芒果炭疽病诱抗剂的筛选及其作用机理的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芒果炭疽病是世界性的芒果重要病害,其主要病原菌为胞炭疽菌(Colletotrchumgloeospordes Penz.)。该病在采前主要引起芒果落花落果、叶片坏死和枝枯等症状。由于具有潜伏的特性,田间侵染未成熟果实一般不表现症状,常导致采后果实在贮藏运输和销售过程中腐烂,严重影响芒果果实的产量和质量,被认为是芒果生产上的主要限制性生物因素之一。
     化学防治作为芒果炭疽病的主要防治方法,在生产上长期应用,病原菌已对主打杀菌剂苯丙咪唑类农药产生了抗性,无法达到预期的防治效果。同时,随着人民生活水平的提高,人们对食品安全日益重视,利用诱抗剂诱导果蔬自身产生系统获得抗病性逐渐成为果蔬病害防治的发展方向和研究热点,是具有远景的植物病害绿色控制技术之益
     本实验通过对多种化学诱抗剂的田间筛选、芒果抗病性相关酶活性变化以及对诱导的蛋白质差异性的初步研究,获得诱抗效果较好的诱抗剂,并初步阐明其诱抗机理,为进一步研究利用诱抗技术防治芒果炭疽病奠定了理论基础。研究结果如下:
     1、本研究分别从诱抗剂的田间诱抗效果测定、系统性诱抗效果测定和诱抗剂的混合诱抗效果测定3个方面进行诱抗剂的筛选,测定结果表明:参试的3种诱抗剂对炭疽病均有一定的诱抗效果。Bion(50%有效成分)和COS(2100Da)以100μg/ml浓度在处理后48h的诱抗效果分别达41%、37%,SA则以50μg/ml的浓度在处理后24h的诱抗效果可达22%;各诱抗剂同时也表现出了诱抗的系统性,诱抗效果可达50%以上;不同比例诱抗剂的混合施用表现出一定的抗抗作用,随着时间的推移诱抗效果缓慢降低。
     2、抗病性相关酶活性测定结果表明,200μg/mlBTH处理芒果叶片后,不同程度地提高5种与抗病相关的酶活性,其中苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)、过氧化氢酶(CAT)在处理后的24h,叶片酶活分别提高了37%、27%和440%,超氧化物岐化酶(SOD)和过氧化物酶(POD)于处理后的72h酶活性分别提高了83%和330%。
     3、总酚含量测定结果表明,不同浓度BTH、1000μg/ml多菌灵、接种胶孢炭疽菌分别处理芒果叶片和采后果实,总酚含量均有不同程度的提高。不同处理对芒果果实和叶片总酚含量与对照相比差异显著,并且以100μg/ml的BTH处理果实和叶片总酚含量最高,总酚含量分别提高85%和104%;而果皮总酚含量测定结果表明不同处理后总酚含量在不同时期是有差异的,72h的总酚含量以100μg/m1的BTH处理的最高,总酚含量提高45%,而至黄熟果皮则以病原菌接种处理的最高。
     4、通过双向电泳及差异蛋白质谱分析,BTH诱抗处理中,芒果果皮16个蛋白质点存在差异,对其中11个蛋白质点的肽指纹分析表明,差异蛋白质点多为热激蛋白,可视为抗逆性的蛋白质,其中3个蛋白质具有平衡活性氧的代谢、参与了抗逆酶的合成的作用,推测这些蛋白质与诱导抗性有密切的关系。
The mango anthracnose disease,induced by Colletotrichum gloeosporioides Penz.,cause the leaf spot,yong fruits and flowers falling and shoot die-back.But its more characteristic symptom is fruits rot which usually occurs post harvest during the fruit storage and marketing due to latent infection.The disease has a bad effect on quality and production of mangos.
     Long-term since chemical control as the main method to control mango ant hracnose disease.but,the Coletotrichum gloeosporioides have a resistable effect o n common fungicide,unable to reach the control effect,on the other hand,with t he improvement of living standards,people paid more attention on food safety,S o use the elicitors inducing fruit and vegetable produce systemic acquired disea se resistance as the decelopment trend and research hotspot,as a long-term ands afe disease control methods.
     The experiment based on a variety of elicitors field screening,the change of the disease resistance related enzymes and the research of difference protein.Ob tain betteer effect of induced resistance inducer,and clarify the mechanism of in duced resistance, and probide the theoretical foundation for further research on the use of technology to control mango anthracnose disease resistance induced. The results as follows:
     1.We do three aspects for the following experiment,the determination of resi stance induced in field,induced systemic resistance and the application of the in ducer of mixed.The experimental results show that the tasted elicitors on anthra cnose of induced resistance, the100μg/ml Bion and COS can resistance induce d by41%、37%after treatment in48h,50μg/ml SA can resistance induced by22%after treatment in24h;the tasted inducer also showed resistance induction of systemic induced resistance,more than50%;Different proportions of elicitors mixed application shoued a certain antagonism,and with the passage of time in duced resistance decreased slowly.
     2. Disease resistance related enzymes of determination results shows:Treatme nt of200μg/mlBTH can increased the activity of disease resistance enzymes,su ch as the antivity of phenylalanine ammonia-lyase(PAL),poly-phenoloxidase(PP O),peroxidase(POD),superoxide dismutase(SOD),and catalase(CAT).
     3.The results of total phenolic content determination shows:Different concentrations of BTH,Carbendazim,vaccination treatment on mango leaves and postharvest fruit,the experimental results shows that,the total phenol content of mango leaves in different treatment show significant differences in different time,and low concentration of BTH treatment have the highest total phenolic content.for mango peel,the total phenolic content also show significant difference in differenct time.Experimental results show the total phenols content can improve after inducer treatment.
     4. By two-dimensional electrophoresis and mass spectrometry analysisis,we get16differences of proteins and11peptide mass fingerprint of protein spots in mango peel in this experiment.The detected differential protein spots for hea t shock protein, as resistance protein.The heat shock protein of NO.2,7,14with balanced active oxygen metabolism,involved in the resistance enzyme synthesis,t hereby improving disease r esistance,or even inhibit the disease
引文
[1]陈菁,韦家少,易小平,唐树梅.海南西南部芒果营养特性的研究.热带作物学报,2001,21(4):23-28.
    [2]褚妍,任菲,赵贵林,胡国霞,陈强,李雪梅.渗透胁迫对植物抗氧化酶影响的研究进展[J].安徽农业科学.2011,39(3):1300-1302.
    [3]崔彦玲,张环.番茄叶霉病抗性与苯丙氨酸解氨酶的相关性[J].华北农学报,2003,18(1):79-82.
    [4]董汉松.植物诱导抗性原理和研究[M].北京:科学出版社,1995.
    [5]范志金,刘秀峰,刘凤丽等.植物抗病激活剂诱导植物抗病性的研究进展[J].植物保护学报,2005,32(1):87-92.
    [6]高爱平,陈业渊,朱敏,何业华,杜中军.中国芒果科研进展综述[J].中国热带农业.2006,6:21-23.
    [7]葛银林,李德葆.植物抗病性的诱导、机制、分子生物学研究进展[J].中国生物防治,1995,11(3):134-141.
    [8]弓德强,谷会,张鲁斌,王松标,詹儒林,朱世江.苯并噻重氮对采后芒果抗病性及相关酶活性的影响[J].果树学报.2010,27(4):585-590.
    [9]郭安.我国芒果产业现状与发展对策探讨[J].中国热带农业,2006,6:23-25.
    [10]何衍彪,詹儒林,赵艳龙.石菖蒲提取物对芒果炭疽病及香蕉尖孢镰刀菌的抑制作用[J].云南农业大学学报.2006,21(6):728-732.
    [11]贺立红,宾金华.高等植物中的多酚氧化酶[J].植物生理学通讯.2001,37(4):340-345.
    [12]贺立红,张进标,宾金华.苯丙氨酸解氨酶的研究进展[J].食品科技.2006,7:31-34.
    [13]胡一鸿,牛健康.超氧化物歧化酶研究进展[J].生物学教学.2005,30(1):2-4.
    [14]胡志鹏.壳寡糖的研究进展[J].中国生化药物杂志.2003,24(4):210-212.
    [15]黄辉白.热带亚热带果树栽培学[M].2003:106.
    [16]黄明,彭世清.植物多酚氧化酶研究进展[J].广西师范大学学报(自然科学版).1998,16(2):65-70.
    [17]黄娅琳.玉米抗弯孢叶斑病的生化机制研究[D].四川农业大学,2002.
    [18]黄忠兴,安玉兴,黄锦福,刘少谋,胡后祥,吉家乐,陈道勤.海南芒果炭疽病的发生规律与综合防治[J].热带农业科技,2008,31(2):20-24.
    [19]江昌俊,余有本.苯丙氨酸解氨酶的研究进展[J].安徽农业大学学 报,2001,28(4):425-430.
    [20]江开拓,郑永华.热空气处理对杨梅果实采后活性氧代谢和热激蛋白合成的影响[J].食品科学.2011,32(08):291-295.
    [21]孔俊豪,孙庆磊,涂云飞,陈小强,高玉萍,杨秀芳.多酚氧化酶酶学特性研究及其应用进展[J].中国野生植物资源.2011,30(4):13-17.
    [22]李冠,欧阳光察.植物诱导抗性[J].植物生理学通讯,1990,(6):1-5.
    [23]李合生.现代植物生理学[M].北京:高等教育出版社,2002
    [24]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:164-165.
    [25]李荣林,方辉遂.一个世纪以来对茶多酚氧化酶研究的进展[J].福建茶叶,1997,(4):10-14.
    [26]刘冰,梁婵娟.生物过氧化氢酶研究进展[J].植物生理科学,2005,21(5):223-224.
    [27]刘昌玲,王国庆.细菌过氧化氢酶的分离、结晶及性质[J].生物化学与生物物理进展,1990,17(5):380-383.
    [28]刘清,李玉,姚惠源.Folin-Ciocalteu比色法测定大麦提取液中总多酚的含量[J].食品科技.2007,4:175-177.
    [29]刘新华.BTH防治芒果采后炭疽病及其系统获得抗性机理[D].海南大学硕士学位论文.2010.
    [30]路兴波,吴洵耻,周凯南.小麦抗感纹枯病品种酶活性比较研究[A].植物保护21世纪展望暨第三届全国青年植物保护科技工作者学术研讨会论文集[C].北京:科学技术出版社,1998.
    [31]马晓丽.超氧化物歧化酶的研究进展[J].山西职工医学院学报.2010,20(1):83-86.
    [32]任建国,黄思良,晏卫红,李杨瑞.拮抗微生物防治芒果炭疽病研究.西南农业学报,2002,15(4):82-85.
    [33]戎红.水稻抗镉胁迫响应的差异蛋白组学研究[D].福建农林大学硕士学位论文,2009.
    [34]沈文飚,徐朗莱,叶茂炳.水杨酸诱导植物抗病性的新进展[J].生物化学与生物物理进展,1999,26(3):237-240.
    [35]宋新华,赵凤云.植物体内过氧化氢酶的研究进展[J].安徽农业科学.2007,35(31):9824-9827.
    [36]汤凤霞,魏好程,曹禹.芒果多酚氧化酶的特性及抑制研究[J].食品科学,2006,27(12):156-159.
    [37]王春林.BTH诱导甜瓜(Cucumis melo L.)抗白粉病机理及信号转导途径的研究[D].甘肃农业大学硕士学位论文,2007.
    [38]王金华.BTH防治香蕉采后炭疽病及其系统获得抗性(SAR)机理[D].华南农业大学硕士学位论文.2005.
    [39]王莉.BTH诱导黄瓜和番茄对主要病害的抗性研究[D].西北农林科技大学,2005.
    [40]王生荣,朱克恭.植物系统获得抗病性研究进展[J].中国生态农业学报,2002,10(2):32-35.
    [41]王万东,刘光华,尼章光,罗心平,俞艳春.芒果炭疽病的发生规律及综合防治[J].广东农业科学,2008,(6):67-69.
    [42]王勇刚,曾富华,吴志华等.植物诱导抗病与病程相关蛋白[J].湖南农业大学学报(自然科学版),2002,28(2):177-182.
    [43]翁启勇,李开本.诱导植物系统抗性研究及进展[J].福建农业学报,1998,13(4):23-28.
    [44]肖倩莼,李绍鹏.芒果炭疽病抗病品种筛选研究.热带作物学报,1998,19(02):43-48.
    [45]肖仲久,蒋选利,李晓霞,张素勤.壳寡糖诱导和白粉菌侵染的辣椒叶片防御酶系活性研究[J].北方园艺.2009(8):16-19.
    [46]肖淑贤,高俊明.番茄诱导抗病性的研究进展[J].中国西部科技.2011,10(4):5-7.
    [47]熊月明,何光泽,柯冠武.南方果树病虫害防治技术[M].北京:中国农业出版社,2000:237-239.
    [48]徐济春,候晓东,李婷,姚广龙,施瑞城.中草药提取物对芒果炭疽病的抑制作用.广西热带农业,2007(1):12-14.
    [49]袁章虎,曲健木.低酚棉抗枯萎病生化机制初探[J].棉花学报,1995,7(2):100-104.
    [50]翟晓巧,王国周,毕会涛,等.泡桐丛枝病发生与叶片酚和氨基酸变化关系研究[J].河南科学,2000,18(3):277-279.
    [51]詹儒林,郑服丛.芒果炭疽病菌β-微管蛋白基因的克隆及其与多菌灵抗药性发生的关系[J].微生物学报,2004,44(6):827-829.
    [52]张国华,云兴福.西芹鲜根浸提液对黄瓜叶片内POD和CAT活性的影响[J].内蒙古农业大学学报,2008,29(2):37-42.
    [53]张小冰.水杨酸在诱导植物抗病性中得作用[J].生物学教学,2005,30(10):3-5.
    [54]张晓燕,卢春莲,田志喜.植物诱导抗病性[J].保定师专学报,2001,14(4):9-12.
    [55]张育英,陈三阳编著.热带亚热带果树分类学[M].上海科技出版社,1992.84-98.
    [56]张正科,毕阳,王军节等.采前苯丙噻重氮(BTH)处理对厚皮甜瓜果实防御酶及抗性物质的诱导[J].甘肃农业大学学报,2006,41(6):122-125.
    [57]张中义,冷怀琼,张志铭,曹若彬,张天宇.植物病原真菌学[M].四川:四川科学技术出版社,1986.
    [58]赵淑清,郭剑波.植物系统获得的抗性及其信号转导途径[J].中国农业科学,2003,36(7):781-787.
    [59]赵苏海,周瑾,李桂祥等.植物组织培养中褐变的产生机理及控制措施[J].河北农业科学,2007,11(5):59-61.
    [60]钟秋平,夏文水.壳聚糖对芒果炭疽病、蒂腐病的拮抗作用[J].食品与机械,2005,21(1):25-27.
    [61]周又生,沈发荣,赵焕萍.芒果炭疽病生物学及其综合防治研究[J].西南农业大学学报.1996,18(3):206-209.
    [62]庄炳昌,王玉民,谢雪菊等.抗性不同大豆吕种感染黑斑病后若干生化反应[J].作物学报.1993.19(6):567-569.
    [63]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.
    [64]Arius L Fuming anthracnose:Economic impact and current options for integrated management. Plant Disease,2000,84(6):600-611.
    [65]Astra Glarus L F and Amana G. Sensibility reducida al tiabendazo leenColletotrichum gloeosporioides aislado de papaya. Agron. Cost arric.1994,18:35-39.
    [66]Anzalferez S, Mateos B, Alvarado R, et al. SAR induction in tomato plants is not effective against root-knot nematode infection[J]. Eur J Plant pathol,2008,120:417-425.
    [67]Bowler Calotte T et althea induction of manganese superoxide-di smutase in response to stress in Nicotine plumbaginifolia [J].E MBO J,1989,8:31-38.
    [68]Chen Jianye, He Lihong, Jiang Yueming, et al. Role of phenylala-nine ammonia-lyase in heat pretreatment-induced chilling tolera nce in banana fruit[J]. Physiologia Plantarum,2008,132(3):318-32 8.
    [69]Chester KS. The problem of acquired physiological immunity in pl ant. The Quarterly Review of Biology.1933,8(3):275-324.
    [70]Chivari G, Concialini V.Electrochemical detection in the high pe rformance liquid chromatographic analysis of plant phenolics. An alyst.1988,113:91-94.
    [71]Diedhiou P M, Mbaye N, Drame A and Samb P I. Alteration of post harvest diseases of mango Mangifera indica through production practices and climatic factors. African Journal of Biotechnology, 2007,6 (9):1087-1094.
    [72]Dorey S, Kopp M, Geoffroy P, etc.Hydrogenperoxide from the oxidati ve burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylajanine ammonialyase stimulation, sa licylic acid accumulation,or scopoletin consumption in cultured tobacco cells treated with elicitin [J]. Plant Physiol,1999,121: 163-171.
    [73]Elizabeth R. Waters. Brian D. Aevermann. Zipporah Sanders-Reed. Comp arative analysis of the small heat shock proteins in three angi osperm genomes identifies new subfamilies and reveals diverse e volutionary patterns[J].Cell Stress and chaperones.2008,13:127-142.
    [74]Gomez F, Fernandez L, Gergpff G, et al.Heat shock increases mitoch ondrial H2O2 production and extends postharvest life of spinach leaves[J]. Postharvest Biology and Technology,2008,49(2):229-23 4.
    [75]Gorg A, Obermaier C et al.The Current state of two-dimensional E lectrophoresis with Immobilized pH Gradients[J], Electrophoresis, 2000,21:1037-1053.
    [76]Garratt, S D. Pathogenic Root-Infecting Fungi. Cambridge Unibersi ty Press.
    [77]Havlickova H, Cvilrova M,Eder j. Changes in the pattern of phenol ic acids induced by aphid infestation in two winten wheat culti vars. Bulletin-OILB-SROP.1996,19(5):106-110.
    [78]Hukkanen AT, Kokko HI, Buchala AJ, et al. Benzothiadiazole induces the accumulation of phenotics and improves resistance to powder y mildew in strawberries[J]. J Agri Food Chem,2007,55(5):1862-18 70.
    [79]Jeffries P and Koomen I. Strategies and prospects for biological control of diseases caused by Colletotrichum. [J] Colletotrichu m:Biology, Pathology and Control.1992,337-357.
    [80]Kuc J, Richmond S. Aspects of the protection of cucumber against Colletotrichum lagenarium by C lagenarium[J]. Phytopathol,1977,6 7:533-535.
    [81]KUC J. Concepts and directions of induced systemic resistance in plants and its application[J]. European Journal of Pathology,20 01,107:7-12.
    [82]Kuc J.Induced immunity to plant disease[J]. Bioscience,1982,32(1 1):854-860.
    [83]MccordJ Joe M and Fridovich Irwin. Superoxide Dismutase[J]. Biol Chem.1969,244 (22):6049.
    [84]Mucharromah E, Kuc J. Oxalate and phosphates induce systemic resi stance against disease caused by fungi, bacteria and viruses in cucumber[J]. Crop Protection,1991,10(4):265-270.
    [85]Nann Tetal. Proc.Roy[J]. Soc. (London)1938,126:303.
    [86]Nedeljka N. Rosic.Mathieu Pernice.Sophie Dove. Simon Dunn. Ove Ho egh-Guldberg. Gene expression profiles of cytosolic heat shock p roteins Hsp70and Hsp90from symbiotic dinoflagellates in respons e to thermal stress:possible implications for coral bleaching. Cell Stress and Chaperones.2011,16:69-80.
    [87]Okigbo R N and Osuinde M I. Fungal leaf spot diseases of mango (Mangifera indica L.)in Southeastern Nigeria and biological con trol with Bacillus subtilis. Plant Protect. Sci.,2003,39:70-77.
    [88]Palva TK, Hurting M et al. Salicylic acid induced resistance to Erwinia carotovora subsp. carotovora in tobacco[J]. Mol. Plant-Mic robe Interactions,1994,7(3):356-363.
    [89]Pandey A, Mann M. Proteomics to study genes and genomes[J]. insi ght review articles,2000, (405):837-846.
    [90]Patrik H.and 0 Farrell.High resolution two-dimentional electrop horesis of proteins. The Journal of Biological Chemistru,1975,25 0:4007-4021.
    [91]Pellehrini L, Rohfritsch 0, et al. Phenylalanine ammonialyase in tobacco(Molecular Cloning and Gene Expression during the Hypers ensitive Reaction to Tobacco Mosaic Virus and the Response to a Fungal Elicitor)[J]. Plant Physiology,1994,106:877-886.
    [92]Ploetz R C, Benscher D, Vazquez A, Colls A, Nagel J and Schaffer B. Mango decline:Research in Florida on an apparently wide-sprea d disease complex. Proc. Int. Mango Sympos.5th. Acta Hortic.1996, 455:547-553.
    [93]RayJ. Les maladies, cryptogamiques des vegetaux. RevGen. Bot.1901,1 3:145-151.
    [94]RossAF. Systemie acquired resistance by loealized virus infectio ns in plants. Virology,1961,14:340-358.
    [95]Ruffer M, Steipe B, Zenk M H. Evidence against specific binding o f salicylic acid to plant catalase. FEBS Lett,1995,377(1):175-1 8.
    [96]Ryals J, Lawton KA, et al. Signal transduction in systemic acquir ed resistance. Proc. Natl. Acad. Sci. USA,1995,92(10):4202-4205.
    [97]Smironff N. The role of active oxygen in the response of plants to water deficit and desication[J],New Phytologist,1993.125(1): 27-58.
    [98]Sticher L, Mauch-mani B, Metraux JP. Systemic acquired resistance [J].Annual Review of Phytopathology,1997,35:235-270.
    [99]Tuzun S. Kuc J. Persistence of induced systemic resistance to bu lemoldin tobacco plant desired via tissue culture[J]. Phytopatho logy,1987,77:1032-1035.
    [100]Van Loon L C. The nomenclature of pathogenesis-related proteins [J]. Plant Mol Biol,1990,37:229.
    [101]Van Loon LC et al. Recommendation for naming plant-related prote ins[J]. Plant Molecular Biology Reporter.1994,12:245-264.
    [102]Wilkins, M. R. Government backs proteome proposal[J]. Nature.1995,3 78:63.
    [103]Wisniewski M E and Wilson C L. Biological control of postharvest diseases of fruits and vegetables:Recent advances.Hort-Science, 1992:27:94-98.
    [104]X. Zhu,J.Cao, Q. Wang and W. Jiang. Postharvest Infiltration of BTH reduces Infection of Mango fruits by Colletotrichum gloeosporio idesand Enhances Resistance Inducing Compounds[J]Phytopathology. 2008,156(2):68-74.
    [105]Yan JX, Wait R, Berkelman T, et al.A modified silver staining prot ocol for visualization of Proteins compatible with matrix assis ted laser desorption/ionization and electrosp ray ionization2m ass spectrometry[J].Electrophoresis,2000,21(17):3666-3672.
    [106]ZHANG Junhuan,HUANG Weidong,PAN Qiuhong, et al. Improve-ment of c hilling tolerance and accumulation of heat shock proteins in gr ape berries (Vitis vinifera cv. Jingxiu) by heat pretreatment [J]. Postharvest Biology and Technology,2005,38(1):80-90.
    [107]Zhu SJ, Ma BC. Benzothiadiazole or methyl jasmonate induced resis tanc to colletotrcichum musae in harvested banana fruit is rela ted to elevated defence enzyme activities[J]. J Hort Sci Biotech ol,2007,82 (4):500-506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700