纸浆、纸张热性能及其评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纸张作为可书写、印刷、包装的材料,具有原料来源丰富、可生物降解、可回收再利用、良好的机械性能和后加工性能,成本较低、容易卷曲等特点,随着社会经济的快速发展和人类文明的进步,用途越来越广泛。
     在纸张应用过程中,其性能会因环境条件的变化发生变化,其中温度的影响是最常见因素之一。纸张在热作用下性能的变化严重影响了纸张的使用。本论文针对纸浆、纸张的热性能及其评价方法进行系统研究,旨在弄清影响纸张热性能的各种因素,纸张在热作用下热降解、热老化、光热返黄等内在规律,建立科学评价纸浆纸张热性能的方法,为提高纸张在热环境下的使用效率和研究开发具有良好热性能的新型纸张提供理论支持。
     TG分析表明,浆料热降解主要经历吸附水解吸,开始脱水热降解,主要热降解阶段和残余热解阶段四个阶段。 TG分析的关键温度Tw、T0.5、TMax可作为浆料热稳定性评价的参数。
     纸浆热降解机理可用模型方程G() ln(1)来描述,动力学方程为:其中活化能E可用于纸浆热稳定性评价,纸浆的活化能越高,热稳定性越好。
     漂白针叶木纸浆热稳定性大于漂白阔叶木纸浆;非木材类纸浆中,以棉浆、麻浆的热稳定性为最佳;脱墨浆劣于原生漂白化学浆;未漂浆的热稳定性较漂白浆差。BCTMP热稳定性较差。
     在给定的光诱导条件下,随光照时间的延长,BCTMP白度呈下降趋势,PC值则不断增大,杉木BCTMP白度稳定性最差,返黄最为严重;BCTMP的R、PC值与lgt呈分段线性关系;通过回归分析得到的R、PC值随光照时间的变化模型
     利用红外光谱和拉曼光谱相结合分析揭示光诱导条件下BCTMP浆料中官能团结构的变化和光诱导返黄机理,光诱导过程中羰基和碳-碳双键基团的产生是引起BCTMP返黄的重要原因。
     研究了纸张老化过程纸张强度、白度、聚合度、结晶度、活化能的变化。纸页强度和白度随老化程度的加剧总体呈下降趋势。老化前后纸张的SEM观察表明,纸样随老化程度的增加,纸张纤维表面出现裂纹、裂痕增多甚至龟裂和空洞的现象愈加严重,导致纤维之间的结合力的降低;老化前后XRD分析结果表明,在150℃以下老化纤维素晶体类型和结晶度并没有发生变化。
     纸张的热解主要经历纸张失水失重、纸张纤维热分解失重和残余失重三个阶段。填料等其他物质的加入导致残余阶段热解与纯纸浆的有差异。浆内加填对纸张的热稳定性有利,使用机械浆和回收浆对纸张稳定性有负面影响。纸张DMA分析表明,纸张损耗模量和损耗因子随温度增加而逐步提高,但没有出现拐点。纸张储能模量因纸张浆料配比和定量的不同有所变化。
     随着老化时间的增加,纸张的聚合度总体呈下降趋势,而活化能随着老化程度的加剧,纸张的活化能先增大后减小。
     纸张聚合度相对值(DP/DP0)与Δθ0.5存在指数量化关系,Δθ0.5可作为衡量纸张老化程度的一个参量;根据得到的指数模型方程可对应计算出聚合度相对值,所得的评价模型与实验数据吻合很好,模型具有较好的预测性。
     以常见的纸杯为研究对象,定义某一温度区间内冷热面温度曲线偏离标准线的积分面积为温度因子ω,ω与温度t之间的关系可用方程:进行描述。某温度区间的温度因子ω可用于纸张材料整体隔热性能的定量评价,以此首次提出了纸张材料整体隔热性能评价的新方法。
As a material for writing, printing, and packaging, paper has the characteristics ofabundant sources, biodegradability, recyclability, excellent mechanical properties andpost-processing performance, low cost, and flexibility. With the rapid economic developmentand social progress of human civilization, more potential areas will be explored in future.
     The properties of paper alter as the change of environmental conditions during theapplication of paper, one of significant factors is temperature which will severely affectpaper’s performance that hinders the application of paper. In this thesis, the thermalperformance of pulp&paper and its evaluation method are systematically studied aiming toclarify the factors influencing the thermal performance of paper and explore the intrinsic lawexisting among pyrolysis of paper, thermal aging, yellowing and so on under thermalcondition. More specifically, the research work establishes scientific method to evaluate thethermal properties of paper and provides theoretical support for efficiently utilizing paperunder high temperature atmosphere and developing new paper with excellent thermalstability.
     Thermogravimetric analysis shows that there are four phases occurring in the course ofthe thermal degradation of paper: loss of adsorbed water, dehydration, the main thermaldegradation and residual pyrolysis. Three primary temperatures (Tw, T0.5, and TWax) are usedto evaluate the thermal stability of pulp.
     The mechanism for the thermal degradation of pulp is depicted by the model equation. Kinetic equation isln()lnE, the activation energy be used to evaluate the thermal stability of pulp, the higher pulp activation energy representsbetter thermal stability of paper.
     When it comes to the thermal stability of various pulp, bleached softwood pulp issuperior to bleached hardwood pulp; for the non-wood pulp, cotton and hemp possess highestthermal stability; besides, deinking pulp (DIP) is inferior to virgin bleached chemical pulp, unbleached pulp is worse than bleached pulp; and BCTMP has poor thermal stability.
     For the given light-induced conditions, the brightness of BCTMP decreases as theincrease of light-induced time, but the PC value shows a downward trend. BCTMP made fromfir demonstrates a worst brightness stability and a serious yellowing phenomenon. R and PCvalues of BCTMP exhibit a linear relationship in a certain range with lgt of BCTMP,respectively, and the model demonstrating the R and PC value of BCTMP vary as theextension of light-induced time was deduced by regression analysis.Light-induced yellowing mechanism of BCTMP is studied by using Infraredspectroscope (IR) and Raman spectroscope to analyze the structure of functional groupswithin BCTMP before and after it exposes to ultraviolet light, and results illustrate that theappearance of double bond and triple bond between two carbons in BCTMP during the
     light-induced procedure primarily causes the color reversion of BCTMP.There are three phases occurring in the pyrolysis of paper: dehydration, mass loss ofcellulose, and mass loss of char residue. The addition of fillers or other additives in the paperresults in the pyrolytic difference in the third phase compared with paper made of purecellulose. Filler loading is beneficial to thermal stability of paper, however, mechanical pulpand recyclable pulp have an adverse effect on thermal stability of paper. According toDynamic mechanical analysis (DMA), the loss modulus and damping factor of paper improveas the increase of temperature, but no turning point is observed in the pyrolytic curve. In
     addition, the storage modulus varies as the basic weight of paper and pulp proportion.Tensile strength, brightness, degree of polymerization, crystallinity and activation energyof paper during the aging process are investigated in detail. As the increase of aging time,tensile strength and brightness of paper present a downward trend. SEM images of the paperbefore and after aging indicates the phenomenon of cracking was even more serious and more and more voids appeared on the surface of paper fibers. This led to the binding force betweenfibers decreased; the crystallinity and crystal type of cellulose of paper before and after aginghad not changed under the aging temp.150°C based on XRD results.
     With the aging time increases, the degree of polymerization of the paper demonstrates adecreasing trend, however, the activation energy of the paper first increases and thendecreases.
     There is a quantitative relationship between the relative value of paper polymerizationdegree (DP/DP0) and Δθ0.5which can be used to evaluate the aging degree of paper. Therelative value of the polymerization degree can be calculated from the obtained equation, andthe evaluation model fits well with the experimental data, which indicates the good predictionof our model.
     A novel method for evaluating insulating properties of paper is proposed by taking papercup as the research object. We define temperature factor ω as the integral area of temperaturecurve on hot and cold side that deviates from standard curve in a certain temperature range,The relationship between temperature factor ω and temperature t is described by an equationThe temperature factors ω in a certain temperature range can be used toquantitatively assess the thermal insulation performance of paper material.
引文
[1]李杰中.制浆造纸企业绿色技术创新能力评价研究[D].福建农林大学,2009.
    [2]国家发展和改革委员会.造纸产业发展政策[R].2007.
    [3]造纸工业发展“十二五”规划[J].造纸信息.2012(02):6-19.
    [4]陈港.我国特种纸发展现状和对化学品的需求[J].中华纸业.2008,29(9):52-57.
    [5]胡开堂,刘忠.纸页的结构与性能[M].北京:中国轻工业出版社,2006:46-49.
    [6]胡开堂,刘忠.纸页的结构与性能[M].北京:中国轻工业出版社,2006:48.
    [7]卢振华,李敏,刘红娟.有关造纸填料的简单介绍[J].湖北造纸.2010,4:40-44.
    [8]沈葵忠,房桂干,储富祥等. FAS在杉木CTMP漂白中的应用研究[J].中国造纸.2009(11):1-5.
    [9]陈桂生,廖艳,曾亚光等.材料热物性测试的研究现状及发展需求[J].中国测试.2010,36(005):5-8.
    [10]袁哲俊,王先逵.精密和超精密加工技术[M].北京:机械工业出版社,2002.
    [11]黄强先.精密机械零件热变形若干基础理论及实验研究[D].合肥:合肥工业大学,1998.
    [12]刘又午,盛伯浩.数控机床误差补偿技术及应用发展动态及展望[J].制造技术与机床.1998(12):5-6.
    [13]杨世铭.传热学[M].北京:高等教育出版社,1980.
    [14] Yang J, Yuan J, Ni J. Thermal error mode analysis and robust modeling for errorcompensation on a CNC turning center[J]. International Journal of Machine Tools andManufacture.1999,39(9):1367-1381.
    [15] Yun W S, Kim S K, Cho D W. Thermal error analysis for a CNC lathe feed drivesystem[J]. International Journal of Machine tools and manufacture.1999,39(7):1087-1101.
    [16]苗恩铭.材料热膨胀系数影响因素概述[J].工具技术.2005,39(5):26-29.
    [17]费业泰,罗哉.精密技术中热变形误差影响的基本问题[J].纳米技术与精密工程.2003,1(1):79-84.
    [18]孟勇.影响材料热膨胀系数的主要因素[J].工业计量.2005,15(3):6-9.
    [19]杨久俊,海然,张海涛等.碳纤维梯度分布对水泥基材料热电性能的影响[J].混凝土与水泥制品.2004,4:10.
    [20]中华人民共和国国家标准.金属材料热膨胀特性参数测量方法[S].北京,1984.
    [21]谭真,郭广文.工程合金热物性[M].北京:冶金工业出版社,1994:22-46.
    [22]孟勇.影响材料热膨胀系数的主要因素[J].工业计量.2005,15(3):6-9.
    [23]马春兰.含局域d/f电子的化合物电子结构的第一性原理研究[D].复旦大学,2007.
    [24]姬广富,张艳丽,崔红玲等.从头算方法研究面心立方铝在高温高压下的热力学状态方程[J].物理学报.2009,58(6):4103-4108.
    [25]吴其胜.材料物理性能[M].上海:华东理工大学出版社,2006:6-9.
    [26]许勇顺,柳建韬,聂明等.金属热变形应力-应变曲线数学模型的研究与应用[J].应用科学学报.1997,15(4):379-384.
    [27]余昌敏,吴水珠,卢家荣等.耐溶剂聚碳酸酯/聚酰胺1010共混物的制备及其性能探讨[J].中国塑料.2009(008):13-17.
    [28]吴岩.提高有机玻璃耐热性能的研究[J].沈阳化工.1998,27(3):37-39.
    [29]耿殿军,李洪江.提高有机玻璃耐热性的机理和技术途径[J].内蒙古石油化工.2009,2.
    [30]吴岩.新型建筑物有机玻璃屋面采光材料[J].沈阳化工.1999,28(1):40-42.
    [31]单国荣,翁志学.提高通用塑料热变形温度的方法[J].化工新型材料.1995,23(2):13-17.
    [32]李思良,刘易凡.植物纤维/热塑性树脂界面胶接作用研究[J].现代塑料加工应用.1998,10(6):18-19.
    [33]陈礼辉,黄祖泰,詹怀宇.竹材化机浆增强热塑性复合材料的研究[J].中国造纸学报.2003,18(1).
    [34]龙毅.材料物理性能[M].长沙:中南大学出版社,2009:3-42.
    [35]姚穆.纺织材料学[M].北京:中国纺织出版社,2009:286.
    [36]姚穆.纺织材料学[M].北京:中国纺织出版社,2009:297.
    [37]陈夫山,陈玉放,隆言泉.纸的老化及其耐久性能[J].中华纸业.1997,3:53-55.
    [38]孙礼春,王景翰.纸张的老化及检验[J].江苏警官学院学报.2005,2:31.
    [39]王心琴.浅析纸张老化的原因[J].档案与建设.1997,9:13.
    [40]尹慧道,王义翠,操江山等.纸张加速光老化与白度值相关性分析[J].档案学通讯.2005(1):63-66.
    [41]中华人民共和国国家标准.纸和纸板的干热加速老化办法[S].1989.
    [42]曾幸荣.高分子近代测试分析技术[M].广州:华南理工大学出版社,2007:8-11.
    [43]台会文,刘盘阁.热分析技术在高分子材料和复合材料中的应用[J].塑料加工应用.1996,1(2):8-26.
    [44] Plastics-thermogravimetry (tg) of polymers-general principles[S]. Switzerland,1997.
    [45] standard test method for compositional analysis by thermogravimetry[S]. USA,2008.
    [46] Soares S, Camino G, Levchik S. Comparative study of the thermal decomposition ofpure cellulose and pulp paper[J]. Polymer degradation and stability.1995,49(2):275-283.
    [47] Wu C, Chang C, Lin J, et al. Thermal treatment of coated printing and writing paper inMSW: pyrolysis kinetics[J]. Fuel.1997,76(12):1151-1157.
    [48] Grammelis P, Basinas P, Malliopoulou A, et al. Pyrolysis kinetics and combustioncharacteristics of waste recovered fuels[J]. Fuel.2009,88(1):195-205.
    [49]廖瑞金,巩晶,桑福敏等.利用TGA及DSC研究变压器油浸绝缘纸的老化[J].高电压技术.2010,36(3):572-577.
    [50]刘敬勇,孙水裕,许燕滨等.造纸工业污泥燃烧特性及动力学实验研究[J].环境工程学报.2010.
    [51]曹秀军.基于可生物降解纤维的纸张制备及性能研究[D].华南理工大学,2010.
    [52]何方,张美云,张素风.纸基芳纶纤维结构与热裂解性能研究[J].中华纸业.2008,29(18):25-28.
    [53]高家武,雷渭媛,张复盛.高分子材料近代测试技术[M].北京:北京航空航天大学出版社,1994:93-114.
    [54]欧国荣,张德震.高分子科学与工程实验[M].华东理工大学出版社,1997:57-77.
    [55]狄海燕.聚芳酯/聚酯共混纤维的热性能研究[D].天津工业大学,2007.
    [56]曾胜.路面性能评价与分析方法研究[D].中南大学博士学位论文,2003.
    [57]陈恒,龚兴龙,江川霞等.钛酸钙系电流变液在直流电场下损耗模量的研究[J].实验力学.2009(02):96-102.
    [58]梁云,许慧敏,于天等.几种树脂增强滤纸在机油中介质相容性的研究[J].中国造纸.2009,28(10):22-25.
    [59]李涛,张美云,路金杯等.芳纶纸的动态热力学性质研究[J].造纸科学与技术.2010(005):15-18.
    [60] Kunug T, Watanabe H, Hashimoto M. Dynamic mechanical properties of poly(pphenylene terephthalamide) fiber[J]. Journal of Applied Polymer science.1979,24(4):1039-1051.
    [61]邵素英.二次纤维角质化及其纸页损伤研究[D].天津科技大学,2002.
    [62]大江礼三朗. Studies on degradation of paper and conservation[J]. Tappi.1991,9(2).
    [63]金鳳庸. Degradation mechanism of paper by UV treatment.[J]. Tappi.1990,44(62).
    [64]金夙庸,碱贝明. Changes in physical properties of paper containing high yield pulp byviolet treatment[J]. Tappi.1989,43(11).
    [65]高橋厚. Some surveys on accelerated ageing conditions for deterioration test of paperand board.[J]. Tappi.1987,41(5):386-393.
    [66]尾関昌幸,大江礼三郎,三浦定俊. On durability of papers.[J]. Tappi.1985,39(2):233-242.
    [67]臼田誠人. Deterioration of paper.[J]. Tappi.1985,39(12):1119-1123.
    [68]王东.强化育果袋纸抗水功能的研究[D].咸阳:西北轻工业学院,2002.
    [69]尹慧道,王义翠,操江山等.纸张加速光老化与白度值相关性分析[J].档案学通讯.2005(1):63-66.
    [70]孙礼春,王景翰.纸张的老化及检验[J].江苏警官学院学报.2005,2:31.
    [71]邢莹.乙酰化和苄基化稻草的结构表征[D].东北大学,2008.
    [72]陈新泉,徐以仁.热敏记录纸发色层耐老化性的初步探讨[J].广东造纸.1999(5):76-78.
    [73]廖瑞金,巩晶,桑福敏等.利用TGA及DSC研究变压器油浸绝缘纸的老化[J].高电压技术.2010,36(3):572-577.
    [74] Hagen M, Hereid J, Delichatsios M A, et al. Flammability assessment of fire-retardednordic spruce wood using thermogravimetric analyses and cone calorimetry[J]. FireSafety Journal.2009,44(8):1053-1066.
    [75] Hirata T, Kawamoto S, Nishimoto T. Thermogravimetry of wood treated withwater-insoluble retardants and a proposal for development of fire-retardant woodmaterials[J]. Fire and materials.1991,15(1):27-36.
    [76] Piskorz J, Radlein D S A, Scott D S, et al. Pretreatment of wood and cellulose forproduction of sugars by fast pyrolysis[J]. Journal of Analytical and applied Pyrolysis.1989,16(2):127-142.
    [77] Emsley A M. The kinetics and mechanisms of degradation of cellulosic insulation inpower transformers[J]. Polymer Degradation and Stability.1994,44(3):343-349.
    [78] Cardwell R D, Luner P. Thermogravimetric analysis of pulps part II: Kinetics fordynamic thermogravimetric analysis[J]. Wood Science and Technology.1976,10(3):183-198.
    [79]杨淑蕙主编.植物纤维化学[M].北京:中国轻工业出版社,2006:191-192.
    [80]詹怀宇.纤维化学与物理[M].北京:科学出版社,2005:111-123.
    [81]胡荣祖,史启祯主编.热分析动力学[M].北京:科学出版社,2001:47-48.
    [82]胡荣祖,史启祯主编.热分析动力学[M].北京:科学出版社,2001:127-131.
    [83]陈森.生物质热解特性及热解动力学研究[D].南京:南京理工大学,2005.
    [84] esták J, Málek J. Diagnostic limits of phenomenological models of heterogeneousreactions and thermal analysis kinetics[J]. Solid State Ionics.1993:245-254.
    [85]张延金,周遗品,赵永金. Arrhenius公式与活化能[J].石河子农学院学报.1995(4):76-80.
    [86]盛卫群.阿仑尼乌斯公式和活化能[J].浙江海洋学院学报(人文科学版).1996,1:16.
    [87] R D C, P L. Thermogravimetric Analysis of Pulps, Part IV thermal stability indices[M].Preservation of Paper and Textiles of Historic and Artistic Value, Chapter25, ACSPublications,1978,382-396.
    [88]谭洪.生物质热裂解机理试验研究[D].浙江:浙江大学,2005.
    [89]姚燕,王树荣,郑赞等.基于热红联用分析的木质素热裂解动力学研究[J].燃烧科学与技术.2007,13(1):50-54.
    [90] Sundholm J, Yhdistys S. Chapter8Chemimechanical pulping[M]. Book5MechanicalPulping, TAPPI and the Finnish Paper Engineers’ Association,1999.
    [91] Zhou Y. Overview of high yield pulps (HYP) in paper and board[C]. Pulp and PaperTechnical Association of Canada;1999,2004.
    [92] Zouyajun, Zhouxuejun. Achieving Desired End-use Performance by Using HYP inWood-free Papers [J]. World Pulp and Paper.2007,2:1.
    [93] Cannell E, Cockram R. The future of BCTMP[J]. Pulp and Paper.2000,74(5):61.
    [94] Leary G J. Recent progress in understanding and inhibiting the light-induced yellowingof mechanical pulps[J]. Journal of pulp and paper science.1994,20(6): J154-J160.
    [95] Heitner C, Schmidt J A. Light-induced yellowing of wood-containing papers-a review offifty years of research[C].1991.
    [96] Saariaho A. Resonance Raman spectroscopy in the analysis of residual lignin and otherunsaturated structures in chemical pulps[D]. Finland: Helsinki University of Technology,2004.
    [97]陈港,刘玉莎,文艾. BCTMP光诱导返黄特性研究[J].造纸科学与技术.2010(006):33-36.
    [98]林本平,王双飞.高得率浆光诱导返黄机理及其抑制技术的研究进展[J].中国造纸学报.2007,22(1):92.
    [99] Agarwal U P. Assignment of the Photoyellowing-Related1675cm1Raman/IR Band toP-Quinones and Its Implications to the Mechanism of Color Reversion in MechanicalPulps[J]. Journal of wood chemistry and technology.1998,18(4):381-402.
    [100] Agarwal U P, Mcsweeny J D. Photoyellowing of thermomechanical pulps: Lookingbeyond α-carbonyl and ethylenic groups as the initiating structures[J]. Journal ofwood chemistry and technology.1997,17(1-2):1-26.
    [101]陈港,文艾,何北海.基于红外光谱和拉曼光谱的BCTMP光诱导返黄特性研究[J].应用基础与工程科学学报.2011,19(2):188-195.
    [102]吴丹.碱性脂肪酶货架寿命指示体系的开发[D].浙江大学,2005.
    [103]姜启源.数学模型[M].第三版.北京:高等教育出版社,2004:16.
    [104]陈港,文艾.基于回归分析的BCTMP光诱导返黄数学模型术[J].华南理工大学学报(自然科学版).2010,38(11).
    [105]张红杰,胡惠仁,魏德津等.荧光增白剂对杨木BCTMP浆光致返黄的抑制作用[J].中国造纸学报.2008,23(4):32-36.
    [106] Pan X, Ragauskas A J. Brightness reversion of mechanical pulps. Part4. A study on theaction of thiols and disulfides on hardwood BCTMP[J].1994(9).
    [107] Ragauskas A J, Allison L, Li C. Brightness reversion of mechanical pulps. XIV,Application of FWAs for high brightness, high yield pulps[J].1998.
    [108] Li C, Ragauskas A J. Brightness reversion of mechanical pulps. Part XVI: The effect ofoxygen on photostabilization of high-yield mechanical pulps treated with UV absorbersand a fluorescent whitening agent[J]. Journal of pulp and paper science.2001,27(6):202-206.
    [109] Schmidt J A, Heitner C. Light-Induced Yellowing of Mechanical and Ultra-High YieldPulps. I. Effect of Methylation, NaBH4, Reduction and Ascorbic Acid on ChromophoreFormation[J]. Journal of wood chemistry and technology.1991,11(4):397-418.
    [110]陈港,文艾,何北海.基于红外光谱和拉曼光谱的BCTMP光诱导返黄特性研究[J].应用基础与工程科学学报.2011,19(2):188-195.
    [111]陈港,刘玉莎,文艾等.基于热重法的纸张热老化特性分析及其评价模型[J].华南理工大学学报(自然科学版).2012,1:6.
    [112]黄磊,徐波,黄安民等.汽车用热熔阻尼材料阻尼性能的研究[J].汽车工艺与材料.2011,12:13.
    [113]陈夫山,陈玉放,隆言泉.纸的老化及其耐久性能[J].中华纸业.1997,3:53-55.
    [114] Melniciuc Puica N, Pui A, Cozma D, et al. A statistical study on the thermaldegradation of some paper supports (old documents)[J]. Materials Chemistry andPhysics.2009,113(2):544-550.
    [115]胡恒亮,穆祥棋. x射线衍射技术[M].北京:纺织工业出版社,1990.
    [116]何北海.造纸原理与工程[M].北京:中国轻工业出版社,2010:17-18.
    [117]姚琳,王静波,张少玲,等.关于造纸干热加速老化方法的研究[J].中国造纸.1987,2:32-38.
    [118] Soares S, Camino G, Levchik S. Comparative study of the thermal decomposition ofpure cellulose and pulp paper[J]. Polymer degradation and stability.1995,49(2):275-283.
    [119] Wu C, Chang C, Lin J. Thermal treatment of coated printing and writing paper in MSW:pyrolysis kinetics[J]. Fuel.1997,76(12):1151-1157.
    [120] Grammelis P, Basinas P, Malliopoulou A, et al. Pyrolysis kinetics and combustioncharacteristics of waste recovered fuels[J]. Fuel.2009,88(1):195-205.
    [121]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001:47.
    [122] esták J, Málek J. Diagnostic limits of phenomenological models of heterogeneousreactions and thermal analysis kinetics[J]. Solid State Ionics.1993,63:245-254.
    [123] Antal Jr M J, Friedman H L, Rogers F E. Kinetics of cellulose pyrolysis in nitrogen andsteam[J]. Combustion Science and Technology.1980,21(3-4):141-152.
    [124]廖瑞金,巩晶,桑福敏等.利用TGA及DSC研究变压器油浸绝缘纸的老化[J].高电压技术.2010,36(3):572-577.
    [125]高家武,周福珍,刘士昕.高分子材料热分析曲线集[M].北京:科学出版社,1999:60-61.
    [126] Winger H W, Smith R D. Deterioration and preservation of library materials[M]. NewApproaches To Preservation, R D S,Chicago: University of Chicago Press,1970:139-175.
    [127]王兵.超细碳纤维制备及其隔热性能研究[D].国防科学技术大学,2011.
    [128]冯坚,高庆福,冯军宗等.纤维增强SiO2气凝胶隔热复合材料的制备及其性能[J].国防科技大学学报.2010,32(1):40-44.
    [129]解维华,张博明,杜善义等.高温绝热毡有效热导率的理论分析与实验研究[J].材料研究学报.2009,20(6):571-575.
    [130] Spinnler M, Rf Winter E, Viskanta R, et al. Theoretical studies of high-temperaturemultilayer thermal insulations using radiation scaling[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer.2004,84(4):477-491.
    [131]肖泽娟,彭杰.一种隔热材料热导率的测试及误差分析[J].宇航材料工艺.2011,41(1):96-100.
    [132] Hollis R W, Stamatiou D. Method of reinforcing a plastic foam cup[Z]. Google Patents,2012.
    [133] Fredericks R E, Breining M A, Pucci W R, et al. Heat insulating paper cups[Z]. EPPatent2,338,674,2011.
    [134] Iioka A, Ishii K, Oguma Y. Heat-insulating paper container and method for producingthe same[Z]. Google Patents,1996.
    [135] Wolff S K. Double walled paper cup[Z]. Google Patents,1994.
    [136] Iioka A. Method for producing a heat-insulating paper container from a paper coated orlaminated with a thermoplastic synthetic resin film[Z]. Google Patents,1984.
    [137]奥西波娃,蒋章焰,王传院.传热学实验研究[M].高等教育出版社,1982.
    [138]王补宣,任泽霈.利用“平板导热仪”测定热绝缘材料导温系数α的探讨术[J].工程热物理学报.1981,2(3).
    [139] Zhang B, Zhao S, He X. Experimental and theoretical studies on high-temperaturethermal properties of fibrous insulation[J]. Journal of Quantitative Spectroscopy andRadiative Transfer.2008,109(7):1309-1324.
    [140] Leskov ek U, Medved S. Heat and moisture transfer in fibrous thermal insulation withtight boundaries and a dynamical boundary temperature[J]. International Journal ofHeat and Mass Transfer.2011,54(19):4333-4340.
    [141] Fan J, Wen X. Modeling heat and moisture transfer through fibrous insulation withphase change and mobile condensates[J]. International Journal of Heat and MassTransfer.2002,45(19):4045-4055.
    [142] Zhu Q Y, Xie M H, Yang J, et al. Influence of chitosan and porosity on heat and masstransfer in chitosan-treated porous fibrous material[J]. International Journal of Heat andMass Transfer.2012,55(7):1997-2007.
    [143] Mantle W J, Chang W S. Effective thermal conductivity of sintered metal fibers[J].Journal of thermophysics and heat transfer.1991,5(4):545-549.
    [144] Furmanski P. Influence of different parameters on the effective thermal conductivity ofshort-fiber composites[J]. Journal of Thermoplastic Composite Materials.1991,4(4):349-362.
    [145] Arambakam R, Vahedi Tafreshi H, Pourdeyhimi B. A simple simulation method fordesigning fibrous insulation materials[J]. Materials&Design.2012.
    [146] Bhattacharyya R K. Heat transfer model for fibrous insulations[J]. Thermal InsulationPerformance, ASTM STP.1980,718:272-286.
    [147] Bankvall C G. Heat transfer in fibrous materials[M]. National Swedish Institute forBuilding Research,1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700