人FXYD6蛋白多克隆抗体制备及FXYD6与胆管癌细胞增殖、侵袭关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景胆管癌早期诊断技术的改进是提高胆管癌疗效的关键因素之一。本课题组前期工作已在转录水平证实hFXYD6为胆管癌分化相关抗原。通过对FXYD6蛋白与胆管癌关系的逐步揭示,在为胆管癌早期诊断提供新的肿瘤标志物同时,也有望对胆管癌的发生演进发展有进一步认识。
     目的1.制备兔抗人FXYD6蛋白多克隆抗体。2.比较hFXYD6 mRNA、蛋白质在不同分化胆管癌组织的表达差异。3.探讨hFXYD6反义核酸对人胆管癌细胞体外增殖和侵袭能力的影响。
     方法1.通过B细胞表位分析,设计hFXYD6抗原多肽,经原核表达、蛋白纯化、动物免疫、抗体纯化等过程,制备兔抗人hFXYD6蛋白多克隆抗体。2.采用SYBR~(?) GreenⅠ荧光定量Real Time PCR及免疫组化方法检测不同分化胆管癌hFXYD6 mRNA及表达差异。3.通过反义核酸技术研究hFXYD6蛋白与人胆管癌细胞增殖侵袭关系。构建hFXYD6反义核酸真核表达载体pcDNA3.1(-)/hFXYD6(-)并转染人胆管癌QBC939细胞,同时设pcDNA3.1(-)空载对照组和空白对照组。Real Time PCR和荧光免疫组化鉴定转染结果;MTT、平板克隆形成实验检测细胞体外增殖活性;流式细胞仪检测细胞周期;Transwell侵袭小室模型检测细胞体外侵袭能力。
     结果1.经ELISA及免疫组化证实,成功制备高效价兔抗人FXYD6蛋白多克隆抗体。2.SYBR~(?) GreenⅠ荧光定量Real Time PCR结果表明:人FXYD6基因在正常胆管、高分化胆管癌及低分化胆管癌均存在表达;低分化组高于高分化组(P<0.001),高分化组高于正常组(P<0.001)。免疫组化支持这一结果。3.与空白组和空载组比较,反义组细胞hFXYD6 mRNA及蛋白表达量降低;细胞群体倍增时间增加(46.8h vs 34.5h,35.3h),细胞克隆形成率降低(24.3%±5.3%vs 61.0%±8.5%,58.0%±5.6%;P值均<0.001);细胞周期中G1期细胞比例明显升高(66.4%±2.9%vs 33.5%±2.3%,39.4%±3.7%;P值均<0.001),S期比例明显减少(18.6%±1.6%vs 36.2%±2.1%,34.1%±1.6%;P值均<0.001);Transwell侵袭小室中24h穿膜细胞数无显著改变(32.8±6.2 vs 34.4±5.3,29.4±5.2;分别为P=0.659,P=0.355)。空白组和空载组细胞间均无明显差异。
     结论1.hFXYD6与胆管癌分化相关,从正常胆管、高分化胆管癌到低分化胆管癌,hFXYD6表达量依次递增。2.hFXYD6反义核酸抑制人胆管癌QBC939细胞体外增殖活性,但对其侵袭能力无明显影响。
Background The improvement of early diagnostic technique is one of the critical factors to elevate cholangiocarcinoma therapeutic effect. We have confirmed that human FXYD6 is related with cholangiocarcinoma differentiation in transcription level. By gradually understanding the relation between human FXYD6 and cholangio- carcinoma, a new tumor marker for early cholangiocarcinoma diagnosis can be provided, meanwhile we can know more about the carcinogenesis and develop-ment of cholangiocarcinoma.
    Objective 1. To prepare the rabbit anti-human FXYD6 polyclonal antibody. 2. To validate the differential expression of hFXYD6 mRNA and protein among normal bile duct, high grade cholangiocarcinoma and low grade cholangiocarcinoma. 3. To investigate the effects of human FXYD6 antisense on the proliferation and invasion of human cholangiocarcinoma cells.
    Methods 1. B cell etitope analysis, polypeptide design, prokaryotic expression, protein purification, animal immunization and antibody purification were done to prepare rabbit anti-human FXYD6 polyclonal antibody. 2. SYBR~(?)Green I fluorescence quantitation Real Time PCR and immunohistochemistry were used to validate the differential expression of hFXYD6 mRNA and protein among different differentiated bile duct carcinoma. 3. Antisensenueleic acids technique was used to investigate the relation between hFXYD6 and cholangiocarcinoma cells proliferation and invasion. Human cholangiocarcinoma cell line QBC939 was transfected with the plasmid expressing human FXYD6 antisense. Meanwhile, the empty vector and non-transfection group were designed. The mRNA transcription level of hFXYD6 was assayed by real-time reverse transcriptase polymerase chain reaction with SYBR Green I, and the hFXYD6 protein expression was detected by immunohistochemistry. MTT and the colony-forming assay was used to measure the ability of cell growth. The cell cycle distribution was analysed by flow cytometry and Transwell chamber model was employed to test the ability of cell
    invasion in vitro.
    Results 1. High titer rabbit anti-human FXYD6 polyclonal antibody was successfully prepared with ELISA and immunohistochemistry verification. 2. Real Time PCR showed that hFXYD6 was expressed in normal bile duct, high grade cholangiocarcinoma and low grade cholangiocarcinoma; the level of high grade was higher than normal group and low group than high group. The immunohistochemistry result was the same. 3. In comparison with the cells transfected with empty vector or without transfection, QBC939 cells transfected with hFXYD6 antisense had a significant decrease in mRNA transcription and protein expression. The cell doubling time was augmented (46.8 h vs 34.5 h, 35.3 h), whereas the colony formation was decreased (24.3%±5.3% vs 61.0%±8.5%, 58.0%±5.6%; both P values < 0.001). The G1-phase cell population was increased (66.4%±2.9% vs 33.5%±2.3%, 39.4%±3.7%; both P values < 0. 001) and S-phase cell population was decreased (18.6%±1.6% vs 36.2%±2.1%, 34.1%±1.6%; both P values < 0. 001). The cells moved from the upper chamber into the lower one in Transwell chamber assay had no marked difference (32.8± 6.2 vs 34.4±5.3, 29.4±5.2; respectively P= 0.659, P= 0.355).Between the cells without transfection and the cells transfected with empty vector, there were no significant differences in cell doubling time, colony forming ability, cell cycle distribution and the ability of cell invasion in vitro.
    Conclusion 1. Human FXYD6 expression correlates with bile duct carcinoma differentiation. From normal bile duct, high grade cholangiocarcinoma to low grade cholangiocarcinoma, the hFXYD6 mRNA and protein level increase progressively. 2. Transfection of hFXYD6 antisense can inhibit the ability of cell proliferation, but it has no effect on the ability of cell invasion in human cholangio-carcinoma cell line QBC939 in vitro.
引文
1.张效东,周宁新,卢松柏,等.不同分化胆管癌间差异表达基因的分离、克隆和功能研究.中华外科杂志,2002;40(5):399-399.
    2.张效东,周宁新,卢松柏,等.不同分化胆管癌间差异表达基因的研究.消化外科,2002;1(1):13-15.
    3.张效东,周宁新,卢松柏,等.应用基因芯片技术比较两种不同表型的胆管癌组织中基因表达的差异.消化外科,2002;1(3):181-184.
    4.万涛,倪彬,刘建伟,等.人胆管癌相关基因CCR-L2/FXYD6大片段克隆与鉴定.中华实验外科杂志,2003;20(5):393-395.
    5. Sweadner KJ, Rael E. The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics, 2000; 68(1): 41-56.
    6. Kayed H, Kleeff J, Kolb A, et al. FXYD3 is overexpressed in pancreatic ductal adenocarcinoma and influences pancreatic cancer cell growth. Int J Cancer, 2006; 118(1): 43-54.
    7. Morrison BW, Moorman JR, Kowdley GC, et al. Mat-8, a novel phospholemman-like protein expressed in human breast tumors, induced a chloride conductance in Xenopus oocytes. J Biol Chem, 1995; 270(5): 2176-2182.
    8. Grzmil M, Voiqt S, Thelen P, et al. Up-regulated expression of MAT-8 gene in prostate cancer and its siRNA-mediated inhibition of expression induces a decrease in proliferation of human prostate carcinoma cells. Int J Oncol, 2004; 24(1): 97-105.
    9. Shimada Y, Yamsaki S, Hashimoto Y, et al. Clinical significance of dysadherin expression in gastric cancer patients. Clin Cancer Res, 2004; 10(8): 2818-2823.
    10. Aoki S, Shimamura T, Shibata T, et al. Prognostic significance of dysadherin expression in advanced colorectal carcinoma. Br J Cancer, 2003; 88(5): 726-732.
    11. Shimamura Y, Hashimoto Y, Kan T, et al. Prognostic significance of dysadherin expression in esophageal squamous cell carcinoma. Oncology, 2004; 67(1): 73-80.
    12. Shimamura T, Yasuda J, Ino Y, et al. Dysadherin expression facilitates cell motility and metastatic potential of human pancreatic cancer cells. Cancer Res, 2004; 64(19): 6988-6995.
    13. Nakanishi Y, Akimoto S, Sato Y, et al. Prognostic significance of dysadherin expression in tongue cancer: immunohistochemical analysis of 91 cases. Appl Immunohistochem Mol Morphol, 2004; 12(4): 323-328.
    14. Wu D, Qiao Y, Kristensen GB, et al. Prognostic significance of dysadherin expression in cervical squamous cell carcinoma. Pathol Oncol Res, 2004; 10(4): 212-218.
    15. Yin W, Cheepala S, Roberts JN, et al. Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions. Mol Cancer, 2006; 5: 15-27.
    16. Li C, Grosdidier A, Crambert G, et al. Structural and functional interaction sites between Na,K-ATPase and FXYD proteins. J Biol Chem, 2004; 279(37): 38895-38902.
    17. Geering K. Function of FXYD proteins, regulator of Na, K-ATPase. J Bioenerg Biomembr, 2005; 37(6): 387-392.
    18. Geering K. FXYD proteins: new regulator of Na,K-ATPase. Am J Physiol Renal Physiol, 2006; 290(2): F241-250.
    19. Garty H, Karlish SJ. Role of FXYD proteins in ion transport. Annu Rev Physiol, 2006; 68: 431-459.
    20. Lindzen M, Aizman R, Lifshitz Y, et al. Domains involved in the interactions between FXYD and Na,K-ATPase. Ann N Y Acad Sci, 2003; 986: 530-531.
    21. Geering K, Beguin P, Garty H, et al. FXYD proteins: new tissue- and isoform-specific regulators of Na,K-ATPase. Ann N Y Acad Sci, 2003; 986: 388-394.
    22. Haas M, Askari A, Xie Z. Involvement of Src and epidermal growth factor receptor in the signal transducing function of Na~+/K~+-ATPase. J Biol Chem, 2000; 275(36): 27832-27837.
    23. Haas M, Wang H, Tian J, et al. Src-mediated inter-receptor cross-talk between the Na~+/K~+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J Biol Chem, 2002; 277(21): 18694-18702.
    24. Kometiani P, Li J, Gnudi L, et al. Multiple signal transduction pathways link Na~+/K~+-ATPase to growth-related genes in cardiac myocytes. The roles of Ras and mitogen-activated protein kinases. J Biol Chem, 1998; 273(24): 15249-15256.
    25. Mohammadi K, Kometiani P, Xie Z, et al. Role of protein kinase C in the signal pathways that link Na~+/K~+-ATPase to ERK1/2. J Biol Chem, 2001; 276(45): 42050-42056.
    26. Javle MM, Yu J, Khoury T, et al. Akt expression may predict favorable prognosis in cholangiocarcinoma. J Gastroenterol Hepatol, 2006; 21(11): 1744-1751.
    27. Yoon JH, Gwak GY, Lee HS, et al. Enhanced epidermal growth factor receptor activation in human cholangiocarcinoma cells. J Hepatol, 2004; 41(5): 808-814.
    28. Tsubouchi H. Sustained activation of epidermal growth factor receptor in cholangiocarcinoma: a potent therapeutic target? J Hepatol, 2004; 41(5): 859-861.
    29.庄大勇,梁平,范西红,等.肝内胆管癌形成过程中表皮生长因子及其受体与转化生长因子-α的表达意义.中华肝脏病杂志,2004;12(1):55-56.
    30.赵海鹰,戴显伟,李冠群,等.胆管癌表皮生长因子受体、增殖细胞核抗原的表达.中华实验外科杂志,]997;14(2):71-72.
    31.顾广玉,朱明华,王文亮,等.表皮生长因子受体在肝细胞癌及胆管细胞癌中的表达.临床与实验病理学杂志,1999;15(5):385-386.
    1. Lord JW, Chenoweth AI. Free graft over a Vitallium tube for bridging a gap in the bile duct of the dog. Arch Surg, 1943; 46(5): 245-252.
    2. Gulati SM, Iyengar B, Thusoo TK, et al. Use of Dacron velour in choledochoplasty. An experimental study. Am Surg, 1983; 49(8): 49-53.
    3. Hartung H, Kirchner R, Baba N, et al. Histological, laboratory, and X-ray findings after repair of the common bile duct with a Teflon graft. World J Surg, 1978; 2(5): 639-642.
    4. Ruka M, Rowinski WA, Lipski M, et al. Expanded polytetrafluoroethylene grafts in restoring bile drainage in dogs. Z Exp Chir Transplant Kunstliche Organe, 1987; 20 (6): 317-323.
    5. Mendelowitz DS, Beal JM. Expanded polytetrafluoroethylene in reconstruction of the canine biliary system. Am J Surg, 1982; 143(2): 221-224.
    6. Gomez NA, Alvarez LR, Mite A, et al. Repair of bile duct injuries with Gore-Tex vascular grafts: experimental study in dogs. J Gastrointest Surg, 2002; 6(1): 116-120.
    7. Rosen M, Ponsky J, Petras R, et al. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery, 2002; 132(3): 480-486.
    8. Rosen M, Ponsky J, Petras R, et al. Novel bile duct repair for bleeding biliary anastomatic varices: case report and literature review. J Gastrointest Surg, 2005; 9(2): 832-836.
    9. Gomez NA, Zapatier JA, Vargas PE. Re: "small intestinal submucosa as a bioscaffold for biliary tract regeneration." Surg, 2004; 135(4): 460.
    10. Miyazawa M, Torii T, Toshimitsu Y, et al. A tissue-engineered artificial bile duct grown to resemble the native bile duct. Am J Transplant, 2005; 5(6): 1541-1547.
    11. No authors listed. An artificial bile duct made of bioabsorbable polymer can serve as a substitute for a narrowed bile duct. Transplantation, 2006; 82(1 Supple 2): 746.
    1. Nishi H, Nakada T, Kyo S, et al. Hypoxia-inducible factor 1 mediate upregulation of telomerase (hTERT). Mol Cell Biol, 2004; 24(13): 6076-6083.
    2. Yatabe N, Kyo S, Maida Y, et al. HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene, 2004; 23(20): 3708-3715.
    3. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature, 396(6712): 643-649.
    4. Koshiji M, To KK, Hammer S, et al. HIF-lalpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell, 2005; 17(6): 793-803.
    5. Yang J, Chen Z, Liu Y, et al. Altered DNA polymerase iota expression in breast cancer cells leads to reduction in DNA replication fidelity and a higher rate of mutagenesis. Cancer Res, 2004; 64(16): 5597-5607.
    6. Ito A, Koshikawa N, Mochizuki S, et al. Hypoxia-inducible factor-1 mediates the expression of DNA polymerase iota in human tumor cells. Biochem Biophys Res Commun, 2006; 351(1): 306-311.
    7. Kelly BD, Hackett SF, Hirota K, et al. Cell type-specific regulation of angiogenic growth factor gene expression in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res, 2003; 93(11): 1074-1081.
    8. Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1 alpha. Genes Dev, 2000; 14(1): 34-44.
    9. Stoeltzing O, McCarty MF, Wey JS, et al. Role of hypoxia-inducible factor 1 alpha in gastric cancer cell growth, angiogenesis, and vessel maturation. J Natl Cancer Inst, 96(12): 946-956.
    10. Tang N, Wang L, Esko J, et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell, 2004; 6(5): 485-495.
    11. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 2004; 4(11): 891-899.
    12. Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev, 1998; 12(2): 149-162.
    13. Robey IF, Lien AD, Welsh SJ, et al. Hypoxia-inducible factor-lalpha and the glycolytic phenotype in tumors. Neoplasia, 2005; 7(4): 324-330.
    14. Cramer T, Yamanishi Y, Clausen BE, et al. HIF-lalpha is essential for myeloid cell-mediated inflammation. Cell, 112(5): 645-657.
    15. Feldser D, Agani F, Iyer NV, et al. Reciprocal positive regulation of hypoxia-inducible factor 1 alpha and insulin-like growth factor 2. Cancer Res. 1999; 59(16): 3915-3918.
    16. Fukuda R, Hirota K, Fan F, et al. Insulin like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem, 2002; 277(41): 38205-38211.
    17. Gunaratnam L, Morley M, Franovic A, et al. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory oathway in VHL(-/-) renal carcinoma cells. J Biol Chem, 2003; 278(45): 44966-44974.
    18. Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res, 2003; 63(5): 1138-1143.
    19. McMahon S, Grondin F, McDonald PP, et al. Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: impact on the bioactivation of proproteins. J Biol Chem, 2005; 280(8): 6561-6569.
    20. Petrella BL, Lohi J, Brinckerhoff CE. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene, 2005; 24(6): 1043-1052.
    21. Raval RR, Lau KW, Tran MG, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von HippelLindau-associated renal cell carcinoma . Mol Cell Biol, 2005; 25(1): 5675-5686.
    22. Niizeki H, Kobayashi M, Horiuchi I, et al. Hypoxia enhances the expression of autocrine motility factor and the motility of human pancreatic cancer cells. Br J Cancer, 2002; 86(12): 1914-1919.
    23. Pennacchietti S, Michieli P, Galuzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003; 3(4): 347-361.
    24. Schioppa T, Uranchimeg B, Saccani A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med, 2003; 198(9): 1391-1402.
    25. Staller P, Sulitkova J, Lisztwan J, et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL . Nature, 2003; 425(6955): 307-311.
    26. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001; 410(6824): 50-56.
    27. Aebersold DM, Burri P, Beer KT, et al. Expression of hypoxia-inducible factor-1 alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res, 2001; 61(7): 2911-2916.
    28. Unruh A, Ressel A, Mohamed HG, et al. The hypoxia-inducible factor-1α is a negative factor for tumor therapy. Oncogene, 2003; 22(21): 3213-3220.
    29. Williams KJ, Telfer BA, Xenaki D, et al. Enhanced response to radiotherapy in tumors deficient in the function of hypoxia-inducible factor-1. Radiother Oncol, 2005; 75(1): 89-98.
    30. Moeller BJ, Cao Y, Li CY, et al. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygen, free radicals, and stress granules. Cancer Cell, 2004; 5(5): 429-441.
    31. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res, 2002; 62(12): 3387-3394.
    32. Krishnamurthy P, Ross DD, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem, 2004; 279(23): 24218-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700