppl):344-350.
    [55]王昕,王海霞,徐抒岩,等.遥感相机自动检焦技术研究[J].光学技术,2006,32(suppl):344-350.
    [56]卢振华,郭永飞,李云飞,等.利用CCD拼接实现推扫式遥感相机的自动调焦[J].光学精密工程,2012
    [57] Zhenhua Lu Y G, Xucheng Xue, etc. Realization of the Imaging-Auto-Focus onthe APRC Using Splicing-CCD[C]. IEEE.2010International Conference onSignal and Information Processing: Yang Li,2010.499-503.
    [58]赵辉,鲍歌堂,陶卫.图像测量中自动调焦函数的实验研究与分析[J].光学精密工程,2004,12(5):531-536.
    [59]曹茂永,孙农亮,郁道银.基于灰度梯度的数字图像评价函数[J].光电工程,2003,30(4):69-72.
    [60] Sang Ku Kim S R P, A ug.. Simultaneous out-of-focus blur estimation andrestoration for a digital auto-focusing system[J]. IEEE Transactions on ConsumerElectronics,1998,44(3):1071-1075.
    [61] Jan-Mark Geusebroek F C, Arnold W.M,etc. Robust Autofocusing inMicroscopy[J]. Cytometry,2000,36(1):1-9.
    [62]许盛,李见为.基于智能化自动调焦的高级显微镜系统[J].光电工程,2000,27(1):33-36.
    [63]白立芬,于水,薛实福,等.基于图像处理的自动调焦方法中清晰度判断函数的研究[J].仪器仪表学报,1999,20(4):85-89.
    [64] Kang-sun Choi J-S L, Sun-Jae Ko. Using the Frequency Selective WeightedMedian Filter for Video Cameras[J]. IEEE Trans on Consumer Electronics,1999,45:
    [65]邢彦辰.基于局部熵差的图象匹配方法在图象实时监测中应用研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2003.
    [66] David Athinson D L G H, Peter N. R. Stoyle, etc. Automatic Correction ofMotion Artifacts in Magnetic Resonance Images Using an Entropy FocusCriterion.[J]. IEEE Transactions on Medical Imaging,1997,16(6):903-910.
    [67] Li Xi L G, Jinlin Ni. Autofocusing of ISAR Images Based on EntropyMinimization[J]. IEEE Transactions on Aerospace and Electronic System,1999,35(4):1240-1252.
    [68] GROSSMAN A M J. Decomposition of Hardy Function into Square IntegrableWavelets of Constant Shape[J]. SIAM J. Math. Anal,1984,15(4):723-736.
    [69]黄剑琪,冯华君,徐之海,等.边缘特征增强算法和小波分析在精确聚焦中的应用[J].光子学报,2000,29(10):932-936.
    [70]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.16-19.
    [71]王建平,盛军,朱程辉.基于小波分析的视频图像字符特征提取方法研究[J].微电子与计算机,2002,5:51-56.
    [72]杨胜波,于春海.小波分析在生物医学信号图像处理中的应用[J].仪器仪表学报,2002,23(3):179-181.
    [73] Z. Peng Y H, Q. Lu and F. Chu. Feature Extraction of Rub-impact Rotor Systemby Means of Wavelet Analysis[J]. Journal of Sound and Vibration,2003,259(4):1000-1010.
    [74]麦伟麟.光学传递函数及其数理基础[M].国防工业出版社,1978.
    [75]庄松林,钱振帮.光学传递函数[M].机械工业出版社,1981.
    [76]英明扬,马冬梅.面阵CCD成像系统分辨率靶板图像的MTF分析[J].红外技术,2010,32(9):502-504.
    [77]葛苹,王密,等.高分辨率TDI-CCD成像数据的自适应MTF图像复原处理研究[J].国土资源遥感,2010,87(4):23-28.
    [78]王凌,冯华君,徐之海.基于调制传递函数的CCD亚像元成像质量评价[J].浙江大学学报(工学版),2004,38(7):845-847.
    [79]曲国志,肖作江. CCD航空相机调制传递函数测试与分析[J].长春理工大学(自然科学版),2010,33(2):18-21.
    [80] P.B.Greer T V D. Evaluation of an algorithm for the assessment of the MTFUsing an edge method[J]. Medical Physics,2000,27(9).
    [81] Alexis P. Tzannes J M M. Measurement of the modulation transfer function ofinfrared cameras[J]. Optical Engineering,1995,34(6).
    [82] Robert F. Rauchmiller R A S. Measurement of the Landsat Thematic MapperMTF using an array of point soutces[J]. Optical Engineering,1988,27(4):334-343.
    [83] Bentzen S M. Evaluation of the spatial resolution of a CT scanner by directanalysis of the edge response function[J]. Med. Phys,1983,10(5):579-581.
    [84]马卫红.基于图像分析的光学传递函数测试技术的研究[D]:[博士学位论文].北京:中国科学院研究生院,2005.
    [85]李铁成,冯华君,徐之海,等.一种可用于调制传递函数计算的新型线扩散函数拟合模型[J].光学学报,2010,30(12):3454-3459.
    [86]卢振华,郭永飞,李洪法,等.利用LSF实现推扫式遥感相机的自动调焦[J].红外与激光工程,2012,(7).
    [87] Zhenhua Lu Y G. A Method of Auto-focus Using LSF in Remote-sensingCamera[Z]. The3rd International Conference on Information Science andEngineering Proceedings, YANGZHOU,2011:2293-2296.
    [88] Geometry K F F. Mathematical Foundations and Applications[M]. NewYork:Wiley,1990.
    [89] N. B. Nill B H B. Objective Image Quality Measures Derived From DigitalImage Power Spectra[J]. Optical Engineering,1992,31(4):813-825.
    [90] LEE Je-ho K K-s N B-d, et al. Implementation of a passive automatic focusingalgorithm for digital still camera[J]. IEEE Transactions on Consumer Electronics,1995,41(3):449-454.
    [91] R. M. Balboa C W T, N. M. Grzywacz. Occlusions contribute to scaling innatural images[J]. Vision Res,2001,41(7):955-964.
    [92] R. M. Balboa C W T, N. M. Grzywacz. Power spectra and distribution ofcontrasts of natural images from different habitats[J]. InvestgativeOphthalmology and Visual Science,2001,42:615.
    [93]朱孔凤,姜威,高赞.自动聚焦系统中聚焦窗口的选择及参量的确定[J].光学学报,2006,26(6):836-840.
    [94]邓先礼.最优化技术[M].重庆:重庆大学出版社,1998.
    [95]粟塔山.最优化计算原理与算法程序设计[M].长沙:国防科技大学出版社,2001.
    [96]郑玉珍.自动对焦中的优化爬山算法[J].浙江科技学院学报,2005,17(3):171-174.
    [97]宫光勇,何文忠,高旭辉.红外系统中自动调焦爬山搜索算法的优化设计[J].激光与红外,2007,37(11):1213-1215.
    [98]郑静,张起贵,王朋.一种改进的自动聚焦搜索算法及其实现[J].电脑开发与应用,2010,23(1):26-27.
    [99] He J Z R Z, Hong Z L. Modified Fast Climbing Search Auto-focus Algorithmwith Adaptive Step Size Searching Technique for Digital Camera[J]. ConsumerElectronics,1999,(6):92-93.
    [100]白俊江,洪春勇.基于Sobel的边缘检测方法[J].电脑知识与技术,2009,5(21):5847-5849.
    [101]艾扬利,杨兵.基于FPGA的Sobel算子并行计算研究[J].电子技术,2005,200(9):42-43.
    [102]李明,赵勋杰,毛伟民. Sobel边缘检测的FPGA实现[J].嵌入式技术,2009,303(16):44-46.
    [103]官鑫,王黎,高晓蓉,等.图像边缘检测Sobel算法的FPGA仿真与实现[J].现代电子技术,2009,8:109-111.
    [104] Xu L O E. A New Curve Detection Method: Randomized HoughTransform(RHT)[J]. Pattern Recognition Letters,1990,11(5):331-335.
    [105] H H D. Generalizing the Hough Transform to Detect Arbitrary Shapes[J].Pattern Recognition,1981,13(2):111-122.
    [106]张显全,王继军,蒋联源.基于Freeman链码的圆识别方法[J].计算机工程,2007,33(15):196-201.
    [107]王平,董玉德,罗喆帅.基于Freeman链码的直线识别方法[J].计算机工程,2005,31(10):171-199.
    [108]孙涵,任明武,杨宁宇.一种快速实用的直线检测方法[J].计算机应用研究,2006,23(2):256-260.
    [109]李庆扬,王能超,易大义.数值分析(第四版)[M].清华大学出版社,施普林格出版社,1986.
    [110]张星祥,任建岳. TDICCD焦平面的机械交错拼接[J].光学学报,2006,26(5):740-745.
    [111] Paul R Jorden D G M, Peter J Pool. Technology of focal planes of CCDs[C].Proc. SPIE:2004,5167.72-82.
    [112]沈忙作,陈旭南,王晋,等.线阵CCD图像传感器的焦平面光学拼接[J].光电工程,1991,18(2):1-7.
    [113]马文礼,叶宝珠,邹德春,等.高精度10片面阵CCD光学焦平面拼接[J].光电工程,1994,21(5):17-22.
    [114]史磊,金光,安源,等.一种遥感相机的CCD交错拼接方法研究[J].红外技术,2009,30(1):12-15.
    [115]李朝辉,王肇勋,武克用.空间相机CCD焦平面的光学拼接[J].光学精密工程,2000,8(3):213-216.
    [116] Paul R Jorden D G M, Peter J Pool. Technology of large focal planes ofCCDS[C]. Proc. SPIE:2004,5167.72-82.
    [117] Joh A Sultana B O M N. Design analysis and testing of CCD array mountingstructure[C]. Proc. SPIE:1991,1532.27-38.
    [118]王军,杨会玲,刘亚侠,等.多CCD拼接相机中图像传感器不均匀性校正[J].半导体光电,2005,26(3):261-263.
    [119]岳俊华,李岩,武学颖,等.多TDI-CCD拼接相机成像非均匀性的校正[J].光学精密工程,2009,17(12):3084-3088.
    [120]刘亚侠,阮锦,郝志航.线阵TDI CCD遥感相机非均匀性校正的研究[J].光学技术,2003,29(6):749-751.
    [121] Inc X. Virtex-II platform FPGAs' complete datasheet[Z].2010.
    [122] Instruments T. TMS320C6414, TMS320C6415, TMS320C6416FIXED-POINTDIGITAL SIGNAL PROCESSORS Datasheet[Z].2010.
    [123] Instruents T. SN65LVDS32,HIGH-SPEED DIFFERENTIAL LINERECEIVERS datasheet[Z].2010.
    [124]张文爱,李逢磊,程永强.基于FPGA的步进电机驱动及自动聚焦的实现[J].电子技术应用,2008,5:33-34.
    [125]王美川,王紫婷.基于FPGA控制的步进电机驱动设计[J].电子测量技术,2008,31(6):184-187.
    [126] K. Yousfi a A A. Control using sliding mode of two phase stepper motor[C].Proc. Second International Conference on Computer Engineering andApplications: IEEE Computer Society,2010.42-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700