铜绿假单胞菌噬菌体PaP1的基因组学研究:一种由EndonucleaseⅤ介导的细菌免疫新机制的发现与证实
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜绿假单胞菌是临床上常见的革兰阴性条件致病菌,能耐受多种抗生素,是医院内感染的主要病原菌之一。噬菌体是一类专门侵染细菌的病毒,在自然界中广泛存在,数目约为细菌的10倍。噬菌体易于培养、基因组小且结构简单,一直是研究多种基本生命现象的重要对象与材料。对噬菌体进行鉴定和分类是噬菌体研究中的一项基本工作。目前大部分新鉴定的噬菌体已经归类为不同的属,但还有相当一部分噬菌体没有明确的分类。
     对噬菌体进行全基因组测序和注释是做噬菌体研究的重要内容。最初的基因组测序主要使用全基因组“鸟枪”测序法。然而某些噬菌体基因组的“鸟枪”测序并不顺利,有时甚至不得不半途而废。早在2004年,本实验室就遇到了一个难以测序的铜绿假单胞菌噬菌体PaP1的基因组。当时张克彬博士和黄建军博士前后分两次委托不同的商业化测序公司采用当时流行的“鸟枪”测序法对该噬菌体进行全基因组测序,然而始终得不到PaP1基因组的完整序列。因此噬菌体PaP1基因组的测序工作不得不搁置。
     直到在2008年第二代测序技术的推广应用后,我们才委托测序公司通过罗氏454测序技术顺利地获得了噬菌体PaP1的全基因组序列(91,715bp)。本文将进行噬菌体PaP1基因组的详细注释与比较基因组学分析,并深入探讨该基因组“鸟枪法”难以测序的原因。研究内容和结果主要包括以下几个方面:
     1.铜绿假单胞菌PA1及其噬菌体PaP1一般生物学特性的补充研究。确定了铜绿假单胞菌PA1的生长特点、革兰阴性形态及其胞外基质与鞭毛的形态。使用PEG8000浓缩沉淀的方法制备PaP1的粗制颗粒,再进行离心超滤得到纯化的PaP1颗粒。使用透射电镜观察PaP1颗粒的形态,分析出其具有二十面体对称的头部(直径约为69nm)和收缩性的尾部(长度约为139nm),这是确定其为肌尾噬菌体的重要依据。
     2.噬菌体PaP1基因组末端的鉴定。使用罗氏454测序方法测出PaP1基因组全长为91,715bp。通过限制性酶切的方法确定PaP1基因组为线性dsDNA分子,并确定了其末端的位置。分别回收PaP1基因组DNA5’末端和3’末端的酶切片段,使用我们所设计的末端鉴定引物进行末端测序。我们设计了一种新的噬菌体末端鉴定策略,使用该策略鉴定出PaP1基因组DNA具有1190bp长的末端冗余。
     3.噬菌体PaP1基因组的生物信息学及比较基因组学分析。通过GC含量的分析确定PaP1基因组的复制起始位点位于该基因组末端。通过开放阅读框(ORF)和编码序列(CDS)的鉴定确定了PaP1基因组有169个推定的基因(其中包含12个tRNA基因)。使用BlastP分析了PaP1基因的推定功能,并将PaP1基因组的注释信息提交给GenBank(登录号:NC_019913)。对铜绿假单胞菌的四株肌尾噬菌体(PaP1、JG004、PAK_P1和vB_PaeM_C2-10_Ab1)进行了比较基因组学分析,构建了其主要衣壳蛋白的进化树,并建立了噬菌体的一个新属:PaP1样噬菌体属。
     4.噬菌体PaP1结构蛋白的SDS-PAGE及质谱鉴定。采用浓缩后的PaP1粗制颗粒进行SDS-PAGE实验,将PaP1的结构蛋白显示在聚丙烯酰胺凝胶上。分别切离不同的PaP1蛋白条带,并进行蛋白的胶内酶解,然后进行HPLC-MS。最后一共鉴定出12个PaP1结构蛋白的编码基因,即通过实验证实了这12个PaP1基因的功能是编码结构蛋白。
     5.噬菌体PaP1基因组“鸟枪法”测序难题的研究。把之前PaP1基因组“鸟枪法”测序所获得的43个重叠群(contigs)定位在PaP1全基因组上,发现有约一半的序列是“鸟枪法”所测不出来的。我们阅读文献发现“鸟枪法”测序的宿主菌(大肠杆菌DH5α)可以编码识别修饰碱基的酶EndonucleaseⅤ(EndoⅤ)。而PaP1基因组DNA可以被EndoⅤ所切割,同样条件下“鸟枪法”测序成功的PaP3基因组DNA不可以被EndoⅤ所切割。这为PaP1基因组“鸟枪法”测序难题的解开提供了线索。
     6. EndoⅤ介导的细菌免疫机制的研究。我们通过λ-Red重组的方法敲除了大肠杆菌DH5α编码EndoⅤ的基因nfi,构建了突变株DH5α Δnfi。然后使用DH5α Δnfi作为“鸟枪法”克隆建库的宿主菌,重新对PaP1基因组进行“鸟枪法”测序,结果顺利完成了其测序。我们通过单分子实时(SMRT)测序的方法鉴定出PaP1基因组DNA中分布有7557个修饰碱基(包括152个m4C和51个m6A)。据此我们提出细菌通过EndoⅤ排斥噬菌体含有修饰碱基核酸的这样一种新的细菌免疫机制。
     综上所述,本文对PaP1长91,715bp的基因组进行了详细的注释,通过比较基因组学的分析建立了铜绿假单胞菌肌尾噬菌体中的一个新的属:PaP1样噬菌体属,解析了PaP1的12个结构蛋白编码基因,探讨了“鸟枪”测序法无法测序的PaP1基因组采用二代测序技术就可以测出全序列的根本原因并提供了解决办法,还揭示了细菌通过EndoⅤ免疫排斥外来侵染核酸、保持物种遗传稳定的免疫新机制。
Pseudomonas aeruginosa is a gram-negative opportunistic pathogen, frequently foundin clinical treatment and resistant to many kinds of antibiotics. Pseudomonas aeruginosa isone of the main pathogens in hospital infection. Phages are viruses specifically infectingbacteria and ubiquitous in the biosphere. Estimations of phage numbers are approximatelytenfold higher than those of bacteria. Phages are structurally simple, gnomically small andeasily cultured, making them constantly become important objects and materials of manybasic vital phenomena. Identification and classification of phages are groundwork in phagestudies. Currently, most of the newly identified phages have been categorized into differentgenera; whereas there are still some phages remain unclassified.
     Whole genome sequencing and annotation are important work in phage studies.Shot-gun sequencing method had been the most popular genome sequencing method for along time. Some phages could not be successfully sequenced by shot-gun strategy or thesequencing process had to stop halfway. Early in the year2004, our laboratory encounteredPseudomonas aeruginosa phage PaP1with its genome hard to sequence. At that time,research students of our laboratory sent the PaP1genome DNA to a commercial sequencingcompany to have it sequenced by shot-gun strategy, but it failed. Then they sent it toanother commercial sequencing company to have it sequenced by shot-gun strategy, itfailed again. So the sequencing of PaP1genome has to be postponed.
     In the year2008, the second generation sequencing method had spread worldwide. Wesent the PaP1genome DNA to a commercial sequencing company to have it sequenced byRoche/454sequencer. It gives us a whole PaP1genome sequence with a length of91,715bp. In this thesis, we will fully annotate the PaP1genome, perform comparative genomicanalysis of this genome, and extensively analyze the reason behind the PaP1genome hard to sequence by shot-gun sequencing method. The results are as follows:
     1. Additional analysis of the common bionomics of Pseudomonas aeruginosa PA1andphage PaP1. We observed the growth characteristics, gram-negative morphology,extracellular matrix and flagella of Pseudomonas aeruginosa PA1. The PaP1particles wereconcentrated by using PEG8000, and purified by ultrafiltration. The morphology of PaP1was observed by transmission electron microscope. The result shows that PaP1have anicoschedra head~69nm in diameter and a contractile tail~139nm in length. This is animportant evidence for that PaP1is a member of myovirus.
     2. Identification of the terminal redundancy of phage PaP1. Roche/454sequencingmethod reveals a whole PaP1genome sequence91,715bp in length. The linear dsDNAfeature and the location of the PaP1genome ends were characterized by restriction enzymedigestion analysis. We recovered the3’ and5’ end fragments of the PaP1genome, and thenterminal run-off sequencing of the two terminal fragments were carried out to identify theterminal sequence of the PaP1genome. We designed a new strategy to explore the terminalsequence of the PaP1DNA, and the result shows that the PaP1genome has1190bpterminally redundant regions.
     3. Bioinformatic and comparative genomic analyses of the PaP1genome. GC skewanalysis reveals that the replication origin of the PaP1genome locates within the terminallyredundant region. The PaP1genome has169putative genes (including12tRNA genes),based on the analysis of open reading frames and coding sequences. BlastP analysis revealsputative functions of these genes. Both the genome sequence and the annotationinformations were submitted to GenBank under the accession number: NC_019913.Comparative genomic analyses of four Pseudomonas aeruginosa myovirus (PaP1, JG004,PAK_P1and vB_PaeM_C2-10_Ab1) were performed. We constructed the phylogenetic treeof these four phages and proposed a new genus: PaP1-like phages.
     4. Identification of phage PaP1structural proteins. SDS-PAGE was used to visualizeeach structural protein of phage PaP1in the gel. At least17proteins with molecular weightsranging from6kDa to80kDa were resolved. Each protein band was then excised forHPLC-MS, permitting the allocation of15protein bands to12corresponding PaP1genes.
     5. Analysis of the puzzle of the PaP1genome hard to sequence by shot-gun strategy.Shot-gun sequencing of the PaP1genome only gives us43contigs. We located these contigs to the PaP1genome sequence revealed by Roche/454sequencer and found thatapproximately half of PaP1genome can not be sequenced by shot-gun strategy. Then wefound that EndonucleaseⅤ(EndoⅤ), produced by E. coli DH5α (the host bacteria ofshot-gun sequencing), can digest the PaP1genome DNA. But with the same condition, thePaP3genome DNA (successfully sequenced by shot-gun strategy) can not be digested byEndo Ⅴ. This result provides a hint for the puzzle of the shot-gun sequencing of the PaP1genome.
     6. Analysis of EndoⅤ mediated immunity of bacteria. We knocked out the EndoⅤcoding gene (nfi) of E. coli DH5α using λ-Red recombination system and the recombinantstrain was named E. coli DH5α Δnfi. Then shot-gun sequencing of the PaP1genome DNAwas successfully completed using E. coli DH5α Δnfi as the host bacterium. SMRTsequencing revealed7557modified bases (including152m4C and51m6A) in the PaP1genome. These results indicate that the well-known DNA repair protein EndoⅤ ofE. colican mediate the immunity of modified bases containing invasive phage DNA.
     In conclusion, this work fully annotated the PaP1genome, constructed a new genusnamed “PaP1-like phages” within the Myoviridae family, identified12PaP1structuralprotein coding genes, and reveal a new immunity mechanism for bacteria to resist phageDNA.
引文
1.吴伟清,李国明.铜绿假单胞菌耐药机制的研究进展.医学综述.2012;18(22):3812-3815.
    2. Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species andPseudomonas aeruginosa. Clin Infect Dis.2006;43Suppl2: S49-56.
    3. Lima-Mendez G, Toussaint A, Leplae R. Analysis of the phage sequence space: thebenefit of structured information. Virology.2007;365:241-249.
    4. Hendrix RW. Bacteriophage genomics. Curr Opin Microbiol.2003;6:506-511.
    5. Twort A. In focus, out of step: a biography of Frederick William Twort F.R.S.,1877-1950.Phoenix Mill; Dover, NH: A. Sutton. xi.1993;340p.
    6. d`Herelle F. Sur un microbe invisible antagoniste des bacilles dysentériques. C R AcadSci Paris.1917;165:373-375.
    7. Ackermann HW, Prangishvili D. Prokaryote viruses studied by electron microscopy. ArchVirol.2012;157:1843-1849.
    8. Debarbieux L. Experimental phage therapy in the beginning of the21st century. Med MalInfect.2008;38:421-425.
    9. Abedon S. Phage therapy pharmacology: calculating phage dosing. Adv Appl Microbiol.2011;77:1-40.
    10. Kwan T, Liu J, Dubow M, Gros P, Pelletier J. Comparative genomic analysis of18Pseudomonas aeruginosa bacteriophages. J Bacteriol.2006;188:1184-1187.
    11. Ceyssens PJ, Lavigne R. Bacteriophages of Pseudomonas. Future Microbiol.2010;5:1041-1055.
    12. Zabarovsky ER, Kashuba VI, et al. Shot-gun sequencing strategy for long-range genomemapping: a pilot study. Genomics.1994;21(3):495-500.
    13. Shendure, J. and H. Ji. Next-generation DNA sequencing. Nat Biotechnol.2008;26(10):1135-45.
    14. Gupta PK. Single-molecule DNA sequencing technologies for future genomics research.Trends Biotechnol.2008;26(11):602-11.
    15. McCarthy A. Third generation DNA sequencing: pacific biosciences’ single molecule realtime technology. Chem Biol.2010;17(7):675-6.
    16.李明,申晓冬,周莹冰,等.铜绿假单胞菌噬菌体PaP1生物学特性的研究.第三军医大学学报.2005;29(9):860-863.
    17.黄建军,胡晓梅,饶贤才,等.铜绿假单胞菌噬菌体PaP2生物学特性的研究.第三军医大学学报.2004;26(13):1133-1136.
    18.周莹冰,申晓冬,李明,等.铜绿假单胞菌噬菌体PaP3生物学特性的研究.解放军医学杂志.2006;31(10):999-1001.
    19. Benes V, Kilger C, Voss H, et al. Direct primer walking on P1plasmid DNA.Biotechniques.1997;23(1):98-100.
    20. Tettelin H, Radune D, et al. Optimized multiplex PCR: efficiently closing a whole-genome shotgun sequencing project. Genomics.1999;62(3):500-507.
    21. Soares AR, Pereira PM, et al. Next-generation sequencing of miRNAs with Roche454GS-FLX technology: steps for a successful application. Methods Mol Biol.2012;822:189-204.
    22. Gates FT3rd and Linn S. Endonuclease V of Escherichia coli. J Biol Chem.1977;252(5):1647-1653.
    23. Liu J, He B, et al. A deoxyinosine specific endonuclease from hyperthermophile,Archaeoglobus fulgidus: a homolog of Escherichia coli endonuclease V. Mutat Res.2000;461(3):169-177.
    24. Weiss B. Endonuclease V of Escherichia coli prevents mutations from nitrosativedeamination during nitrate/nitrite respiration. Mutat Res.2001;461(4):301-309.
    25. Dalhus BA, Arvai S, et al. Structures of endonuclease V with DNA reveal initiation ofdeaminated adenine repair. Nat Struct Mol Biol.2009;16(2):138-143.
    26. Zhu J, Rao X, Tan Y, et al. Identification of lytic bacteriophage MmP1, assigned to a newmember of T7-like phages infecting Morganella morganii. Genomics.2010;96:167-172.
    27. Li S, Liu L, Zhu J, et al. Characterization and genome sequencing of a novel coliphageisolated from engineered Escherichia coli. Intervirology.2010;53:211-220.
    28. Tan Y, Zhang K, Rao X, et al. Whole genome sequencing of a novel temperatebacteriophage of P. aeruginosa: evidence of tRNA gene mediating integration of thephage genome into the host bacterial chromosome. Cell Microbiol.2007;9:479-491.
    29.张克斌,陈志瑾,金晓琳,等.铜绿假单胞菌噬菌体的分离鉴定及耐噬菌体突变频率测定.微生物学通报.2002;29(1):40-45.
    30. Sambrook J, Russel DW. Molecular Cloning: A Laboratory Manual,3rd ed. New York:Cold Spring Harbor Laboratory Press.2001;170p.
    31. Zhang Z, Kottadiel VI, Vafabakhsh R, et al. A promiscuous DNA packaging machinefrom bacteriophage T4. PLoS Biol.2011;9: e1000592.
    32. Clark TA, Lu X, et al. Enhanced5-methylcytosine detection in single-molecule, real-timesequencing via Tet1oxidation. BMC Biol.2013;11:4.
    33.谭银玲,李明,黄建军,等.噬菌体基因组PaP1的鸟枪法测序及其生物信息学分析.中华烧伤杂志.2006;22(2):96-99.
    34. Zheng ZL, Advani A, Melefors O, et al. Titration-free454sequencing using Y adapters.Nature Protocols.2011;6:1367-1376.
    35. de la Bastide M, McCombie WR. Assembling genomic DNA sequences with PHRAP.Curr Protoc Bioinformatics.2007; Chapter11: Unit1114.
    36. Rosseel T, Scheuch M, Hoper D, et al. DNase SISPA-next generation sequencingconfirms Schmallenberg virus in Belgian field samples and identifies genetic variation inEurope. PLoS One.2012;7: e41967.
    37. Wu R, Taylor E. Nucleotide sequence analysis of DNA. II. Complete nucleotide sequenceof the cohesive ends of bacteriophage lambda DNA. J Mol Biol.1971;57:491-511.
    38. Klumpp J, Dorscht J, Lurz R, et al. The terminally redundant, nonpermuted genome ofListeria bacteriophage A511: a model for the SPO1-like myoviruses of gram-positivebacteria. J Bacteriol.2008;190:5753-5765.
    39. Just W, Klotz G. Terminal redundancy and circular permutation of mycoplasma virus L3DNA. J Gen Virol.1990;71(Pt9):2157-2162.
    40. Bravo A, Alonso JC, Trautner TA. Functional analysis of the Bacillus subtilisbacteriophage SPP1pac site. Nucleic Acids Res.1990;18:2881-2886.
    41. Stewart CR, Gaslightwala I, Hinata K, et al. Genes and regulatory sites of the “host-takeover module” in the terminal redundancy of Bacillus subtilis bacteriophage SPO1.Virology.1998;246:329-340.
    42. Keppel F, Fayet O, Georgopoulos C. Strategies of bacteriophage DNA replication. NewYork: Plenum Press.1988;145-262p.
    43.郑伟国,郭英,常春艳.生物信息学的现状与未来.口岸卫生控制.2004;9(5):40-43.
    44. Mesyanzhinov VV, Robben J, Grymonprez B, Kostyuchenko VA, Bourkaltseva MV, et al.The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J Mol Biol.2002;317:1-19.
    45. Nakayama K, Kanaya S, Ohnishi M, Terawaki Y, Hayashi T. The complete nucleotidesequence of phi CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa:implications for phage evolution and horizontal gene transfer via bacteriophages. MolMicrobiol.1999;31:399-419.
    46. Ceyssens PJ, Miroshnikov K, Mattheus W, Krylov V, Robben J, et al. Comparativeanalysis of the widespread and conserved PB1-like viruses infecting Pseudomonasaeruginosa. Environ Microbiol.2009;11:2874-2883.
    47. Uchiyama J, Rashel M, Takemura I, et al. Genetic characterization of Pseudomonasaeruginosa bacteriophage KPP10. Arch Virol.2012;157:733-738.
    48. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular andlinear interactive genome visualization. Bioinformatics.2009;25:119-120.
    49. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web serversfor the detection of tRNAs and snoRNAs. Nucleic Acids Res.2005;33: W686-689.
    50. Grigoriev A. Strand-specific compositional asymmetries in double-stranded DNA viruses.Virus Res.1999;60:1-19.
    51. Diard M, Garry L, Selva M, Mosser T, Denamur E, et al. Pathogenicity-associated islandsin extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinalcolonization. J Bacteriol.2010;192:4885-4893.
    52. Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, et al. Database resources ofthe National Center for Biotechnology. Nucleic Acids Res.2003;31:28-33.
    53. Besemer J, Borodovsky M. Heuristic approach to deriving models for gene finding.Nucleic Acids Res.1999;27:3911-3920.
    54. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. Gapped BLAST andPSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.1997;25:3389-3402.
    55. Reese MG. Application of a time-delay neural network to promoter annotation in theDrosophila melanogaster genome. Comput Chem.2001;26:51-56.
    56. Byl C.V. and Kropinski A.M. Sequence of the Genome of Salmonella Bacteriophage P22.J.B.2000;182(22):6472–6481.
    57. Casjens S, Hatfull G, Hendrix R. Evolution of dsDNA tailed-bacteriophage genomes.Semin Virol.1992;3:383-397.
    58. Kimelman A, Levy A, Sberro H, Kidron S, Leavitt A, et al. A vast collection of microbialgenes that are toxic to bacteria. Genome Res.2012;22:802-809.
    59. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF. Evolutionary relationshipsamong diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad SciU S A.1999;96:2192-2197.
    60. Pajunen MI, Kiljunen SJ, Soderholm ME, Skurnik M. Complete genomic sequence of thelytic bacteriophage phiYeO3-12of Yersinia enterocolitica serotype O:3. J Bacteriol.2001;183:1928-1937.
    61. Zhang Y, Maley F, Maley GF, Duncan G, Dunigan DD, et al. Chloroviruses encode abifunctional dCMP-dCTP deaminase that produces two key intermediates in dTTPformation. J Virol.2007;81:7662-7671.
    62. Manoharadas S, Witte A, Blasi U. Antimicrobial activity of a chimeric enzybiotic towardsStaphylococcus aureus. J Biotechnol.2009;139:118-123.
    63. Wu H, Lu H, Huang J, Li G, Huang Q. EnzyBase: a novel database for enzybiotic studies.BMC Microbiol.2012;12:54.
    64. Sun WZ, Tan YL, Jia M, Hu XM, Rao XC, et al. Functional characterization of theendolysin gene encoded by Pseudomonas aeruginosa bacteriophage PaP1. AfricanJournal of Microbiology Research.2010;4:933-939.
    65. Carver T, Berriman M, Tivey A, Patel C, Bohme U, et al. Artemis and ACT: viewing,annotating and comparing sequences stored in a relational database. Bioinformatics.2008;24:2672-2676.
    66. Krumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots ongenome scale. Bioinformatics.2007;23:1026-1028.
    67. Zafar N, Mazumder R, Seto D. CoreGenes: a computational tool for identifying andcataloging “core” genes in a set of small genomes. BMC Bioinformatics.2002;3:12.
    68. Mahadevan P, King JF, Seto D. Data mining pathogen genomes using GeneOrder andCoreGenes and CGUG: gene order, synteny and in silico proteomes. Int J Comput BiolDrug Des.2009;2:100-114.
    69. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. MEGA5: molecularevolutionary genetics analysis using maximum likelihood, evolutionary distance, andmaximum parsimony methods. Mol Biol Evol.2011;28:2731-2739.
    70. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. Multiple sequence alignmentwith the Clustal series of programs. Nucleic Acids Res.2003;31:3497-3500.
    71. Som A, Fuellen G. The effect of heterotachy in multigene analysis using the neighborjoining method. Mol Phylogenet Evol.2009;52:846-851.
    72. Garbe J, Bunk B, Rohde M, Schobert M. Sequencing and characterization ofPseudomonas aeruginosa phage JG004. BMC Microbiol.2011;11:102.
    73. Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, et al. Bacteriophages CanTreat and Prevent Pseudomonas aeruginosa Lung Infections. Journal of InfectiousDiseases.2010;201:1096-1104.
    74. Bamford DH, Grimes JM, Stuart DI. What does structure tell us about virus evolution?Curr Opin Struct Biol.2005;15:655-663.
    75. Hertveldt K, Lavigne R, Pleteneva E, Sernova N, Kurochkina L, et al. Genomecomparison of Pseudomonas aeruginosa large phages. J Mol Biol.2005;354:536-545.
    76. Garbe J, Wesche A, Bunk B, Kazmierczak M, Selezska K, et al. Characterization ofJG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulatedinfection conditions. BMC Microbiol.2010;10:301.
    77. Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG, et al. BacteriophagesphiMR299-2and phiNH-4can eliminate Pseudomonas aeruginosa in the murine lungand on cystic fibrosis lung airway cells. MBio.2012;3: e00029-00012.
    78. Morello E, Saussereau E, Maura D, Huerre M, Touqui L, et al. Pulmonary bacteriophagetherapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatmentand prevention. PLoS One.2011;6: e16963.
    79. Monod C, Repoila F, Kutateladze M, Tetart F, Krisch HM. The genome of the pseudoT-even bacteriophages, a diverse group that resembles T4. J Mol Biol.1997;267:237-249.
    80. Chen J, Novick RP. Phage-mediated intergeneric transfer of toxin genes. Science.2009;323:139-141.
    81. Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, et al. Coevolution ofbacteriophage PP01and Escherichia coli O157:H7in continuous culture. Appl EnvironMicrobiol.2003;69:170-176.
    82. Gomez P, Buckling A. Bacteria-phage antagonistic coevolution in soil. Science.2011;332:106-109.
    83. Olsthoorn RC, Garde G, Dayhuff T, et al. Nucleotide sequence of a single-stranded RNAphage from Pseudomonas aeruginosa: kinship to coliphages and conservation ofregulatory RNA structures. Virology.1995;206(1):611-25.
    84. Niu YD, Stanford K, et al. Genomic, proteomic and physiological characterization of aT5-like bacteriophage for control of Shiga toxin-producing Escherichia coli O157:H7.PLoS One.2012;7(4): e34585.
    85. Liu XY, Shi M, Kong SL, Gao Y, An CC. Cyanophage Pf-WMP4, a T7-like phageinfecting the freshwater cyanobacterium Phormidium foveolarum: Complete genomesequence and DNA translocation. Virology.2007;366:28-39.
    86. Williams EA, Degnan SM. Carry-over effect of larval settlement cue on postlarval geneexpression in the marine gastropod Haliotis asinina. Mol Ecol.2009;18:4434-4449.
    87. Ciprandi G, Sormani MP, Filaci G, Fenoglio D. Carry-over effect on IFN-gammaproduction induced by allergen-specific immunotherapy. Int Immunopharmacol.2008;8:1622-1625.
    88. Eyer L, Pantucek R, Zdrahal Z, Konecna H, Kasparek P, et al. Structural protein analysisof the polyvalent Staphylococcal bacteriophage812. Proteomics.2007;7:64-72.
    89. Sanger F, et al. Nucleotide sequence of bacteriophage phi X174DNA. Nature.1977;265(5596):687-695.
    90. Bankier AT, et al. The DNA sequence of the human cytomegalovirus genome. DNA Seq.1991;2(1):1-12.
    91. Fleischmann RD, et al. Whole-genome random sequencing and assembly of Haemophilusinfluenzae Rd. Science.1995;269(5223):496-512.
    92. Kyrpides NC. Fifteen years of microbial genomics: meeting the challenges and fulfillingthe dream. Nat Biotechnol.2009;27:627–632.
    93. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat RevMicrobiol.2010;8(5):317-327.
    94. Huang J, Lu J, et al. Multiple cleavage activities of endonuclease V from Thermotogamaritima: recognition and strand nicking mechanism. Biochemistry.2001;40(30):8738-8748.
    95. Majorek KA and Bujnicki JM. Modeling of Escherichia coli Endonuclease V structure incomplex with DNA. J Mol Model.2009;15(2):173-82.
    96. Datsenko KA and Wanner BL. One-step inactivation of chromosomal genes inEscherichia coli K-12using PCR products. Proc. Natl. Acad. Sci. U S A.2000;97:6640-6645.
    97. Cherepanov PP, Wackernagel W. Gene disruption in Escherichia coli: TcR and KmRcassettes with the option of Flp-catalyzed excision of the antibiotic-resistancedeterminant. Gene.1995;158:9-14
    98. Flusberg BA, et al. Direct detection of DNA methylation during single-molecule,real-time sequencing. Nat Methods.2010;7(6):461-465.
    99. Davis BM, Chao MC and Waldor MK. Entering the era of bacterial epigenomics withsingle molecule real time DNA sequencing. Curr Opin Microbiol.2013; In Press.
    100.Childs JD, Ellison MJ and Pilon R. Formation of5-hydroxymethylcytosine-containingpyrimidine dimers in UV-irradiated bacteriophage T4DNA. Photochem Photobiol.1983;37(5):513-519.
    101.Lehman IR and Pratt EA. On the structure of the glucosylated hydroxymethylcytosinenucleotides of coliphages T2, T4, and T6. J Biol Chem.1960;235:3254-3259.
    102.Takahashi I and Marmur J. Replacement of thymidylic acid by deoxyuridylic acid in thedeoxyribonucleic acid of a transducing phage for Bacillus subtilis. Nature.1963;197:794-795.
    103.Kallen RG, Simon M and Marmur J. The new occurrence of a new pyrimidine basereplacing thymine in a bacteriophage DNA:5-hydroxymethyl uracil. J Mol Biol.1962;5:248-250.
    104.Warren RA. Modified bases in bacteriophage DNAs. Annu Rev Microbiol.1980;34:137-158.
    105.Gommers-Ampt JH and Borst P. Hypermodified bases in DNA. FASEB J.1995;9(11):1034-1042.
    106.Xu SY, Nugent RL, Kasamkattil J, et al. Characterization of type II and III restriction-modification systems from Bacillus cereus strains ATCC10987and ATCC14579. JBacteriol.2012;194(1):49-60.
    107.Fineran PC, Blower TR, Foulds IJ, et al. The phage abortive infection system, ToxIN,functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci U S A.2009;106(3):894-899.
    108.Friedman DI, Mozola CC, Beeri K, et al. Activation of a prophage-encoded tyrosinekinase by a heterologous infecting phage results in a self-inflicted abortive infection. MolMicrobiol.2011;82(3):567-577.
    109.Datsenko KA, Pougach K, Tikhonov A, et al. Molecular memory of prior infectionsactivates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun.2012;3:945.
    110.Bickle TA and Kruger DH. Biology of DNA restriction. Microbiol Rev.1993;57:434-450.
    1. Roberts RJ, et al. A nomenclature for restriction enzymes, DNA methyltransferases,homing endonucleases and their genes. Nucleic Acids Res.2003;31(7):1805-1812.
    2. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat RevMicrobiol.2010;8(5):317-327.
    3. Arber W and Linn S. DNA modification and restriction. Annu Rev Biochem.1969;38:467-500.
    4. Roberts RJ. Restriction and modification enzymes and their recognition sequences. Gene.1978;4(3):183-194.
    5. Enikeeva FN, Severinov KV and Gelfand MS. Restriction-modification systems andbacteriophage invasion: who wins? J Theor Biol.2010;266(4):550-559.
    6. Dryden DT, Murray NE and Rao DN. Nucleoside triphosphate-dependent restrictionenzymes. Nucleic Acids Res.2001;29:3728-3741.
    7. Murray NE. Type I restriction systems: sophisticated molecular machines. Microbiol MolBiol Rev.2000;64:412-434.
    8. Titheradge AJ, King J, Ryu J and Murray NE. Families of restriction enzymes: ananalysis prompted by molecular and genetic data for type ID restriction and modificationsystems. Nucleic Acids Res.2001;29:4195-4205.
    9. Taylor JE, et al. Structural and Functional Analysis of the Symmetrical Type I RestrictionEndonuclease R.EcoR124I (NT). PLoS One.2012;7(4): e35263.
    10. Li N, et al. Type I restriction-modification system and its resistance in electroporationefficiency in Flavobacterium columnare. Vet Microbiol.2012;160(1-2):61-68.
    11. Pingoud A and Jeltsch A. Structure and function of type II restriction endonucleases.Nucleic Acids Res.2001;29(18):3705-3727.
    12. Pingoud A, et al. Type II restriction endonucleases: structure and mechanism. Cell MolLife Sci.2005;62(6):685-707.
    13. Kim JW, et al. A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Appl Environ Microbiol.2012;78(6):1995-2004.
    14. Mucke M, Reich S, Moncke-Buchner E, Reuter M and Kruger DH. DNA cleavage bytype III restriction-modifcation enzyme EcoP15I is independent of spacer distancebetween two head to head oriented recognition sites. J Mol Biol.2001;312:687-698.
    15. Wyszomirski KH, et al. Type III restriction endonuclease EcoP15I is a heterotrimericcomplex containing one Res subunit with several DNA-binding regions and ATPaseactivity. Nucleic Acids Res.2012;40(8):3610-3622.
    16. Stewart FJ, Panne D, Bickle TA and Raleigh EA. Methyl-specific DNA binding byMcrBC, a modification-dependent restriction enzyme. J Mol Biol.2000;298:611-622.
    17. Xu SY, et al. A type IV modification-dependent restriction enzyme SauUSI fromStaphylococcus aureus subsp. aureus USA300. Nucleic Acids Res.2011;39(13):5597-5610.
    18. Liu G, et al. Cleavage of phosphorothioated DNA and methylated DNA by the type IVrestriction endonuclease ScoMcrA. PLoS Genet.2010;6(12): e1001253.
    19. Gerdes K, Christensen SK and Lobner-Olesen A. Prokaryotic toxin-antitoxin stressresponse loci. Nat Rev Microbiol.2005;3(5):371-382.
    20. Ogura T, Hiraga S. Mini-F plasmid genes that couple host cell division to plasmidproliferation. Proc Natl Acad Sci USA.1983;80:4784-4788.
    21. Yamaguchi Y, Park JH, and Inouye M. Toxin-antitoxin systems in bacteria and archaea.Annu Rev Genet.2011;45:61-79.
    22. Van Melderen L. Toxin-antitoxin systems: why so many, what for? Curr Opin Microbiol.2010;13(6):781-785.
    23. Wang X, et al. A new type V toxin-antitoxin system where mRNA for toxin GhoT iscleaved by antitoxin GhoS. Nat Chem Biol.2012;8(10):855-861.
    24. Fineran PC, et al. The phage abortive infection system, ToxIN, functions as aprotein-RNA toxin-antitoxin pair. Proc Natl Acad Sci U S A.2009;106(3):894-899.
    25. Pecota DC and Wood TK. Exclusion of T4phage by the hok/sok killer locus fromplasmid R1. J Bacteriol.1996;178:2044-2050.
    26. Hazan R and Engelberg-Kulka H. Escherichia coli mazEF-mediated cell death as adefense mechanism that inhibits the spread of phage P1. Mol Genet Genomics.2004;272(2):227-234.
    27. Sevin EW and Barloy-Hubler F. RASTA-Bacteria: a web-based tool for identifyingtoxin-antitoxin loci in prokaryotes. Genome Biol.2007;8(8): R155.
    28. Bidnenko E, Chopin A, et al. Activation of mRNA translation by phage protein and lowtemperature: the case of Lactococcus lactis abortive infection system AbiD1. BMC MolBiol.2009;10:4.
    29. Friedman DI, et al. Activation of a prophage-encoded tyrosine kinase by a heterologousinfecting phage results in a self-inflicted abortive infection. Mol Microbiol.2011;82(3):567-577.
    30. Snyder L. Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents?Mol Microbiol.1995;15:415-420.
    31. Molineux IJ. Host-parasite interactions: recent developments in the genetics of abortivephage infections. New Biol.1991;3:230-236.
    32. Bingham R, Ekunwe SI, Falk NS, Snyder L and Kleanthous C. The major head protein ofbacteriophage T4binds specifically to elongation factor Tu. J Biol Chem.2000;275:23219-23226.
    33. Cheng X, Wang W and Molineux IJ. F exclusion of bacteriophage T7occurs at the cellmembrane. Virology.2004;326:340-352.
    34. Garcia LR and Molineux IJ. Incomplete entry of bacteriophage T7DNA into F-plasmidcontaining Escherichia coli. J Bacteriol.1995;177:4077-4083.
    35. Chopin MC, Chopin A and Bidnenko E. Phage abortive infection in lactococci: variationson a theme. Curr. Opin. Microbiol.2005;8:473-479.
    36. Dai G, et al. Molecular characterization of a new abortive infection system (AbiU) fromLactococcus lactis LL51-51. Appl Environ Microbiol.2001;67:5225-5232.
    37. Domingues S, et al. The lactococcal abortive infection protein AbiP ismembrane-anchored and binds nucleic acids. Virology.2008;373:14-24.
    38. Fortier LC, Bouchard JD and Moineau S. Expression and site-directed mutagenesis of thelactococcal abortive phage infection protein AbiK. J Bacteriol.2005;187:3721-3730.
    39. Weinberger AD and Gilmore MS. CRISPR-Cas: to take up DNA or not-that is thequestion. Cell Host Microbe.2012;12(2):125-126.
    40. Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A. Nucleotide-sequence ofthe iap gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia coli,and identification of the gene-product. J Bacteriol.1987;169:5429-5433.
    41. Kunin V, Sorek R and Hugenholtz P. Evolutionary conservation of sequence andsecondary structures in CRISPR repeats. Genome Biol.2007;8: R61.
    42. Makarova KS, et al. Evolution and classification of the CRISPR-Cas systems. Nat RevMicrobiol.2011;9(6):467-477.
    43. Horvath P and Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea.Science.2010;327(5962):167-170.
    44. Datsenko KA, et al. Molecular memory of prior infections activates the CRISPR/Casadaptive bacterial immunity system. Nat Commun.2012;3:945.
    45. Sinkunas T, et al. Cas3is a single-stranded DNA nuclease and ATP-dependent helicase inthe CRISPR/Cas immune system. EMBO J.2011;30:1335-1342.
    46. Soding J, Remmert M, Biegert A and Lupas AN. HHsenser: exhaustive transitive profilesearch using HMM-HMM comparison. Nucleic Acids Res.2006;34: W374-W378.
    47. Brouns SJ, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science.2008;321:960-964.
    48. Kleanthous C, et al. Structural and mechanistic basis of immunity toward endonucleasecolicins. Nature Struct Biol.1999;6:243-252.
    49. Jakubauskas A, Giedriene J, Bujnicki JM and Janulaitis A. Identification of a single HNHactive site in type IIS restriction endonuclease Eco31I. J Mol Biol.2007;370:157-169.
    50. Barrangou R, et al. CRISPR provides acquired resistance against viruses in prokaryotes.Science.2007;315:1709-1712.
    51. Deltcheva E, et al. CRISPR RNA maturation by transencoded small RNA and host factorRNase III. Nature.2011;471:602-607.
    52. Marraffini LA and Sontheimer EJ. CRISPR interference limits horizontal gene transfer instaphylococci by targeting DNA. Science.2008;322:1843-1845.
    53. Hale CR, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.Cell.2009;139:945-956.
    54. White MF. Structure, function and evolution of the XPD family of iron–sulfur containing5’→3’ DNA helicases. Biochem Soc Trans.2009;37:547-551.
    55. Garneau JE, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage andplasmid DNA. Nature.2010;468:67-71.
    56. Deveau H, et al. Phage response to CRISPR-encoded resistance in Streptococcusthermophilus. J Bacteriol.2008;190:1390-1400.
    57. Carte J, Pfister NT, et al. Binding and cleavage of CRISPR RNA by Cas6. RNA.2010;16(11):2181-2188.
    58. van der Oost J, Jore MM, Westra ER, Lundgren M and Brouns SJ. CRISPR-basedadaptive and heritable immunity in prokaryotes. Trends Biochem Sci.2009;34:401-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700